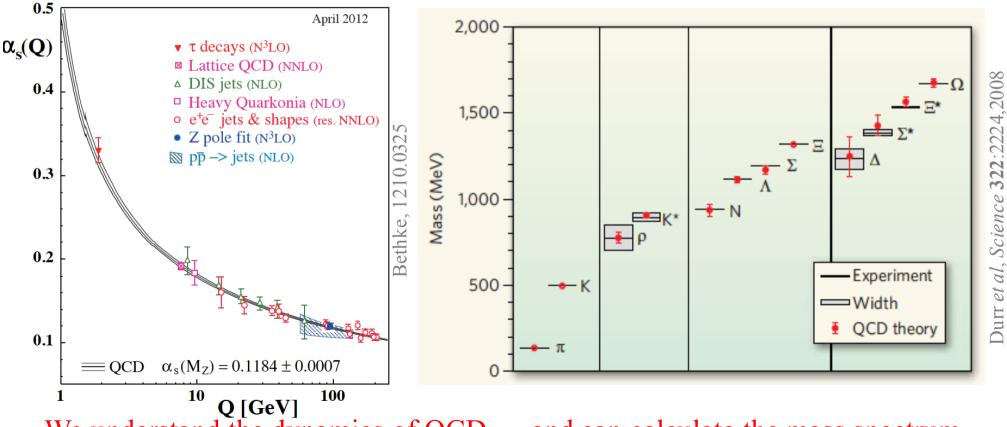
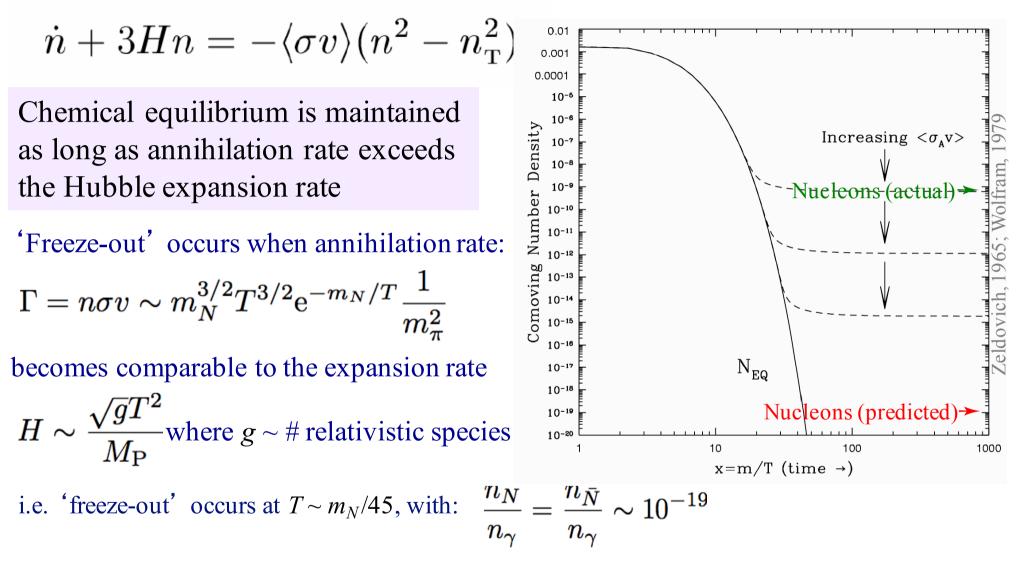
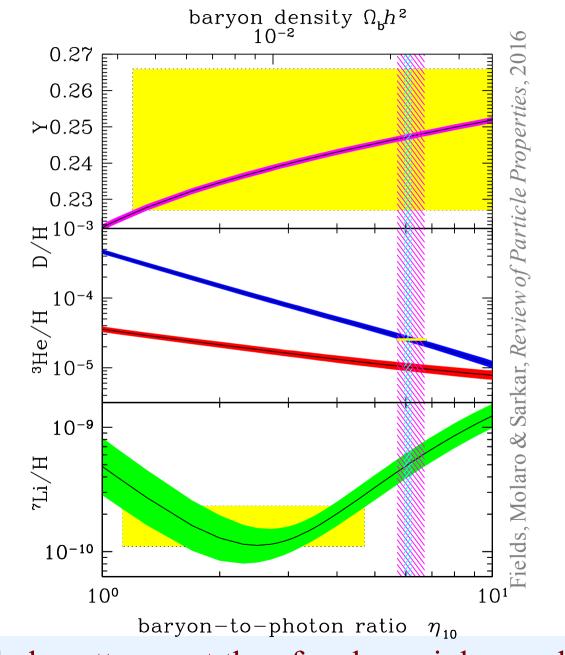

Beyond the 'WIMP miracle'



Axion-like particles: Theory and Experiment, Durham, 13-15 April 2016


Mass scale	Particle	Symmetry/ Quantum #	Stability	Production	Abundance
Aqcd	Nucleons	Baryon number	$\begin{array}{c} \tau > 10^{33} \\ yr \end{array}$	'freeze-out' from thermal equilibrium	$\Omega_{\rm B} \sim 10^{-10}$ cf. observed $\Omega_{\rm B} \sim 0.05$

We have a good theoretical explanation for why baryons are massive and stable



We understand the dynamics of QCD ... and can calculate the mass spectrum

But we cannot correctly predict the cosmological abundance of baryons!

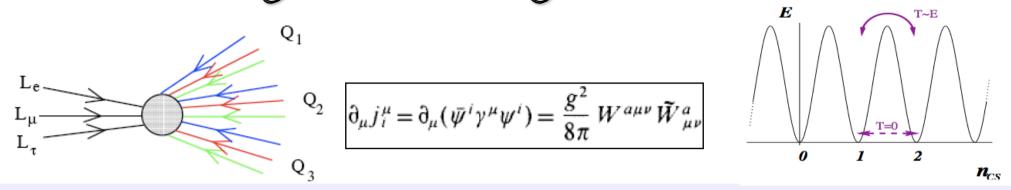
However the observed ratio is 10⁹ times *bigger* for baryons, and there seem to be *no* antibaryons, so we must invoke an initial asymmetry: Why do we not call this the 'baryon disaster'? (*cf.* 'WIMP miracle'!) $\frac{n_B - n_{\bar{B}}}{n_B + n_{\bar{B}}} \sim 10^{-9}$ Although vastly overabundant compared to the natural expectation, baryons cannot close the universe (BBN & CMB concordance)

... the dark matter must therefore be mainly non-baryonic

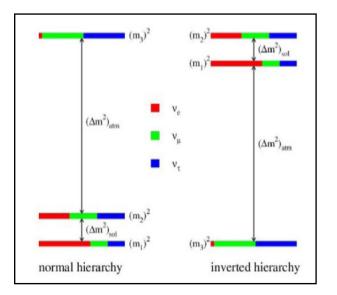
To make the baryon asymmetry requires new physics ('Sakharov conditions')

B-number violation
 CP violation
 Departure for thermal equilibrium

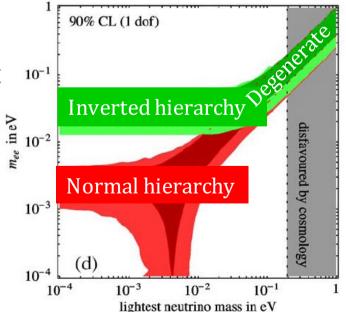
The SM *allows B*-number violation (through non-perturbative – 'sphaleron-mediated' – processes) ... but *CP*-violation is too *weak* and $SU(2)_L \ge U(1)_Y$ breaking is *not* a 1st order phase transition


Hence the generation of the observed matter-antimatter asymmetry requires *new* BSM physics ... can be related to the observed neutrino masses if these arise from *lepton number* violation → **leptogenesis**

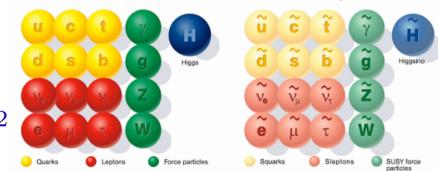
$$\text{`See-saw': } \mathcal{L} = \mathcal{L}_{SM} + \lambda_{\alpha J}^* \overline{\ell}_{\alpha} \cdot HN_J - \frac{1}{2} \overline{N_J} M_J N_J^c \qquad \lambda M^{-1} \lambda^{\mathrm{T}} \langle H^0 \rangle^2 = [m_{\nu}]$$


$$\underbrace{\nu_{\mathsf{e}}}_{\nu_{\mathsf{r}}} \underbrace{\nu_{\mathsf{L}\alpha}}_{\nu_{\mathsf{T}}} \underbrace{m_D^{\alpha A}}_{M_D} \underbrace{M_A}_{N_A} \underbrace{m_D^{\beta A}}_{N_A} \underbrace{\nu_{\mathsf{L}\beta}}_{N_A} \underbrace{\lambda M^{-1} \lambda^{\mathrm{T}} \langle H^0 \rangle^2}_{N_A} = [m_{\nu}]$$

$$\Delta m_{atm}^2 = m_3^2 - m_2^2 \simeq 2.6 \times 10^{-3} \text{eV}^2 \qquad \Delta m_{\odot}^2 = m_2^2 - m_1^2 \simeq 7.9 \times 10^{-5} \text{eV}^2$$


Asymmetric baryonic matter

Any primordial lepton asymmetry (e.g. from out-of-equilibrium decays of the right-handed *N*) would be redistributed by *B*+*L* violating processes (which *conserve B-L*) amongst *all fermions* which couple to the electroweak anomaly – in particular **baryons**

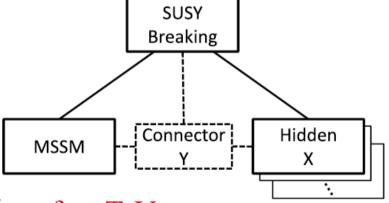

An essential requirement is that neutrino mass must be Majorana ... test by detecting neutrino*less* double beta decay (and measuring the absolute neutrino mass scale)

scale	Particle	Symmetry/ Quantum#	Stability	Production	Abundanc e
A _{QCD}	Nucleons	Baryon number	$\tau > 10^{33} \text{ yr}$	freezent from therman equilibrium Asymmetric baryogenesis	$\Omega_{\rm B} \sim 10^{-10}$ cf. observed $\Omega_{\rm B} \sim 0.05$
$\Lambda_{ m Fermi} \sim G_{ m F}^{-1/2}$	Neutralino?	<i>R</i> -parity?	Violated? (matter parity <i>adequate</i> to ensure B stability)	'freeze-out' from thermal equilibrium	$\Omega_{\rm LSP} \sim 0.3$ SUSY particles

$$H - \bigcup_{\tilde{t}} H - H - H$$

 $\mathcal{L}_{\text{eff}} \supset M_A A_\mu A^\mu + m_f \bar{f}_L f_R + m_H^2 |H|^2$

For (softly broken) **supersymmetry** we have the 'WIMP miracle':


$$\Omega_{\chi}h^2 \simeq \frac{3 \times 10^{-27} \mathrm{cm}^{-3} \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle_{T=T_{\mathrm{f}}}} \simeq 0.1 \quad \text{, since } \langle \sigma_{\mathrm{ann}} v \rangle \sim \frac{g_{\chi}^4}{16\pi^2 m_{\chi}^2} \approx 3 \times 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1}$$

But why should a *thermal* relic have an abundance comparable to non thermal relic baryons?

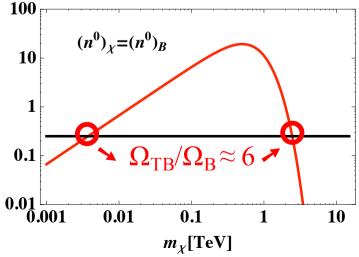
Mass scale	Particle	Symmetry/ Quantum #	Stability	Production	Abundance
Л _{QCD}	Nucleons	Baryon number	$\tau > 10^{33} \text{ yr}$	freezent from therniar equilibrium Asymmetric baryogenesis	$\Omega_{\rm B} \sim 10^{-10}$ cf. observed $\Omega_{\rm B} \sim 0.05$
$\Lambda_{ m Fermi} \sim G_{ m F}^{-1/2}$	Neutralino?	<i>R</i> -parity?	Violated? (matter parity <i>adequate</i> for <i>p</i> stability)	'freeze-out' from thermal equilibrium	$\Omega_{\rm LSP} \sim 0.3$

Hidden sector (GMSB) matter also provides the 'WIMPless miracle' (Feng & Kumar, 0803.4196 see also: Boehm & Fayet, hep-ph/0305261)

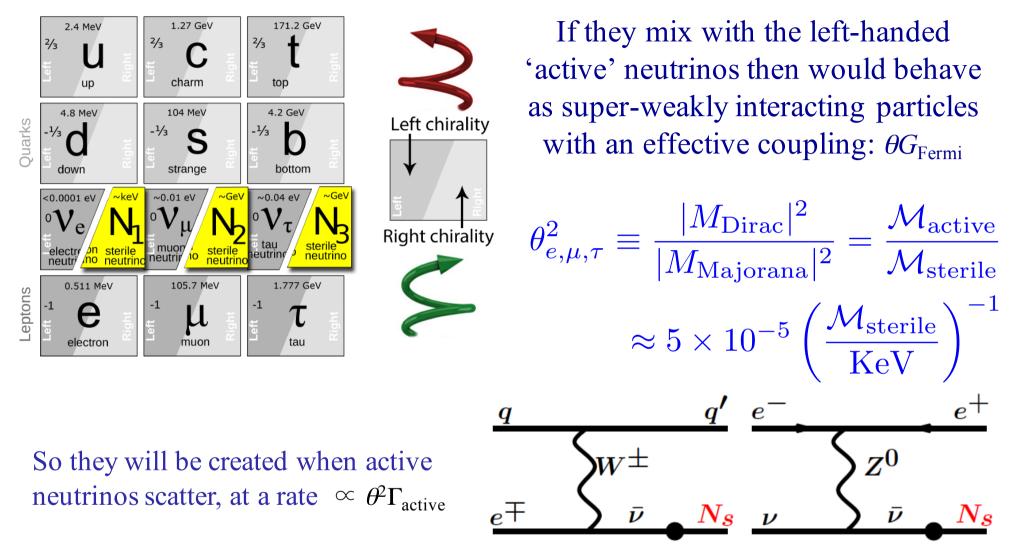
... because:
$$g_h^2/m_h \sim g_\chi^2/m_\chi \sim F/16\pi^2 M$$

Such dark matter can have *any* mass: $\sim 0.1 \text{ GeV} \rightarrow \sim \text{few TeV}$

$$\Omega_{\chi}h^{2} \simeq \frac{3 \times 10^{-27} \text{cm}^{-3} \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle_{T=T_{\text{f}}}} \simeq 0.1 \quad \text{, since } \langle \sigma_{\text{ann}} v \rangle \sim \frac{g_{\chi}^{4}}{16\pi^{2} m_{\chi}^{2}} \approx 3 \times 10^{-26} \text{cm}^{3} \text{s}^{-1}$$


But why should a *thermal* relic have an abundance comparable to non-thermal relic baryons?

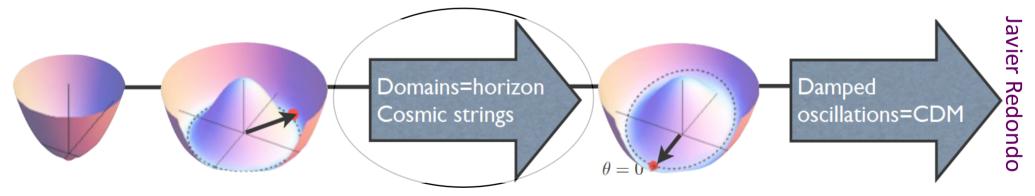
Mass	Particle	Symmetry/	Stability	Production	Abundanc
scale		Quantum#			e
$\Lambda_{ m QCD}$	Nucleons	Baryon number	$\tau > 10^{33} \text{yr}$ (dim-6 OK)	⁶ Freezence, from thermal equilibrium Asymmetric	$\Omega_{\rm B} \sim 10^{-10} cf.$ observed $\Omega_{\rm B} \sim 0.05$
$\Lambda_{\rm QCD'} \sim 6 \Lambda_{\rm QCD}$	Dark baryon?	<i>U</i> (1) _{DB}	plausible	baryogenesis (how?) Asymmetric (like the <i>observed</i> baryons)	$\Omega_{DB} \sim 0.3$
$\Lambda_{ m Fermi} \sim { m G_F}^{-1/2}$	Neutralino?	<i>R</i> -parity	violated?	'Freeze-out' from thermal equilibrium	$\Omega_{\rm LSP} \sim 0.3$
UF	Technibaryon?	(walking) Technicolour	$\tau \sim 10^{18} \text{ yr}$ $e^+ \text{ excess}?$	Asymmetric (like the <i>observed</i> baryons)	$\Omega_{TB} \sim 0.3$


A new particle can naturally *share* in the B/L asymmetry if it couples to the W ... linking dark to baryonic matter!

Then a O(TeV) mass **technibaryon** can be the dark \vec{a} matter ... alternatively a ~few GeV mass **'dark baryon'** in a *hidden sector* (into which the technibaryon decays)

 $\Omega_{\chi} = (m_{\chi}/m_{\rm B})(n_{\chi}/n_{\rm B})\Omega_{\rm B}$

Steríle neutríno dark matter



Hence although they may never come into equilibrium, the relic abundance will be of order the dark matter for a mass of order KeV (however there is no *natural* motivation for such a mass scale)

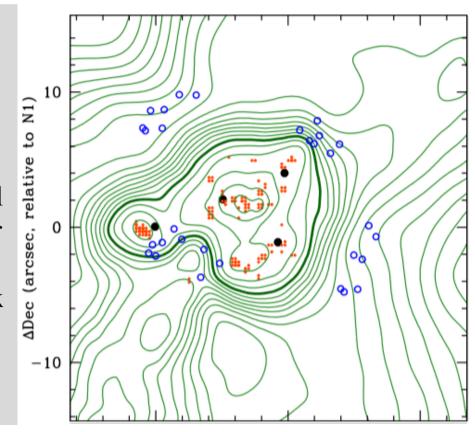
Axion dark matter

The SM admits a term which would lead to *CP* violation in strong interactions, hence an (unobserved) electric dipole moment for neutrons \rightarrow requires $\theta_{\text{QCD}} < 10^{-10}$

To achieve this without fine-tuning, θ_{QCD} must be made a dynamical parameter, through the introduction of a new $U(1)_{\text{Peccei-Quinn}}$ symmetry which must be broken ... the resulting (pseudo) Nambu-Goldstone boson is the QCD **axion** which later acquires a small mass through its mixing with the pion (the pNGB of QCD): $m_a = m_{\pi} (f_{\pi}/f_{\text{PQ}})$

When the temperature drops to Λ_{QCD} the axion potential turns on and the coherent oscillations of relic axions contain energy density that behaves like cold dark matter with $\Omega_a h^2 \sim 10^{11} \text{ GeV}/f_{PO}$... however the *natural* P-Q scale is probably $f_{PO} \sim 10^{18} \text{ GeV}$

Hence QCD axion dark matter would need to be *significantly diluted*, i.e. its relic abundance is not predictable (or seek anthropic explanation for why θ_{QCD} is small?)

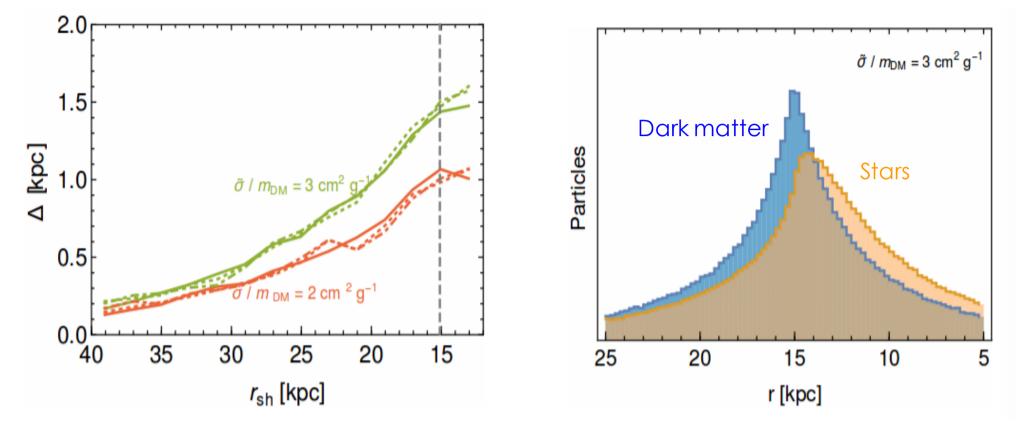

Mass scale	Lightest stable particle	Symmetry/ Quantum #	Stability ensured?	Production	Abundance
Λ _{QCD}	Nucleons	Baryon number	$\tau > 10^{33}$ yr	'Freeze from equilibry m	$\Omega_{\rm B}^{\bullet} \sim 10^{-10}$ cf. observed
$\Lambda_{ m QCD'}$	Dark baryon?	<i>U</i> (1) _{DB}		Asymmetric bay ogenesis Asymmetric fike	$\Omega_{\rm B} \sim 0.05$
$\sim 6\Lambda_{\rm QCD}$	-		plausible	observed baryons)	$\Omega_{DB} \sim 0.3$
$\Lambda_{ m Fermi} \ \sim G_{ m F}^{-1/2}$	Neutralino?	<i>R</i> -parity (walking)	violated?	freeze-out' from	$\Omega_{\rm LSP} \sim 0.3$
$\sim G_{\rm F}$	Technibaryon?		<i>∝</i> ~10 ¹⁸ yr		$\Omega_{TB} \sim 0.3$
$\Lambda_{ m hidden \ sector} \ \sim (\Lambda_{ m F} M_{ m P})^{1/2}$	Crypton? hidden valley?	biserete symmetry (very model)	2 10 ¹⁸ yr	Varying gravitational field during inflation	$\Omega_{\rm X} \sim 0.3?$
$\Lambda_{see-saw}$ $\sim \Lambda_{Fermi}^2 / \Lambda_{B-L}$	Neutrinos	dependent) Lepton number	Stable _.	Thermal (abundance ~ CMB photons)	$\Omega_{v} > 0.003$
$M_{ m string}$ / $M_{ m Phinek}$	Kaluza-Kiem states?	? Peccei-	?	?	?
	Axions	Quinn	Stable	Field oscillations	$\Omega_a \gg 1!$

But Nature may hold a surprise - dark matter may be strongly self-interacting!

The behaviour of dark matter associated with 4 bright cluster galaxies in the 10 kpc core of Abell 3827

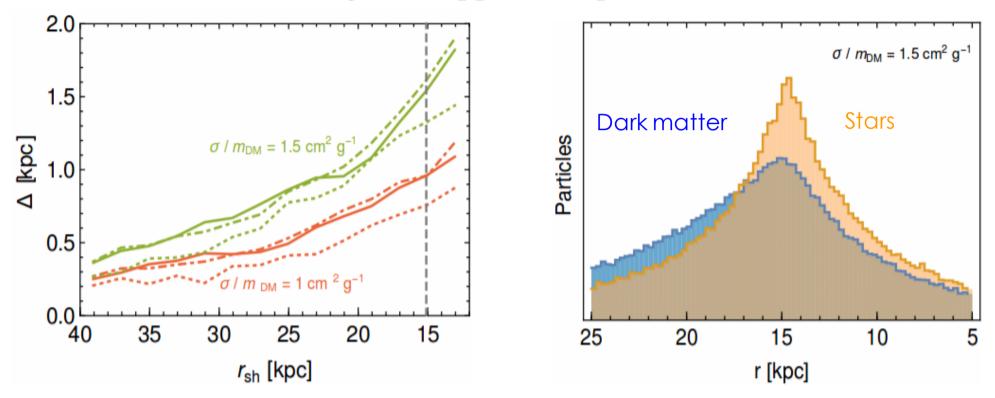
"The best-constrained offset is 1.62 ± 0.48 kpc, where the 68% confidence limit includes both statistical error and systematic biases in mass modelling. [...] With such a small physical separation, it is difficult to definitively rule out astrophysical effects operating exclusively in dense cluster core environments – but if interpreted solely as evidence for self-interacting dark matter, this offset implies a cross-section $\sigma/m = (1.7 \pm 0.7) \text{ x} 10^{-4} \text{ cm}^2/\text{g} (t/10^9 \text{yr})^{-2}$ where t is the infall duration."

Massey et al., 1504.03388


Evidence for SIDM in A3827?

However this numerical value is based on two *incorrect* assumptions:

- The stars and the DM subhalo are assumed to develop completely *independently*, i.e. even a tiny difference in the acceleration can lead to sizeable differences in their trajectories.
 - But initially the stars are *gravitationally bound* to the DM subhalo so can be separated from it only if external forces are comparable to the gravitational attraction within the system
- The effective drag force on the DM subhalo is assumed to be *constant* throughout the evolution of the system.
 - However the rate of DM self-interactions depends on the velocity of the subhalo and the background DM density, both of which will *vary* along the trajectory of the subhalo.


To include these refinements requires a fully 3-D simulation (which we had developed to study the Bullet Cluster: Kahlhoefer *et al*, 1308.3419)

For long-range interactions via 'dark photons' (or Yukawa interactions via light mediators) there are many soft scatterings ... peaked forward!

- The peaks of the dark matter and star distributions are slightly shifted
- The tail of the star distribution is enhanced in the forward direction due to stars that have escaped from the grav. potential of the halo
- The #-section needed to get a separation of 1.5 kpc is $\sigma/m_{\chi} \sim 3 \text{ cm}^2/\text{g}$

But for **contact interactions**, most dark matter particles will *not* scatter so will behave just like (collisionless) stars ... however when a scattering does occur the particle is likely to escape from the halo in the *backward* direction – leading to an apparent separation from the stars

- The separation is due to differences in the *shapes* of the dark matter and stellar distributions, while the peaks remain *coincident*
- The cross section required to obtain a separation of 1.5 kpc is now: $\sigma/m_{\chi} \sim 1.5 \text{ cm}^2/\text{g}$

- For 3 decades searches for dark matter have focussed on WIMPs but dark matter may be neither weakly interacting nor massive (and perhaps not even a particle)!
- □ While nuclear recoil experiments continue to optimise for weak scale mass particles, collider (monojet) searches are sensitive to much lighter particles which are just as well motivated!
- □ If dark matter ⇒ coherent oscillations of axions then rather different search strategies are required
- The separation observed in A3827 if due to DM self-interactions requires: σ/m_χ > 1 cm²/g ... this interpretation is *testable* using observations of gravitational lensed colliding galaxy clusters (where the DM-star separation is expected to be ~10-50 kpc)
 ... *if* true, would be the most significant step forward in understanding the nature of dark matter!