## Heavy flavour modelling in top-related analyses at ATLAS

## Andrea Knue

Heavy Flavour Production at the LHC Durham, 20-22nd April 2016



Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)



| Introduction | tībb | $t\overline{t}H(b\overline{b})$ analysis | Exotics searches | Summary | Discussion |
|--------------|------|------------------------------------------|------------------|---------|------------|
| Outline      |      |                                          |                  |         |            |



| Introduction | $t\bar{t}H(b\bar{b})$ analysis |  | Discussion |
|--------------|--------------------------------|--|------------|
| Motivation   |                                |  |            |

- top-quark events often produced with additional jets @ the LHC
  - $\hookrightarrow$  want to test pQCD prediction

 $\hookrightarrow$  important, often irreducible background for SM and exotics

- will show today three examples:
- 1.) SM measurement  $(t\bar{t}b\bar{b})$
- 2.) SM search  $(t\bar{t}H(b\bar{b}))$
- 3.) Exotics searches (four tops, Ht + X,  $H^+$ )

|         | tībb |  |  |
|---------|------|--|--|
| Outline |      |  |  |





- want to understand and test QCD
- best predictions from fixed order calc. @ NLO
- but: large uncertainties on predictions

 $\hookrightarrow$  we need experimental measurements!

• measurement @ 8TeV: cross-section in fiducial phase space

• measure 
$$t\bar{t} + b$$
,  $t\bar{t} + b\bar{b}$  and ratio of  $rac{\sigma(t\bar{t}+b\bar{b})}{\sigma(t\bar{t}+jj)}$ 

| Introduction | tībb    | $t\overline{t}H(b\overline{b})$ analysis |  | Discussion |
|--------------|---------|------------------------------------------|--|------------|
| Analysis s   | trategy |                                          |  |            |

## Fiducial $t\bar{t} + b$ cross-section

- →  $e\mu$  & lepton+jets channel
- → two (one) leptons,  $\geq$  3 (5) jets,  $\geq$  3 *b*-tagged jets
- → use *b*-tagging discriminant to extract  $t\bar{t}+b/c/I$

## Fiducial $t\bar{t} + b\bar{b}$ cross-section

- → dilepton channel: cut- and fit-based
- → two leptons,  $\geq$  4 *b*-tagged jets
- → use *b*-tagging discr. to extract  $t\bar{t} + b\bar{b}$ ,  $t\bar{t} + bX$ ,  $t\bar{t} + cX$ ,  $t\bar{t} + lX$

## $\sigma(t\bar{t}+b\bar{b})/\sigma(t\bar{t}+jj)$ ratio

- → dilepton channel, at least 4 particle jets
- → allows to cancel some uncertainties

|   |    | tībb |   |  |  |
|---|----|------|---|--|--|
|   |    |      |   |  |  |
| _ | 1- |      | ~ |  |  |

## Pre-/Postfit plots for lepton+jets





#### Extract cross-sections:

- → profile likelihood fit of templates to data
- $\rightarrow$  allows to strongly constrain the uncertainties (right plot)
- $\boldsymbol{\rightarrow}$  insignificant uncertainties are excluded from the fit

| tībb |  |  |
|------|--|--|
|      |  |  |

## Impact of systematic uncertainties

| Source                         | σ <sup>#d</sup><br>Lepton-plus-jets<br>uncertainty<br>(%) | and<br>tth ep<br>uncertainty<br>(%) | a <sup>h:</sup><br>Cut-hased<br>uncertainty<br>(%) | σ <sup>fd</sup><br>Fit-based<br>uncertainty<br>(%) | R <sub>mbb</sub><br>Fit-based<br>uncertainty<br>(%) |
|--------------------------------|-----------------------------------------------------------|-------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
| Total detector                 | +17.5 -14.4                                               | +11.6 - 8.0                         | ±14.5                                              | +11.9-13.1                                         | +10.9 - 12.5                                        |
| Jet (combined)                 | +3.9 -2.7                                                 | +10.1 - 6.1                         | ±5.5                                               | +6.0 - 8.5                                         | +8.7 - 10.7                                         |
| Lepton                         | ±0.7                                                      | +1.0 -0.5                           | ±2.0                                               | +2.4 - 2.7                                         | +0.8 - 1.6                                          |
| b-tagging effect on b-jets     | +4.4 -4.0                                                 | +3.6 -3.1                           | ±12.9                                              | +9.4 -9.0                                          | +6.0 - 5.8                                          |
| b-tagging effect on c-jets     | +16.2 - 13.4                                              | +4.0 -3.6                           | ±1.7                                               | ±1.4                                               | +1.2 -1.3                                           |
| b-tagging effect on light jets | +3.1 -2.0                                                 | +1.9 -2.0                           | ±4.3                                               | +3.3 -2.9                                          | +2.2 -1.9                                           |
| Total # modelling              | +13.1 -13.7                                               | +238-161                            | +23.8                                              | +21.7                                              | +16.1                                               |
| Generator                      | +1.1 - 1.4                                                | +23.3 - 15.1                        | ±16.9                                              | ±17.4                                              | ±12.4                                               |
| Scale choice                   | ±4.3                                                      | +1.1 -2.7                           | ±14.2                                              | ±9.5                                               | ±6.0                                                |
| Shower/hadronisation           | +11.4 -12.1                                               | +3.0 - 3.4                          | ±8.2                                               | ±8.7                                               | ±7.1                                                |
| PDF                            | +4.7 -4.5                                                 | +3.3                                | +3.3                                               | ±0.8                                               | ±4.1                                                |
| Removing/doubling tfV and tiH  | ±0.4                                                      | +1.1 - 0.9                          | ±1.5                                               | +3.1-2.7                                           | +3.0 - 2.6                                          |
| Other backgrounds              | ±0.8                                                      | +0.9 -0.8                           | ±1.6                                               | +3.5 -3.3                                          | ±2.5                                                |
| MC sample size                 | <1                                                        | < 1                                 | ±9.6                                               | ±7.4                                               | ±7.4                                                |
| Luminosity                     | ±2.8                                                      | ±2.8                                | ±3.2                                               | ±2.9                                               | ±0.1                                                |
| Total systematic uncertainty   | +25.5 - 19.2                                              | +30.5 -19.9                         | ±29.5                                              | +26.4 -26.9                                        | +21.1 -21.9                                         |
| Statistical uncertainty        | ±7.1                                                      | +19.2 -17.9                         | ±18.4                                              | ±24.6                                              | ±25.2                                               |
| Total uncertainty              | +26.5 - 20.5                                              | +36.0 - 26.8                        | ±35.2                                              | +36.1-36.4                                         | +32.9 - 33.4                                        |

#### Impact on final result

- $\rightarrow$  dilepton: stat. and syst. of similar size
- → lepton+jets: limited by systematics
- $\rightarrow$  systematics dominated by tagging and modelling uncertainties
- → impact on  $\mu$ : PS and scale variations



| tībb |  |  |
|------|--|--|
|      |  |  |
|      |  |  |

## Comparison of generator setups

| Sample                        | Generator                               | Shower      | $m_{ m b}~[{ m GeV}]$ | Comments                       |  |  |  |  |  |  |  |
|-------------------------------|-----------------------------------------|-------------|-----------------------|--------------------------------|--|--|--|--|--|--|--|
|                               | <i>b</i> -quarks in ME, NLO+PS          |             |                       |                                |  |  |  |  |  |  |  |
| $t\overline{t}+b\overline{b}$ | aMC@NLO                                 | Pythia8     | 4.8                   | BDDP scale                     |  |  |  |  |  |  |  |
| $t\overline{t}+b\overline{b}$ | aMC@NLO                                 | Pythia8     | 4.8                   | $H_{ m T}/4$ scale             |  |  |  |  |  |  |  |
| $t\overline{t}+b\overline{b}$ | Powhel                                  | Pythia8     | 0.0                   | $H_{ m T}/2$ scale             |  |  |  |  |  |  |  |
|                               | $t\overline{t} + b\overline{b}$ @ LO+PS |             |                       |                                |  |  |  |  |  |  |  |
| $t\bar{t}$ +(0-3) p.          | Madgraph5                               | Pythia6     | 4.8                   |                                |  |  |  |  |  |  |  |
|                               | b-                                      | quarks only | / in PS               |                                |  |  |  |  |  |  |  |
| tīt (a)                       | Pythia8                                 | Pythia8     | 4.8                   | enhanced $g  ightarrow bar{b}$ |  |  |  |  |  |  |  |
| <i>tī</i> (b)                 | Pythia8                                 | Pythia8     | 4.8                   | suppr. $g  ightarrow bar{b}$   |  |  |  |  |  |  |  |
| <i>tt</i> ̄ (c)               | Pythia8                                 | Pythia8     | 4.8                   | enhanced $g 	o bar{b}$         |  |  |  |  |  |  |  |
| tĪ                            | Powheg                                  | Pythia6     | 0.0                   |                                |  |  |  |  |  |  |  |

#### Options for $g ightarrow b ar{b}$ splitting

- a) wgtq3: mass dep. terms in splitting kernel,
- b) wgtq5: no mass dep. terms, sgtq=1: small  $g 
  ightarrow b ar{b}$  rate
- c) wgtq6: mass dep. terms, sgtq=0.25: high  $g 
  ightarrow b ar{b}$  rate

| tībb |  |  |
|------|--|--|
|      |  |  |

## Results for fiducial cross-sections



#### QCD only measurements (subtract $t\bar{t}H$ and $t\bar{t}V$ )

- measurement at 8 TeV still limited by statistics
- uncertainty on  $t\bar{t} + b$ : 25% (lepton+jets) and 32% (dilepton)
- uncertainty on  $t\bar{t} + b\bar{b}$ : 35% (cut-based) and 36% (fit-based)
- most generators: good agreement with data  $\hookrightarrow$  extreme option with highest rate of  $g \to b\bar{b}$ : strongly disfavoured



- $\rightarrow$  results sensitive to modelling of gluon splitting in PS
- → model with highest  $g \rightarrow b\bar{b}$  rate overestimates the cross section by factor of 2!

| Introduction | tībb | $t\overline{t}H(b\overline{b})$ analysis | Exotics searches | Summary | Discussion |
|--------------|------|------------------------------------------|------------------|---------|------------|
| Outline      |      |                                          |                  |         |            |



|            |         | $t\overline{t}H(b\overline{b})$ analysis |  |  |
|------------|---------|------------------------------------------|--|--|
| Motivation | : Why s | search for $t\bar{t}H$ ?                 |  |  |

- → after discovery of the Higgs Boson:
- $\hookrightarrow$  what are its properties?
- $\hookrightarrow \mathsf{is} \mathsf{ it really the SM particle?}$
- $\rightarrow$  important: directly measure the **top-Higgs Yukawa coupling**  $Y_t$
- → top quark heaviest fermion:
- $\hookrightarrow Y_t$  largest: pprox 1

- → any deviation would be sign for BSM processes
- → but: challenging search



| Introduction            |                         | $t\bar{t}H(b\bar{b})$ analysis |  | Discussion |
|-------------------------|-------------------------|--------------------------------|--|------------|
| Why <i>t</i> t <i>H</i> | $(H  ightarrow b ar{b}$ | )?                             |  |            |

### Challenges:

- Iargest BR for Higgs decay, but:
- irreducible bkg from  $t\bar{t}b\bar{b}$
- large uncertainties on  $t\bar{t}$ +HF





- → exploit as much info as possible
- $\textbf{ \rightarrow }$  use a NN to get best possible S/B separation

q

g

mm

mmm

q

- ightarrow use signal-depleted regions to constrain bkg and unc
- $\rightarrow$  combined nuisance parameter fit to all regions
- $\hookrightarrow$  analysis here: 8 TeV, 20.3 fb  $^{-1}$   $\blacktriangleright$  Eur. Phys. J. C (2015) 75:349

| Introduction | tībb      | $t\overline{t}H(b\overline{b})$ analysis | Exotics searches  | Summary | Discussion |
|--------------|-----------|------------------------------------------|-------------------|---------|------------|
| Lepton+je    | ets chann | e Eur. Phys. J. C (2015) 75:             | <mark>:349</mark> |         |            |



#### Event selection

- → 1 isolated lepton (25 GeV)
- → at least 4 jets, 2 *b*-tagged jets
- → MVA based *b*-tagging
- → no cut on MET/ $m_{T,W}$
- $\rightarrow$  ttbar modelling with Powheg

## Discriminating variables

- signal-depleted regions:  $H_T^{had}$
- signal-enriched regions: MVA output
  - $\hookrightarrow$  input to MVA are 10 variables per region

→ note: if for  $g \to b\bar{b}$  the b's are within the same jet, events can migrate between different jet/tag categories

# $\frac{1}{1000} \frac{t\overline{t}b\overline{b}}{t\overline{t}} \frac{t\overline{t}H(b\overline{b}) \text{ analysis}}{t\overline{t}} Exotics searches} \frac{1}{1000} \frac{1}{1000}$

- $\circ$  take antiKt (R=0.4) particle level jets ( $p_{
  m T}>15$  GeV,  $|\eta|<2.5)$
- $\circ$  use truth matching to hadrons with  $\Delta R <$  0.4,  $p_{
  m T} >$  5 GeV
- now check additional jets in the event:
  - $\hookrightarrow$  if add. jet contains one B/D hadron:  $t\overline{t} + b$
  - $\hookrightarrow$  if add. jet contains more than one B/D hadron:  $t\overline{t}+B$
  - $\hookrightarrow$  if event not categ. as  $t\bar{t}+b/B$  and particle jet contains C-hadron:  $t\bar{t}+c\bar{c}$





→ Sherpa does not include  $t\bar{t} + b\bar{b}$  production via MPI and FSR

#### Samples used for analysis:

- → Powheg+Pythia6:  $t\bar{t} + b\bar{b}$  only from PS
- → Madgraph+Pythia6:  $t\bar{t}$ +(0-3) partons (MLM matching)
- → Sherpa+OpenLoops: (4FS, massive *b*-quarks)
- $\hookrightarrow$  expected to model  $tar{t}+bar{b}$  better, reweight Powheg to Sherpa for  $tar{t}+bar{b}$

| Introduction |           | $t\bar{t}H(b\bar{b})$ analysis |  | Discussion |
|--------------|-----------|--------------------------------|--|------------|
| Concitivity  | to variat | tions in Sharpa                |  |            |

## Sensitivity to variations in Sherpa



## Scale variations

- → large impact from  $\mu_R$  variation
- → large impact from functional form of  $\mu_R$

#### Other variations

- → impact of MSTW larger than NNPDF
- → impact of shower recoil visible



|     | $t\bar{t}H(b\bar{b})$ analysis |  |  |
|-----|--------------------------------|--|--|
|     |                                |  |  |
| ~ . |                                |  |  |

## Systematic uncertainties and impact on result

- PS: Pythia6 vs Herwig
- 50% normalisation  $t\bar{t} + b\bar{b}/c\bar{c}$
- $t\overline{t} + c\overline{c}$ :
  - $\rightarrow$  scale and variation
  - $\rightarrow$  matching threshold
  - ➔ Madgraph vs. Powheg
- $t\overline{t} + b\overline{b}$ :
  - $\rightarrow$  using  $\mu_{\rm R} = \sqrt{m_t m_{b\bar{b}}}$
  - $\rightarrow$  vary  $\mu_{\rm R}$  up and down
  - → change func. form of  $\mu_F$  and  $\mu_Q$
  - → shower recoil scheme
  - $\rightarrow$  PDF choice in Sherpa
  - → missing MPI and FSR



| Introduction | tītbb | $t\overline{t}H(b\overline{b})$ analysis | Exotics searches | Summary | Discussion |
|--------------|-------|------------------------------------------|------------------|---------|------------|
| Outline      |       |                                          |                  |         |            |



- $T \overline{T} \rightarrow Ht + X$  production
- lepton+jets final state
- possible due to allowed FCNC decays
- similar final state as  $t\bar{t}H$  shown before





- four-top production: tiny xsec in SM  $(\approx 1 \text{ fb-1})$
- enhanced in several BSM scenarios
- in EFT: also four-fermion contact interaction

| Introduction | tībb      | $t\bar{t}H(b\bar{b})$ analysis | Exotics searches | Summary | Discussion |
|--------------|-----------|--------------------------------|------------------|---------|------------|
| Systemati    | c uncerta | inties                         |                  |         |            |

- $T\overline{T} \rightarrow Ht + X$  search (right):
- $t\bar{t} + b\bar{b}$  fraction in SR:  $\approx 50$  %
- same samples/syst. as for  $t\bar{t}H$
- large uncertainties on  $t\bar{t} + b\bar{b}$ ۲ PS and modelling

| $\leq 0$ ), $\leq 4$ 0, mga m <sub>36</sub> |           |                        |                       |                       |                        |                     |                       |
|---------------------------------------------|-----------|------------------------|-----------------------|-----------------------|------------------------|---------------------|-----------------------|
|                                             |           | Pre-fit                | t                     |                       | P                      | Post-fit            |                       |
|                                             | Signal    | $t\bar{t}$ +light-jets | $t\bar{t} + c\bar{c}$ | $t\bar{t} + b\bar{b}$ | $t\bar{t}$ +light-jets | $t\bar{t}+c\bar{c}$ | $t\bar{t} + b\bar{b}$ |
| Luminosity                                  | ±2.8      | $\pm 2.8$              | $\pm 2.8$             | $\pm 2.8$             | ±2.6                   | $\pm 2.6$           | $\pm 2.6$             |
| Lepton efficiencies                         | $\pm 1.5$ | $\pm 1.5$              | $\pm 1.5$             | $\pm 1.5$             | $\pm 1.5$              | $\pm 1.4$           | $\pm 1.5$             |
| Jet energy scale                            | $\pm 4.4$ | $\pm 15$               | $\pm 11$              | $\pm 12$              | ±8.7                   | $\pm 6.4$           | $\pm 6.7$             |
| Jet efficiencies                            |           | $\pm 4.0$              | $\pm 2.2$             | $\pm 1.9$             | ±2.7                   | $\pm 1.5$           | $\pm 1.3$             |
| Jet energy resolution                       | $\pm 0.1$ | $\pm 4.4$              | $\pm 3.8$             | $\pm 0.5$             | $\pm 3.1$              | $\pm 2.6$           | $\pm 0.4$             |
| b-tagging efficiency                        | ±13       | $\pm 5.6$              | $\pm 5.4$             | $\pm 9.3$             | $\pm 4.6$              | $\pm 4.6$           | $\pm 6.6$             |
| c-tagging efficiency                        | $\pm 1.6$ | $\pm 5.8$              | $\pm 12$              | $\pm 3.1$             | $\pm 5.6$              | $\pm 11$            | $\pm 2.9$             |
| Light-jet tagging efficiency                | $\pm 0.6$ | ±20                    | $\pm 5.7$             | $\pm 2.0$             | ±17                    | $\pm 5.1$           | $\pm 1.8$             |
| High-p <sub>T</sub> tagging efficiency      | $\pm 4.8$ | $\pm 0.7$              | $\pm 1.7$             | $\pm 1.6$             | $\pm 0.6$              | $\pm 1.3$           | $\pm 1.2$             |
| $t\bar{t}$ : reweighting                    |           | $\pm 13$               | $\pm 15$              | -                     | ±10                    | $\pm 10$            | -                     |
| tī: parton shower                           |           | $\pm 28$               | $\pm 17$              | $\pm 6.2$             | $\pm 13$               | ±11                 | $\pm 4.0$             |
| $t\bar{t}$ +HF: normalisation               |           |                        | $\pm 50$              | $\pm 50$              |                        | $\pm 32$            | $\pm 18$              |
| $t\bar{t}$ +HF: modelling                   |           |                        | $\pm 17$              | $\pm 12$              |                        | $\pm 16$            | $\pm 10$              |
| Theoretical cross sections                  | -         | $\pm 6.3$              | $\pm 6.3$             | $\pm 6.3$             | $\pm 4.6$              | $\pm 4.6$           | $\pm 4.6$             |
| Total                                       | $\pm 15$  | $\pm 42$               | $\pm 61$              | $\pm 55$              | ±22                    | $\pm 30$            | $\pm 15$              |

c : > i > i block  $Mmin\Delta R$ 

| $\geq 6$ j, $\geq 4$ b, high $M_{bb}^{mn\Delta R}$ |           |                        |                       |                       |                        |                       |                       |
|----------------------------------------------------|-----------|------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|
|                                                    |           | Pre-fi                 | t                     |                       | P                      | ost-fit               |                       |
|                                                    | Signal    | $t\bar{t}$ +light-jets | $t\bar{t} + c\bar{c}$ | $t\bar{t} + b\bar{b}$ | $t\bar{t}$ +light-jets | $t\bar{t} + c\bar{c}$ | $t\bar{t} + b\bar{b}$ |
| Luminosity                                         | $\pm 2.8$ | ±2.8                   | $\pm 2.8$             | $\pm 2.8$             | ±2.7                   | $\pm 2.7$             | $\pm 2.7$             |
| Lepton efficiencies                                | $\pm 1.6$ | ±1.4                   | $\pm 1.5$             | $\pm 1.7$             | ±1.4                   | $\pm 1.5$             | $\pm 1.6$             |
| Jet energy scale                                   | $\pm 5.6$ | $\pm 14$               | $\pm 14$              | $\pm 11$              | $\pm 13$               | $\pm 14$              | $\pm 11$              |
| Jet efficiencies                                   | $\pm 3.1$ | $\pm 3.3$              | $\pm 1.0$             | $\pm 0.9$             | ±3.2                   | $\pm 0.9$             | $\pm 0.8$             |
| Jet energy resolution                              | $\pm 0.1$ | $\pm 6.0$              | $\pm 1.1$             | $\pm 1.9$             | $\pm 4.5$              | $\pm 0.9$             | $\pm 1.5$             |
| b-tagging efficiency                               | ±16       | $\pm 7.6$              | $\pm 9.2$             | $\pm 16$              | ±3.9                   | $\pm 5.2$             | $\pm 7.5$             |
| c-tagging efficiency                               | $\pm 1.0$ | $\pm 6.1$              | $\pm 15$              | $\pm 3.0$             | $\pm 5.8$              | $\pm 14$              | $\pm 2.8$             |
| Light-jet tagging efficiency                       |           | $\pm 19$               | $\pm 6.3$             | $\pm 2.4$             | ±18                    | $\pm 5.8$             | $\pm 2.3$             |
| High- $p_T$ tagging efficiency                     | ±11       | $\pm 2.7$              | $\pm 5.3$             | $\pm 5.0$             | ±1.9                   | $\pm 3.8$             | $\pm 3.6$             |
| $t\bar{t}$ : reweighting                           |           | $\pm 15$               | $\pm 16$              | -                     | ±14                    | $\pm 15$              | -                     |
| $t\bar{t}$ : parton shower                         |           | ±22                    | $\pm 35$              | $\pm 26$              | ±14                    | $\pm 33$              | $\pm 24$              |
| $t\bar{t}$ +HF: normalisation                      |           |                        | $\pm 50$              | $\pm 50$              |                        | $\pm 44$              | $\pm 30$              |
| $t\bar{t}$ +HF: modelling                          |           |                        | $\pm 27$              | $\pm 24$              |                        | $\pm 28$              | $\pm 21$              |
| Theoretical cross sections                         | -         | $\pm 6.3$              | $\pm 6.2$             | $\pm 6.3$             | $\pm 5.9$              | $\pm 5.9$             | $\pm 5.9$             |
| Total                                              | ±21       | $\pm 38$               | $\pm 73$              | $\pm 65$              | ±24                    | $\pm 46$              | $\pm 27$              |

- $t\bar{t}t\bar{t}$  production (left)
- large uncertainties on  $t\bar{t} + b\bar{b}$  PS and modelling
- o post-fit uncertainties: strongly reduced



 $\rightarrow$  similar analysis strategy and HF modelling/uncertainties as for 8 TeV

- $\rightarrow$  see large discrepancy between data and MC
- → combined likelihood fit to 11 channels:
- $\hookrightarrow t \overline{t} + b \overline{b}$  contribution increases about a factor of 2!



- predicted in MSSM or 2HDM
- BR depends on  $\tan \beta$
- associated top H<sup>+</sup> production
- signal region has large HF backgrounds (about 29 %)





- same  $t\bar{t}$ +HF modelling as in  $t\bar{t}H$
- o dominant systematics → tagging/modelling uncertainties:
- larger impact from  $t\bar{t} + b\bar{b}$  PS, cross-section

| Introduction | tībb | $tar{t}H(bar{b})$ analysis | Exotics searches | Summary | Discussion |
|--------------|------|----------------------------|------------------|---------|------------|
| Outline      |      |                            |                  |         |            |



|         |  | Summary |  |
|---------|--|---------|--|
| Summary |  |         |  |

 heavy-flavour production in association with top-quarks is difficult to predict

 $\hookrightarrow$  need experimental measurements for better understanding (need higher stats)

- $t\bar{t} + b\bar{b}$  is important background for a lot of searches
  - $\hookrightarrow$  problem: have no HF enriched, signal free control region

 $\hookrightarrow$  use special classification to reweight generators to Sherpa+OpenLoops

- ${\circ}\,$  see bad data/MC agreement in HF enriched regions in first 13 TeV results
- from experimental side: need more precise measurements of  $t\overline{t} + b(b)$  and c(c)

| Introduction | tībb | $t\overline{t}H(b\overline{b})$ analysis | Exotics searches | Summary | Discussion |
|--------------|------|------------------------------------------|------------------|---------|------------|
| Outline      |      |                                          |                  |         |            |



| Introduction |          | $t\overline{t}H(b\overline{b})$ analysis |  | Discussion |
|--------------|----------|------------------------------------------|--|------------|
| Discussion   | / "Wishl | ist"                                     |  |            |

- $t\bar{t}$ +HF MC: what is the best setup with systematic uncertainties for the NLO+PS merging?
- ideal: inclusive sample @ NLO for ttbb/cc/light, with systematics due to parameter variation in the generator
- differences between generators seen for ttbb in the Higgs LHC cross-section WG, need to understand NLO+PS merging and need to come up with resonable uncertainties
- is Sherpa+OpenLoops currently the best on the market, or are there new developments in the pipeline?
- are there settings/parameters that we can test to understand the underprediction in the signal region?
- will there be an update for  $t\overline{t} + c(c)$  in the near future?
- what diff. measurements would theorists like to see?