
Search for Hidden Particles (ShiP): an experimental proposal at the SPS

ship.web.cern.ch/ship Mario Campanelli University College London

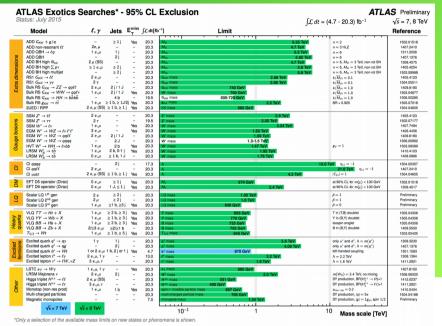
The Standard Model and beyond

- All SM particles have been discovered so far (apart from anti- v_{τ})
- Despite some anomalies, no compelling evidence of new physics found so far
- The Higgs mass points to a (meta-) stable universe
- The SM could be valid to the Plank scale
- Naturalness only a problem if we assume new particles between the the W and Plank scales

What we know we do not know

- Apart from naturalness, we do not understand:
 - Barion Asymmetry of the Universe
 - Dark Matter (indications are for cold, non-barionic)
 - The pattern of masses and mixings
 - Inflation
- Limits to masses of new particles being pushed in the TeV scale by the LHC.
 - → "protection" against a small Higgs mass getting weaker

ATLAS limits for SUSY


ATLAS SUSY Searches* - 95% CL Lower Limits

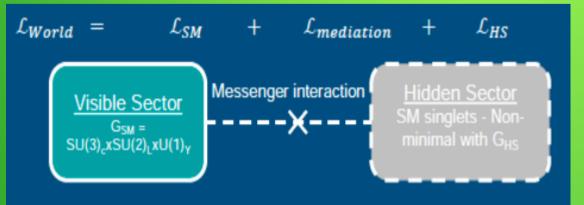
	1LA3 3031 36		5 - 30) /o (AILAG
Sta	atus: July 2015			Timice			\sqrt{s} = 7, 8 TeV
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm mass}$	$\int \mathcal{L} dt [\mathbf{f}\mathbf{b}]$	$Mass limit \qquad \sqrt{s} = 7 \text{ TeV} \qquad \sqrt{s} = 8 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_1^0 \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_1^0 (\text{compressed}) \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \ell (\ell \ell (\ell \nu / \nu \nu) \tilde{\chi}_1^0 \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \bar{q} \tilde{\chi}_1^- \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \bar{q} \tilde{\chi}_1^- \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \bar{q} (\ell \ell / (\nu / \nu \nu) \tilde{\chi}_1^0 \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_1^0 \\ GMSB (\bar{\ell} NLSP) \\ GGM (\text{bino NLSP}) \\ GGM (\text{higgsino-bino NLSP}) \\ Gravitino LSP \\ \end{array} $	$\begin{array}{c} 0-3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 2 \ e, \mu \ (off-Z) \\ 0 \\ 0-1 \ e, \mu \\ 2 \ e, \mu \\ 1-2 \ \tau+0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 1-3 jets 2 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets - 1 b 2 jets 2 jets 2 jets - - - - - - - - - - - - -	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 1503.03290 \\ 1405.7875 \\ 1507.05525 \\ 1507.05525 \\ 1501.03555 \\ 1407.0603 \\ mm \\ 507.05493 \\ 5V, cr(NLSP)<0.1 mm, \mu<0 \\ 1507.05493 \\ 5V, cr(NLSP)<0.1 mm, \mu>0 \\ 1507.05493 \\ 5V, cr(NLSP)<0.1 mm, \mu>0 \\ 1507.05493 \\ 5V, cr(NLSP)<0.1 mm, \mu>0 \\ 5V, cr(NLSP)<0.1 mm,$
3 rd gen. <u>§</u> med.	$\begin{array}{l} \tilde{g}\tilde{g},\tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g},\tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g},\tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g},\tilde{g} \rightarrow b\bar{t}\tilde{\chi}_{1}^{0} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\tilde{g} 1.25 TeV $m(\tilde{t}_{1}^{0})<400 \text{Ge}$ \tilde{g} 1.1 TeV $m(\tilde{t}_{1}^{0})<350 \text{Ge}$ \tilde{g} 1.34 TeV $m(\tilde{t}_{1}^{0})<400 \text{Ge}$ \tilde{g} 1.34 TeV $m(\tilde{t}_{1}^{0})<400 \text{Ge}$	eV 1308.1841 eV 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \to b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \to \tilde{\chi}_{1}^{*} \\ \tilde{r}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \to b\tilde{\chi}_{1}^{*} \\ \tilde{r}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \to b\tilde{\chi}_{1}^{*} \\ \tilde{r}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \to b\tilde{\chi}_{1}^{*} \\ \tilde{r}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \to c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \to c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \to c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{2}\tilde{t}_{2}, \ \tilde{t}_{2} \to \tilde{t}_{1} + Z \end{split} $		2 b 0-3 b 1-2 b 0-2 jets/1-2 nono-jet/c-ta 1 b 1 b	b Yes	20.1 20.3 1.7/20.3 20.3 20.3 20.3 20.3 20.3	\tilde{b}_1 100-620 GeV $m(\tilde{\chi}_1^0)<90$ GeV \tilde{b}_1 275-440 GeV $m(\tilde{\chi}_1^-)=2m(\tilde{\chi}_1^0)$ \tilde{I}_1 230-460 GeV $m(\tilde{\chi}_1^-)=2m(\tilde{\chi}_1^0)$ \tilde{I}_1 90-191 GeV 210-700 GeV $m(\tilde{\chi}_1^0)=1$ GeV \tilde{I}_1 90-240 GeV $m(\tilde{\chi}_1^0)=1$ GeV $m(\tilde{\chi}_1^0)=1$ GeV \tilde{I}_1 150-580 GeV $m(\tilde{\chi}_1^0)>150$ Ge $\tilde{\chi}_1^0>150$ GeV \tilde{I}_2 290-600 GeV $m(\tilde{\chi}_1^0)<200$ Ge) 1404.2500), m(\tilde{k}_1^0)=55 GeV 1209.2102, 1407.0583 1506.08616 15GeV 1407.0608 4V 1403.5222
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \bar{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \bar{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\bar{\nu}\nu), \ell \bar{\nu} \tilde{\ell}_{L} \ell(\bar{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{0} \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{0} \rightarrow \tilde{\chi}_{1}^{0} \rightarrow \tilde{\chi}_{1}^{0} \rightarrow \tilde{\chi}_{1}^{0} \rightarrow \tilde{\chi}_{1}^{0} \rightarrow \tilde{\chi}_{1}^{0} \rightarrow \tilde{\chi}_$	4 e, µ	0 0 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Long-lived particles	$\begin{array}{l} \mbox{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \mbox{prod.}, \mbox{long-lived} \tilde{\chi} \\ \mbox{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \mbox{prod.}, \mbox{long-lived} \tilde{\chi} \\ \mbox{Stable, stopped} \tilde{g} \mbox{R-hadron} \\ \mbox{Stable, } \tilde{g} \mbox{R-hadron} \\ \mbox{GMSB, stable} \tilde{\tau}, \tilde{\chi}_1^0 {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \tau (\tilde{e}, \tilde{\mu}) {+} \tau (\tilde{e}, \tilde{\mu}) {+} \tau (\tilde{e}, \tilde{\mu}) {+} \tau (\tilde{g}, \tilde{\chi}_1^0 {\rightarrow} \tilde{\tau} \tilde{G}, \mbox{long-lived} \tilde{\chi}_1^0 \\ \mbox{gg}, \tilde{\chi}_1^0 {\rightarrow} ev/e \mu \nu / \mu \nu \\ \mbox{GGM } \tilde{g} \tilde{g}, \tilde{\chi}_1^0 {\rightarrow} Z \tilde{G} \end{array}$	1 dE/dx trk 0 trk		Yes Yes - - Yes - -	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \; RPV \; CMSSM \\ \tilde{X}_1^+ \tilde{X}_1^-, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^{0}, \tilde{X}_1^{0} \rightarrow ee\tilde{v}_\mu, e\mu\tilde{v}_i \\ \tilde{X}_1^+ \tilde{X}_1^-, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^{0}, \tilde{X}_1^{0} \rightarrow \tau \tau \tilde{v}_e, e\tau\tilde{v}_i \\ \tilde{g} \tilde{S}_i \; \tilde{S} \rightarrow q q q \\ \tilde{g} \tilde{S}_i \; \tilde{S} \rightarrow \tilde{q} \tilde{X}_1^+, \tilde{X}_1^0 \rightarrow q q q \\ \tilde{g} \tilde{S}_i \; \tilde{S} \rightarrow \tilde{t}_1 \tilde{X}_1 \; \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \; \tilde{t}_1 \rightarrow b\ell \\ \end{array} $	$\begin{array}{ccc} 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ \tau & 3 \ e, \mu + \tau \\ 0 \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 0-3 b - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	- Yes Yes - - Yes - Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ll} {}_{LSP} < 1 \mbox{ mm } & 1404.2500 \\ (\tilde{k}_{1}^{+}), \lambda_{121} \neq 0 & 1405.5086 \\ (\tilde{k}_{1}^{+}), \lambda_{133} \neq 0 & 1405.5086 \\ {}_{BR}(c) = 0\% & 1502.05686 \\ {}_{SV} & 1502.05686 \\ {}_{1404.250} \\ {}_{ATLAS-CONF-2015-026} \end{array}$
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 490 GeV m(\tilde{k}_1^0)<200 Ge	V 1501.01325
					10	$^{-1}$ 1 N	lass scale [TeV]

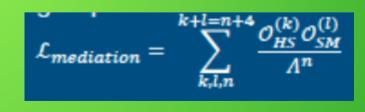
ATLAS Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

"Exotics" limits

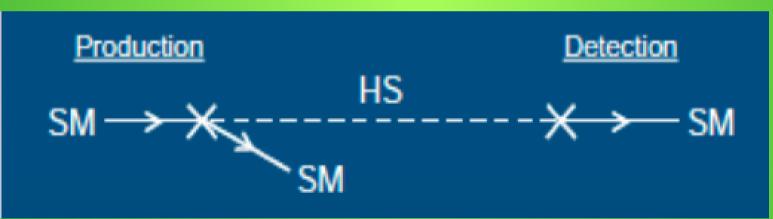
 Keep in mind: limits on particle lifetimes limited by size of LHC detectors


	TLAS Long-l atus: July 2015	lived Particl	e Se	arche	s* - 95% CL Exc	lusion			ATLA $\int \mathcal{L} dt = (18.4 - 20.3) \text{fb}^{-1}$	S Preliminary $\sqrt{s} = 8$ TeV
	Model	Signature	∫£ dt[fb	-1]	Lifetime limit				J = (10.4 - 20.3) ID	Reference
	$\operatorname{RPV} \chi_1^0 \to ee\nu/e\mu\nu/\mu\mu\nu$	displaced lepton pair	20.3	χ_1^0 lifetime		7-740 mm			$m(ilde{g})=1.3$ TeV, $m(\chi_1^0)=1.0$ TeV	1504.05162
	$\operatorname{GGM} \chi_1^0 \to Z \tilde{G}$	displaced vtx + jets	20.3	χ_1^0 lifetime	6-	480 mm			$m(ilde{g})=1.1$ TeV, $m(\chi_1^0)=1.0$ TeV	1504.05162
~	AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$	disappearing track	20.3	χ_1^{\pm} lifetime			0.22-3.0 m		$m(\chi_1^*) = 450 \text{ GeV}$	1310.3675
SUSY	AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$	large pixel dE/dx	18.4	χ_1^{\pm} lifetime			1.31-9.0 m		$m(\chi_1^*) = 450 \text{ GeV}$	1506.05332
	GMSB	non-pointing or delayed γ	20.3	χ_1^0 lifetime			0.08-5.4 m		SPS8 with $\Lambda=200~\text{TeV}$	1409.5542
	Stealth SUSY	2 ID/MS vertices	19.5	S lifetime				-	0.12-90.6 m $m(\tilde{g}) = 500 \text{ GeV}$	1504.03634
	Hidden Valley $H \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime			0.41-7.57 m	-	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
= 10%	Hidden Valley $H \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime			C).31-25.4 m	$m(\pi_{ m v})=25~{ m GeV}$	1504.03634
Higgs BR	FRVZ $H \rightarrow 2\gamma_d + X$	2 e-, μ-, π-jets	20.3	$\gamma_{\rm d}$ lifetime	14-140 mm				$H \rightarrow 2\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$	1409.0746
Hig	FRVZ $H \rightarrow 4\gamma_d + X$	2 e–, μ –, π –jets	20.3	γ_d lifetime	15-260 mm	1			$H ightarrow 4 \gamma_d + X, \ m(\gamma_d) = 400 \ { m MeV}$	1409.0746
5%	Hidden Valley $H \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime			0.6-5.0 m	-	$m(\pi_{ m v})=25~{ m GeV}$	1501.04020
BR =	Hidden Valley $H \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime			0.43-	•18.1 m	$m(\pi_{ m v})=25~{ m GeV}$	1504.03634
Higgs	FRVZ $H \rightarrow 4\gamma_d + X$	2 <i>e</i> -, <i>μ</i> -, <i>π</i> -jets	20.3	γ_d lifetime	28-160 mm				$H \rightarrow 4\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$	1409.0746
eV ar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime			0.29-7.9 m	-	$\sigma \times BR = 1 \text{ pb}, \ m(\pi_v) = 50 \text{ GeV}$	1501.04020
300 GeV scalar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime				0.19-31.9	$m \sigma \times BR = 1 \text{ pb}, \ m(\pi_v) = 50 \text{ GeV}$	1504.03634
GeV alar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 low-EMF trackless jets	20.3	π_v lifetime			0.15-4.1 m	-	$\sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1501.04020
900 Gel scalar	Hidden Valley $\Phi \rightarrow \pi_v \pi_v$	2 ID/MS vertices	19.5	π_v lifetime	_		0.11-	-18.3 m	$\sigma imes BR$ = 1 pb, $m(\pi_{ m v}) = 50~{ m GeV}$	1504.03634
ər	HV Z'(1 TeV) $\rightarrow q_v q_v$	2 ID/MS vertices	20.3	π_v lifetime			0.1-4.9 m	-	$\sigma \times BR = 1 \text{ pb, } m(\pi_v) = 50 \text{ GeV}$	1504.03634
Other	HV $Z'(2 \text{ TeV}) ightarrow q_{ m v} q_{ m v}$	2 ID/MS vertices	20.3	π _v lifetime			0.1-10.1 m		$\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$	1504.03634
				0.01	0.1		1 1	0	¹⁰⁰ cτ [m]	


*Only a selection of the available lifetime limits on new states is shown

√s = 8 TeV

The "hidden sector" approach to new physics


- Maybe new particles have not been yet found not because they are heavy, but because their coupling is very small, or null
- If an additional term to the Lagrangian is not interacting with SM, there could be invisible particles contributing to dark matter, and no naturalness issues
- However, an interference term between the Lagrangians would allow a very small coupling:

"Portals"

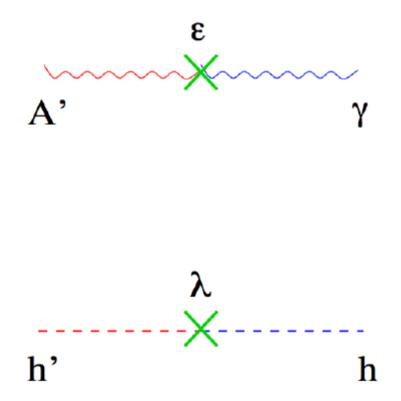
- Indications for a Hidden Sector may come from "ordinary" particles (SM, SUSY, axions etc.) acting as mediators with the HS Lagrangian
- The experimental signature is either missing energy or the appearance of SM particles very far away from its production, indicating an "oscillation" into the HS (and back)

Models	Final states
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}, \rho^{\pm} \to \pi^{\pm}\pi^{0}$
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^+\ell^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^-\nu$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^{0}\pi^{0}$

Standard Model portals:

- D = 2: Vector portal
 - Kinetic mixing with massive dark/secluded/paraphoton V : $\frac{1}{2} \epsilon F_{\mu\nu}^{SM} F_{HS}^{\mu\nu}$
 - Interaction with 'mirror world' constituting dark matter
- D = 2: Higgs portal
 - Mass mixing with dark singlet scalar χ : $(\mu \chi + \lambda \chi^2) H^{\dagger} H$

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \rho \ -\sin \rho \\ \sin \rho \ \ \cos \rho \end{pmatrix} \begin{pmatrix} \phi_0' \\ S' \end{pmatrix}$$

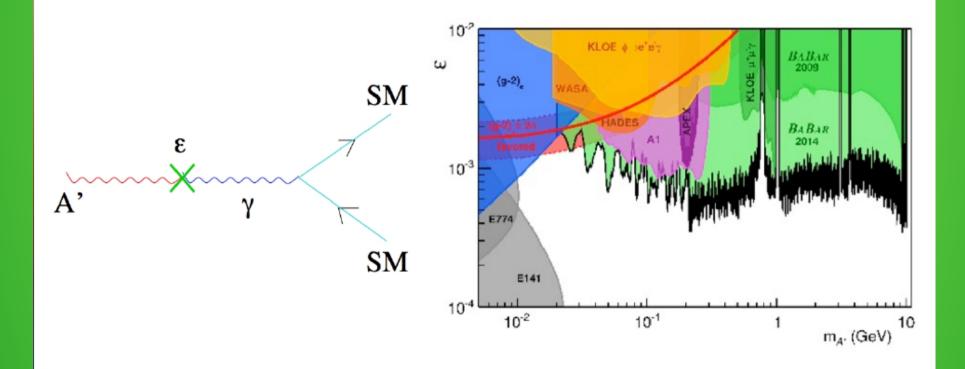

Mass to Higgs boson and right-handed neutrino, and function as inflaton in accordance with Planck and BICEP measurements

- D = 5/2: Neutrino portal
 - Mixing with right-handed neutrino N (Heavy Neutral Lepton): $YH^{\dagger}\overline{N}L$
 - Neutrino oscillation, baryon asymmetry, dark matter
- D = 4: Axion portal
 - Mixing with Axion Like Particles, pseudo-scalars pNGB, axial vectors : $\frac{a}{r}G_{\mu\nu}\tilde{G}^{\mu\nu}$, $\frac{\partial_{\mu}a}{\sigma}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi$, etc
 - → Solve strong CP problem, Inflaton
- And possiby higher dimensional operator portals and SUper-SYmmetric portals (light neutralino, light sgoldstino,...)
 - → SUSY parameter space explored by LHC
 - Some of SUSY low-energy parameter space open to complementary searches

Vector and scalar portals

 Vector Portal: (A' = "hidden photon")

 $\epsilon F'_{\mu
u}F^{\mu
u}$


 Higgs Portal: (H' = "hidden Higgs")

 $\lambda |H'|^2 |H|^2$

Vector portal search at colliders: the BaBar example

Minimal Vector Portal

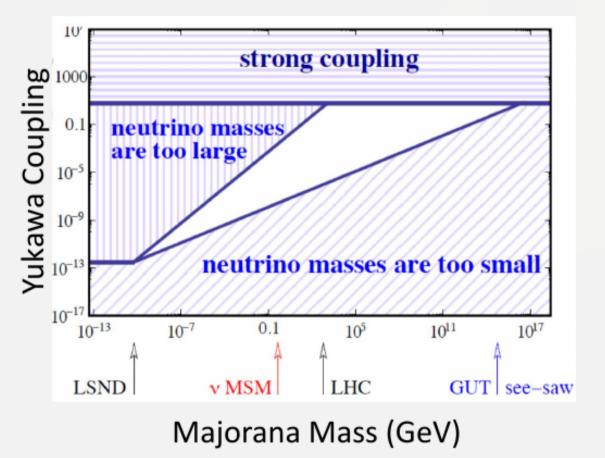
• Hidden photon A' with mass $m_{A'}$, A' \rightarrow SM+SM:

[Bjorken, Essig, Schuster, Toro 2009; ...; BaBar 2014]

Sterile neutrinos

Fermions get mass via the Yukawa couplings:

$$-\mathcal{L}_{\text{Yukawa}} = Y_{ij}^{d} \overline{Q_{Li}} \phi D_{Rj} + Y_{ij}^{u} \overline{Q_{Li}} \tilde{\phi} U_{Rj} + Y_{ij}^{\ell} \overline{L_{Li}} \phi E_{Rj} + \text{h.c.}$$

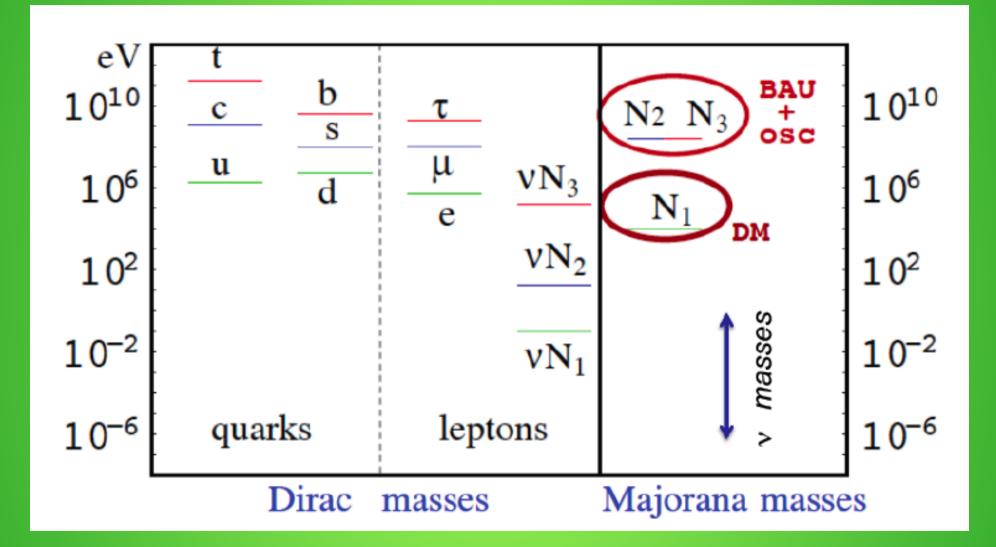

If we want the same coupling for neutrinos, we need right-handed (sterile) neutrinos... the most generic Lagrangian is $U_{I\ell} \sim$

$$\mathcal{L}_{N} = i\overline{N}_{i}\partial_{\mu}\gamma^{\mu}N_{i} - \frac{1}{2}M_{ij}\overline{N^{c}}_{i}N_{j} - Y_{ij}^{\nu}\overline{L_{Li}}\tilde{\phi}N_{j}$$
Kinetic term Majorana mass term Yukawa coupling
Seesaw mechanism:
$$\mathcal{V} = (\nu_{Li}, N_{j}) - \mathcal{L}_{M} = \frac{1}{-\overline{\mathcal{V}}M_{\mathcal{V}}\mathcal{V}} + h.c$$
if $M_{N} \gg M_{D}$:

$$M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix} \quad \lambda_{\pm} = \frac{M_N \pm \sqrt{M_N^2 + 4M_D^2}}{2} \qquad \qquad \lambda_{\perp} \sim \frac{M_D^2}{M_N} \\ \lambda_{\pm} \sim M_N$$

The see-saw mechanism

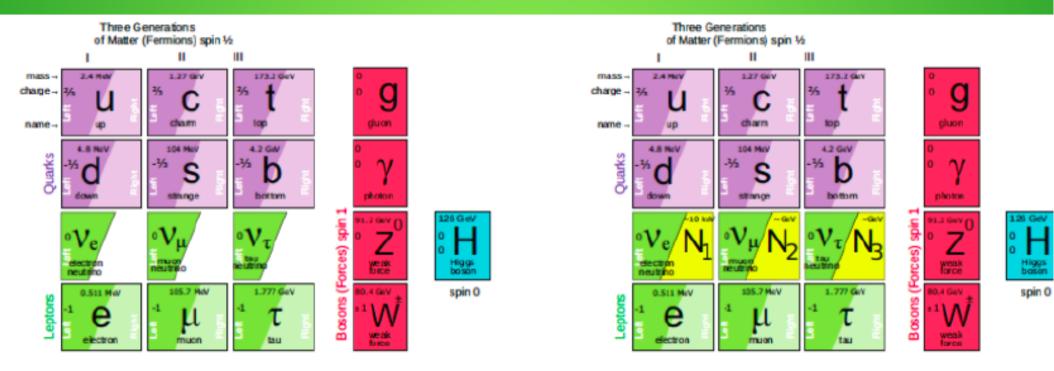
Seesaw formula $m_D \sim Y_{I\alpha} < \phi >$ and $m_\nu = \frac{m_D^2}{M}$



- Assuming $m_{\nu} = 0.1 \text{eV}$
- if $Y \sim 1$ implies $M \sim 10^{14} {\rm GeV}$
- if $M_N \sim 1 {
 m GeV}$ implies $Y_{\nu} \sim 10^{-7}$

remember $Y_{top} \sim 1$. and $Y_e \sim 10^{-6}$

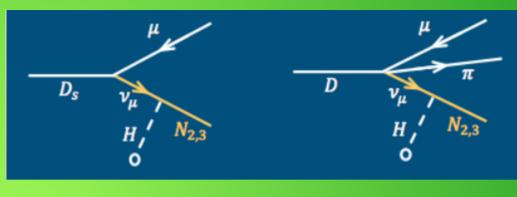
If we want to explain the smallness of neutrino masses (in a natural way) the mass of sterile neutrinos should be at least at the GeV scale

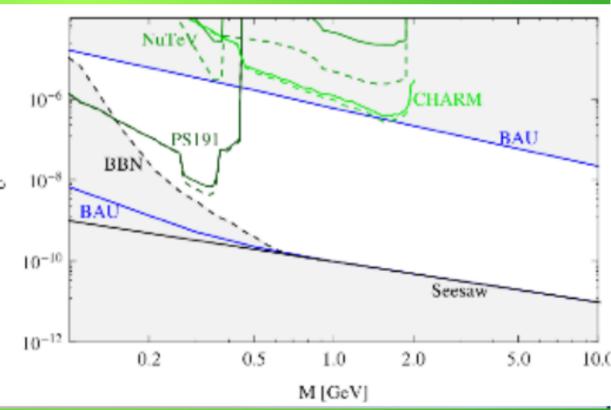

Resulting mass ranges

 Sterile neutrinos could have masses and couplings similar to those of the ordinary charged leptons

The vMSSM

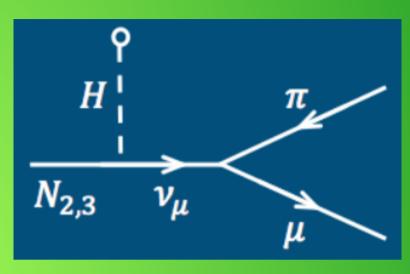
T.Asaka, M.Shaposhnikov, PL B620 (2005) 17 M.Shaposhnikov Nucl. Phys. B763 (2007) 49

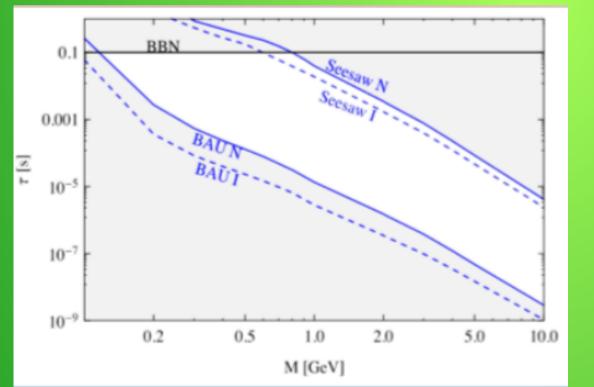



Particle content of SM made symmetric by adding 3 HNL: N₁, N₂, N₃

- With M(N) ~ few KeV, it is a good DM candidate (or DM can be generated outside of this model through decay of inflaton)
- With M(N , N) ~ GeV, could explain Barion Asymmetry of Universe (via leptogenesis), and generate neutrino masses through see-saw.

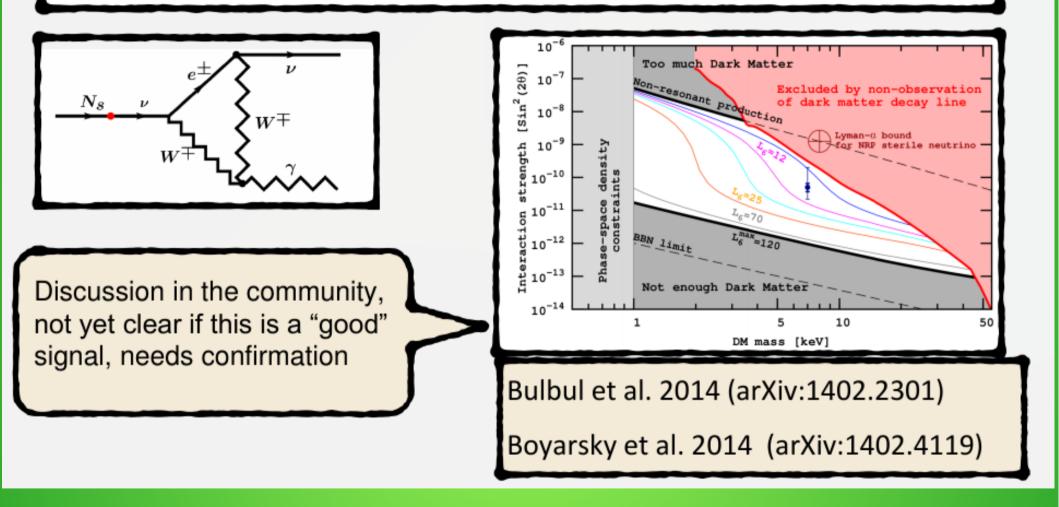
HNL production mechanism

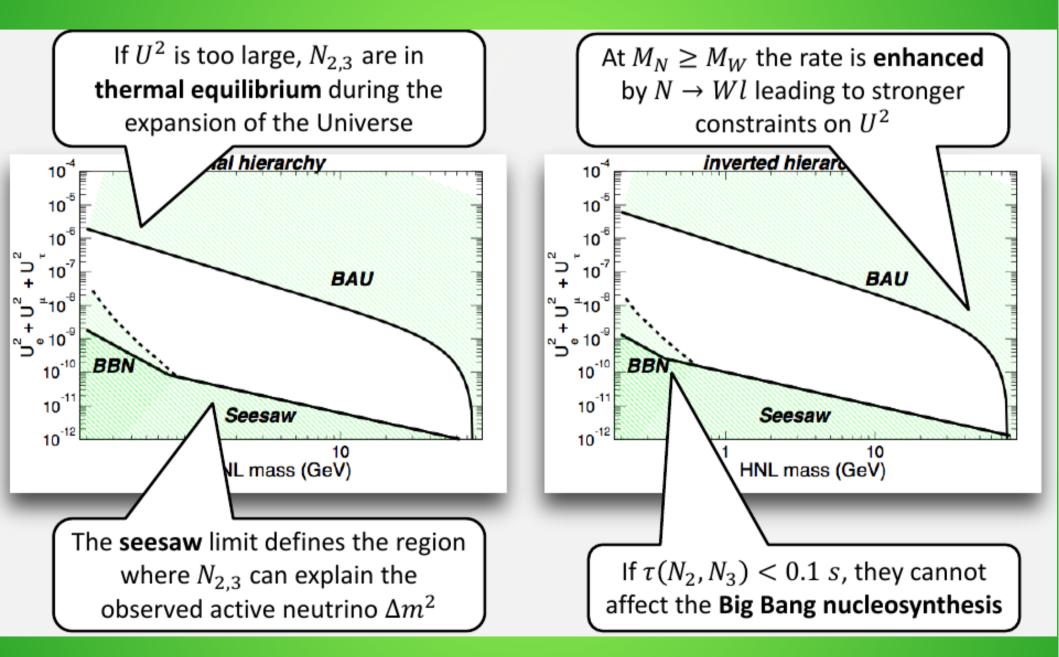

- Interaction with Higgs vev leads to a mixing with active neutrinos
- Several past searches; PS191 used
- neutrinos from K decays, while other
- experiments not sensitive to mixings of
- cosmological interest.
- Latest result: LHCb with B decays
- obtained U2≈10-4, arXiv:1401.5361
- Further exploration needed of the
- region with higher masses and smaller 💺 mixings



HNL decay modes

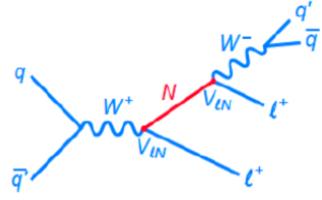
Interaction with Higgs vev would make it oscillate back into a virtual neutrino, that produces a muon and a W (→ hadrons, eg pions) Exact branching fractions depend n flavor mixing Due to small couplings, ms lifetimes, decay paths O(km)

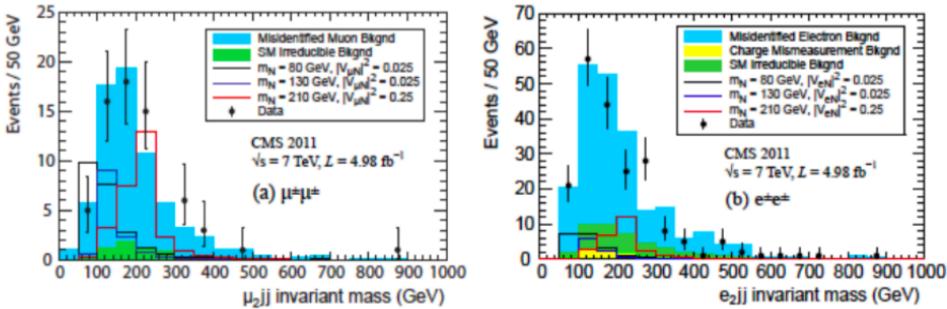



Decay mode	Branching ratio
$N_{2,3} \rightarrow \mu/e + \pi$	0.1 - 50 %
$N_{2,3} \rightarrow \mu^{-}/e^{-} + \rho^{+}$	0.5 - 20 %
$N_{23} \rightarrow v + \mu + e$	1 - 10 %

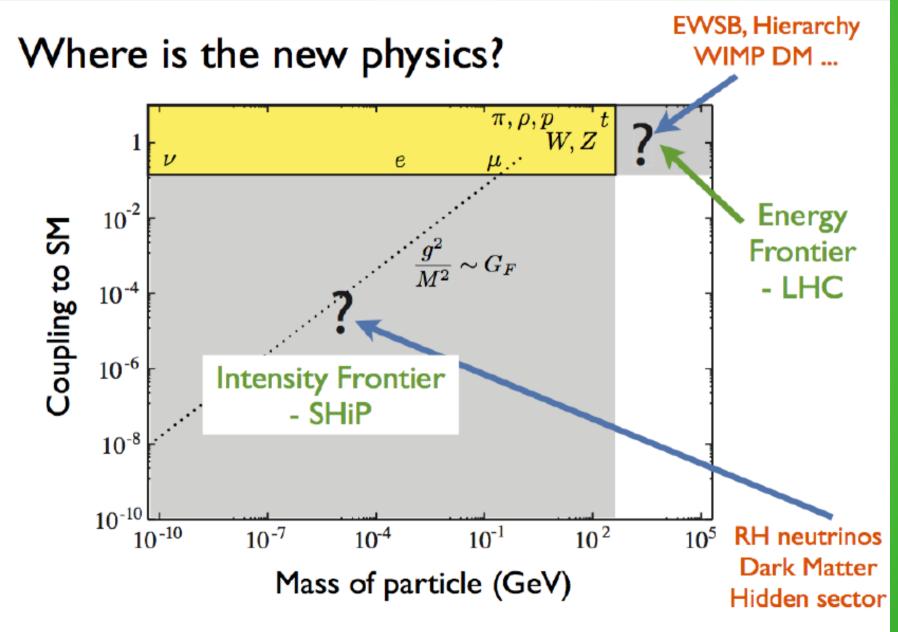
Constraints on N₁ mass

DM sterile neutrinos decay subdominantly as $N_1 \rightarrow \nu \gamma$ with a branching ration $\mathcal{B}(N_1 \rightarrow \gamma \nu) \sim \frac{1}{123}$


Constraints on N₂, N₃ masses


High-mass searches at the LHC

Unique possibility to explore HNL mass range above 100 GeV


- Experimental signature: two same-sign leptons and no missing energy Majorana-type N would contribute to the signal with both opposite-sign and same-sign leptons. Same-sign lepton events have much lower SM background
- ✓ With currently available data samples experiments are only sensitive to large U² (or short lifetimes) of N For U² > 10⁻⁴ (and M_N ≥ 50 GeV) a typical N flight distance is ≤ 100 microns

- No use of detached vertex possible
 - → large backgrounds from multi-jet events with faked leptons or leptons from b-decays

Searches in the cosmologicallyinteresting region

...

Model-independent experimental considerations

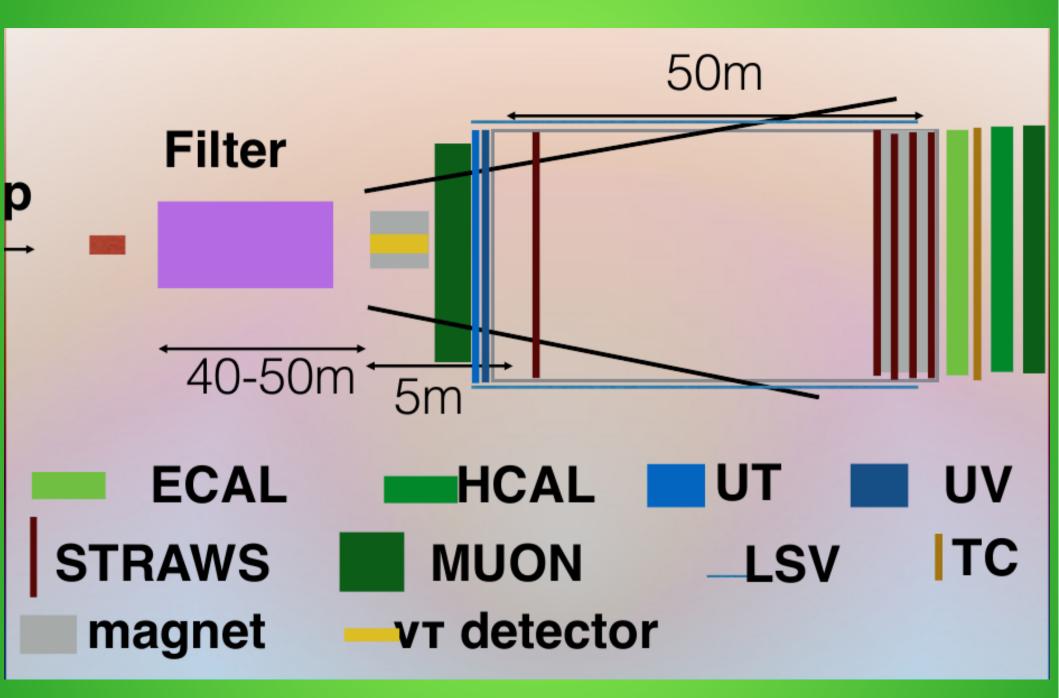
We have to look for very weakly interacting particles:

- Production BR O(1E-10)
- Lifetimes O(km)
- Can travel through ordinary matter

Cosmologically interesting masses O(GeV)

- Produced through decays of mesons
- Can decay to mesons or charged leptons
- Full final-state reconstruction and particle ID

To have high intensities:


- fixed-target against a beam dump
- followed by a long decay tunnel and a spectrometer at the end

An experiment in practice

Use protons from CERN's SPS: 500 kW is 4x1E13 protons/7 s ->2E20 in 5y

- Slow (ms \rightarrow 1s) and uniform extraction to reduce detector occupancy and combinatorics
- HS particles produced by mesons (mainly charm) decays; need to absorb all SM decay products to minimise BG → heavy material thick target, with wide beam to dilute energy deposition (different from neutrino facility)
- Muons cannot be absorbed by target: muon shield, possibly magnetised
- Long decay tunnel away from external walls to minimise rescattering of muons and neutrons close to detector
- Vacuum in decay tunnel to reduce neutrino interactions
- Far-away detector with good PID and resolutions

Schematically...

The ShiP proposal

CERN-SPSC-2015-016 SPSC-P-350 8 April 2015

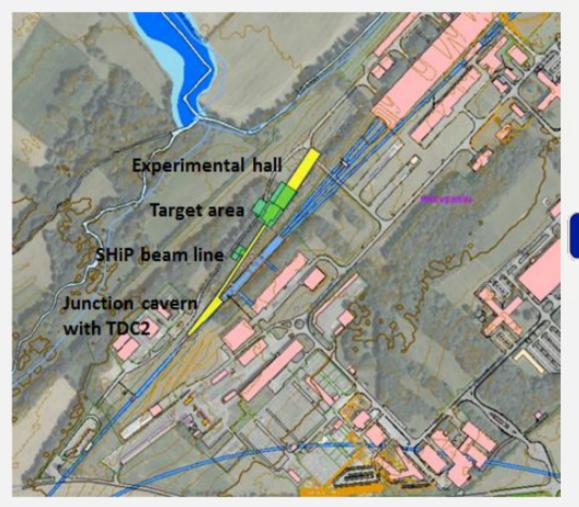
Search for Hidden Particles

Streamed user-exceptioners, and ancomposed a branier can then they had not with before in the choice suppe. Supported and a press with now the versel. The cress of the Phila cas a cance and a log, they also giveled up a strick which appeared to have been canned with an iron tool, a piece of case, a glast which prove on land, and a board. The cress of the Name we other size of land, and a shall landed with one bearies. There size ancoursed there, and they all prove cheerful. Subled this also the summer bears of uses a power langues.

After sames streamed blair wijnind essure cases and value bracker order as been bell bros becare after visibility, point ninetry order, chich, are brandy-tros languar and a hydef and as blar Paira care blar eighters value, and leaps drawd of blar fridrind,

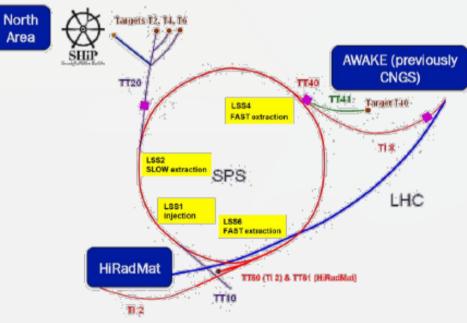
the incurrent land

• Proposal for a new facility at the CERN SPS accelerator:

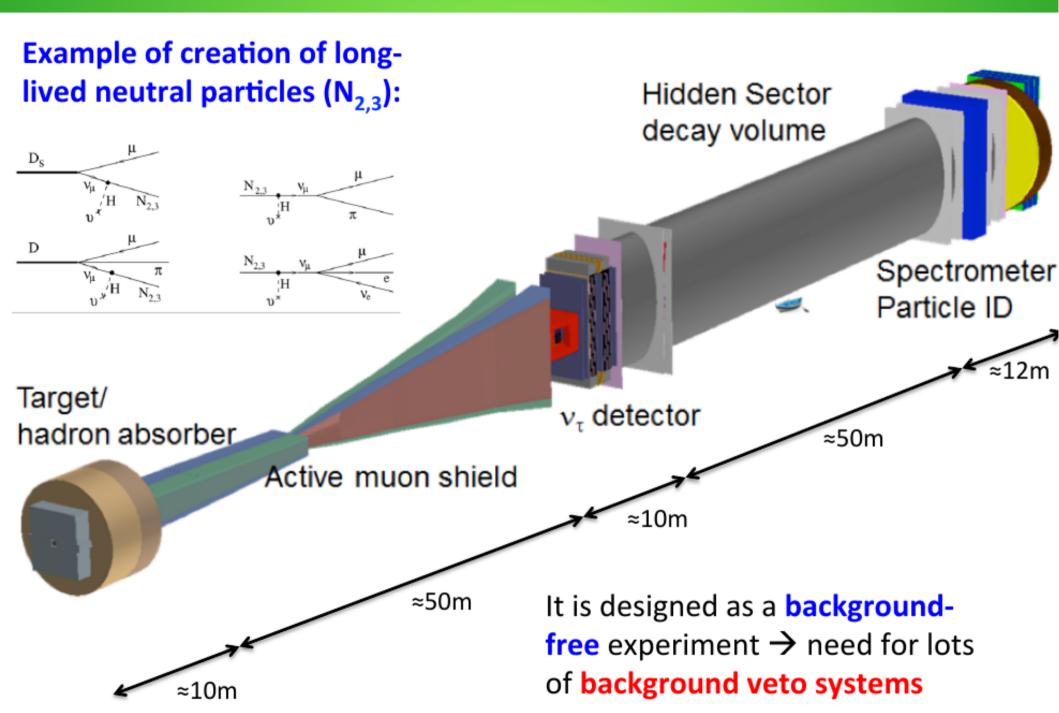

- hidden sector detector
- ντ facility

235 experimentalists from 45 institutes and 15 countries + CERN

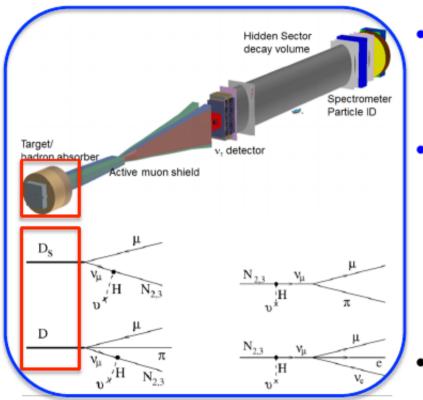
- Technical Proposal submitted in April (arXiv:1504.04956)
- Physics Proposal signed by 80
 theorists (arXiv:1504.04855)
- Presently under scrutiny by the SPSC

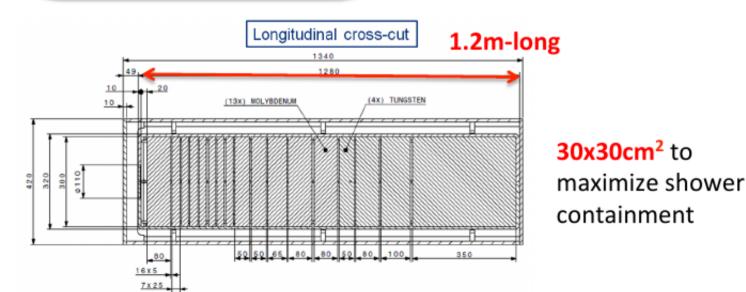

Technical Proposal

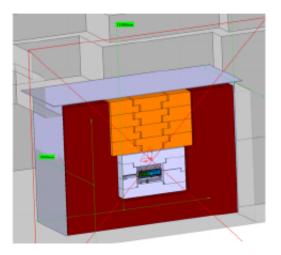
The ShiP facility



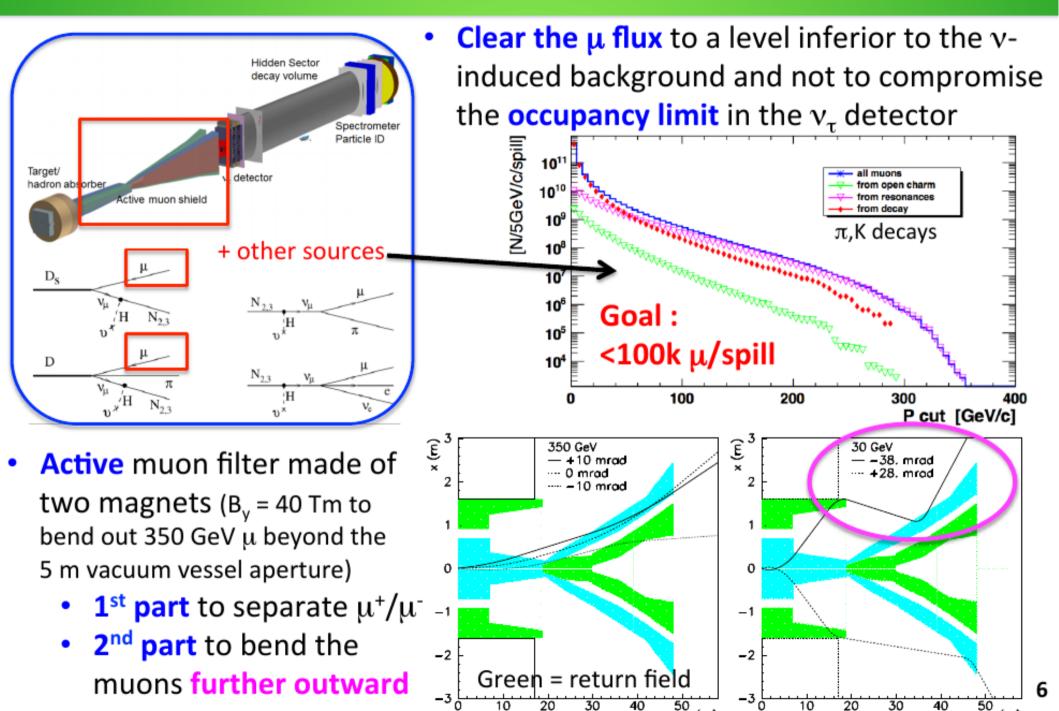
Proposed implementation is based on minimal modification to the SPS complex.


Share transfer line and slow extraction mode with existing facilities.

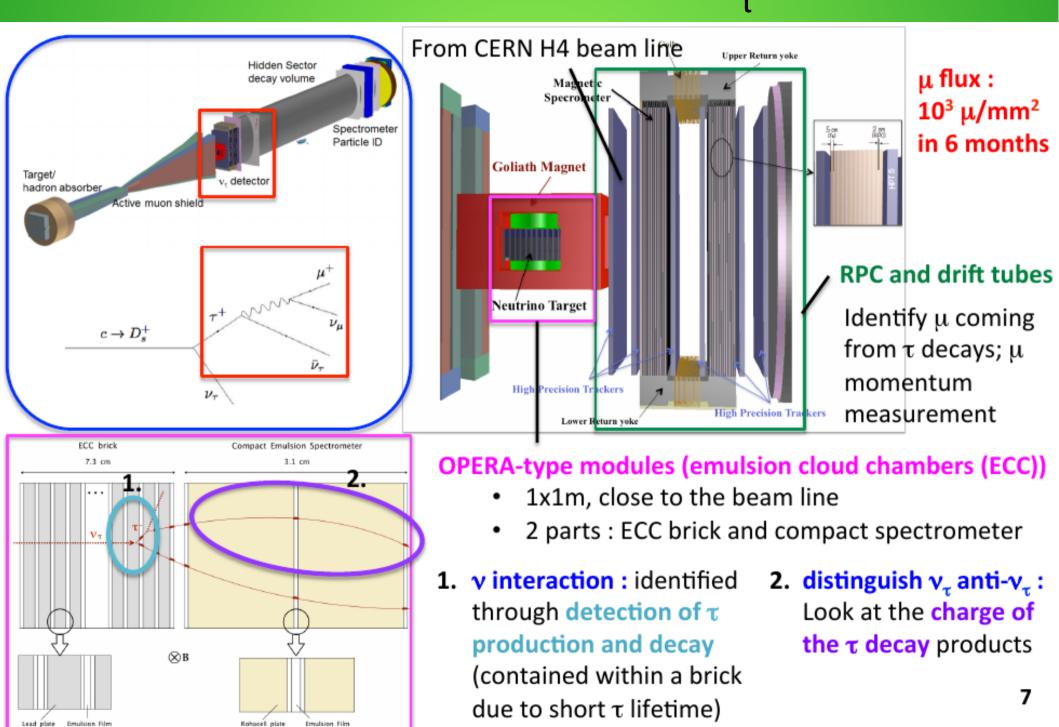

The ShiP experiment

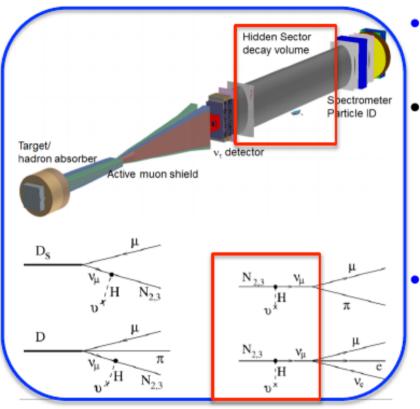


The target



- Challenging due to high average beam power deposited on the target (2.56MW during spill of 1s (peak), ~350 kW averaged over 7s cycle)
- Hybrid target, with 58cm of titaniumzirconium doped molybdenum followed by 58cm of pure tungsten, water cooled
 - Heavy target to suppress π/K decays
 - Tungsten cannot be used at start because of too much thermo-mechanical stress
- Embedded in cast iron bunker (440m³)


The muon filter


7 (m)

ž (m)

Bonus intermezzo: the v_{\pm} detector

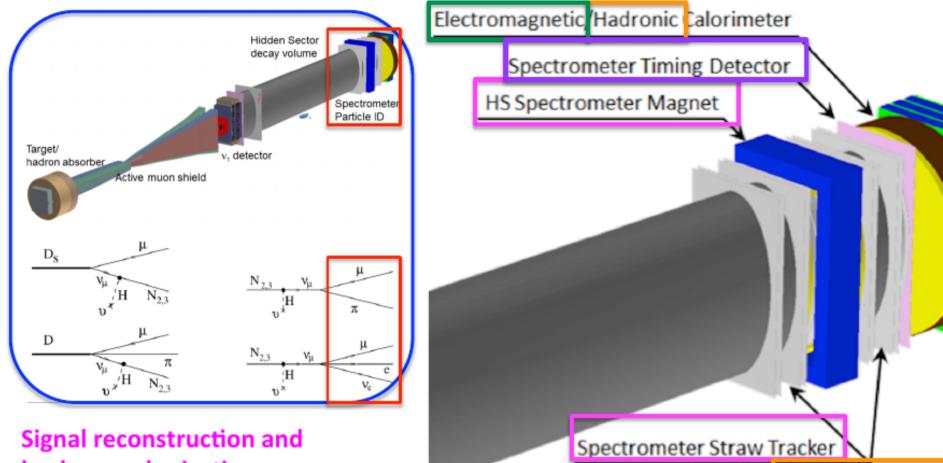
The vacuum vessel

Veto tagger located just after v_{τ} detector to tag indirectly neutral K produced by v and μ interactions in the passive material of the v_{τ} detector and μ entering the vessel from the front

- 10⁻⁶ mbar vacuum needed suppress the neutrino interactions
- Double-wall structure, space filled with **liquid scintillator** to tag background entering **from the sides**
- Elliptical structure to avoid the large μ flux deflected horizon-

tally by the μ

5m


shield

10m

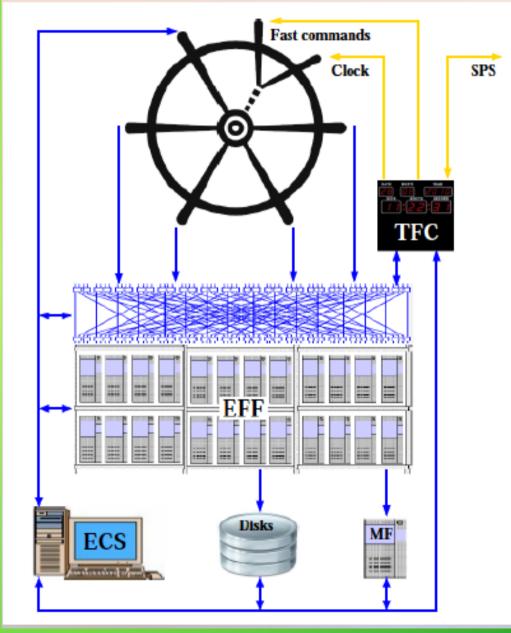
tracking detector to reject residual charged background in the forward region (K_s⁰,..)

50m

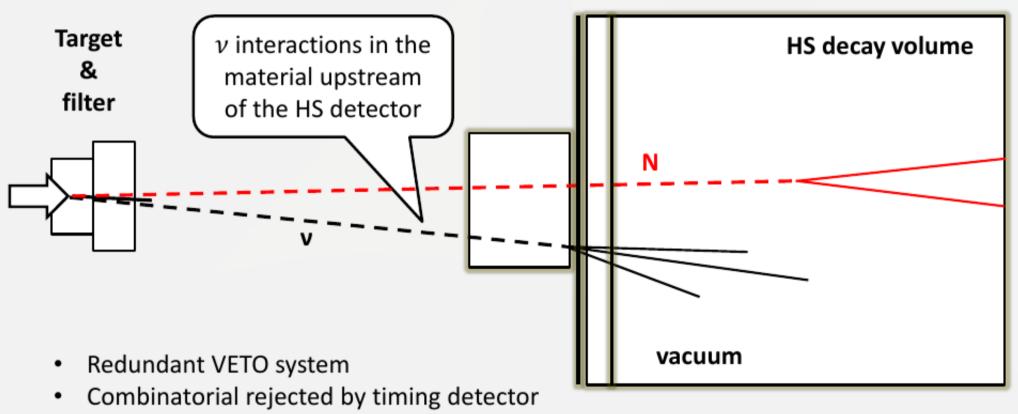
The spectrometer

background rejection: warm magnet (LHCb) with 0.65Tm bending power; tracker (NA62) with horizontal straws and stereo angle

Veto anti-coincidence from combinatorial : timing detector (50ps resolution)

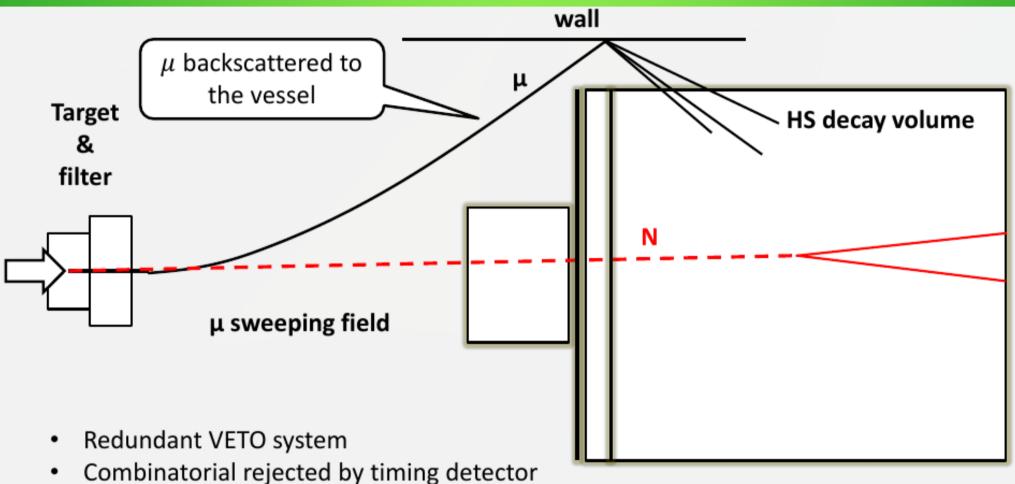

e/ γ identification, π^0 and η reconstruction: ECAL (Shashlik technique, LHCb)

 π/μ separation : hadronic calorimeter (similar technology as ECAL), muon detector (WLS fiber bars, MINOS) 9


Muon Detector

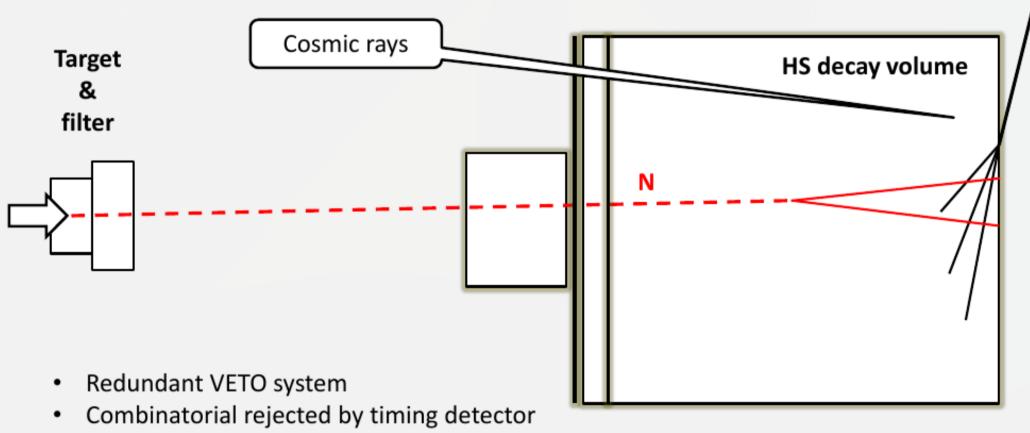
Trigger and DAQ

- Trigger andEvent building on all data and trigger decision at EF
- TFC system generates the clock
- All sub-systems send data through ethernet links (no need for radiation hardness) to Event Filter Farm via a switch
- Fraction of data sent to Monitoring
- Farm to evaluate performance
- Smallest time slice that could potentially contain all data from one pot (100 ns)
- Since some events spread over more than one frame, 100 frames are combined into a "package", with 1 overlap


Background rejection: upstream neutrino interactions

- Impact parameter to the target
- 75% selection efficiency for signal

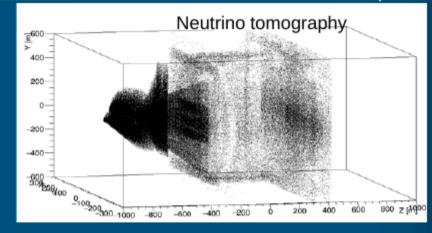
After selections: ≤ 0.1 bkg / 5 y


interactions with experimental hall

- Impact parameter to the target
- 75% selection efficiency for signal

After selections: ≤ 0.1 bkg / 5 y

Background rejection: cosmics

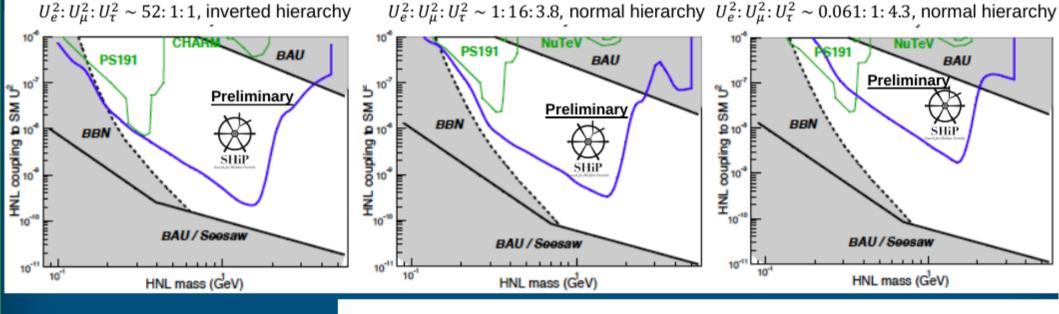


- Impact parameter to the target
- 75% selection efficiency for signal

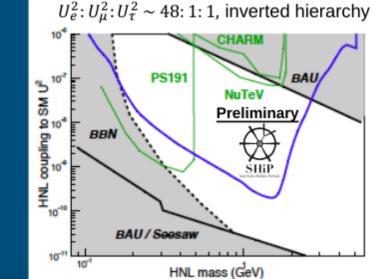
After selections: ≤ 0.1 bkg / 5 y

Backgrounds: summary

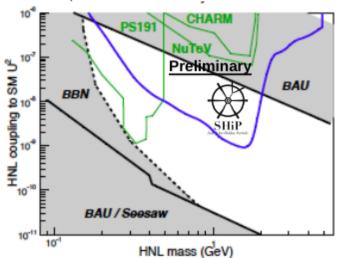
Background source	Decay modes
$\nu \text{ or } \mu + \text{nucleon} \rightarrow X + K_L$	$K_L \to \pi e \nu, \pi \mu \nu, \pi^+ \pi^-, \pi^+ \pi^- \pi^0$
$\nu \text{ or } \mu + \text{nucleon} \rightarrow X + K_S$	$K_S \to \pi^0 \pi^0, \pi^+ \pi^-$
$\nu \text{ or } \mu + \text{nucleon} \to X + \Lambda$	$\Lambda o p\pi^-$
$n \text{ or } p + \text{nucleon} \to X + K_L, \text{ etc}$	as above


Background summary: no evidence for any irreducible background

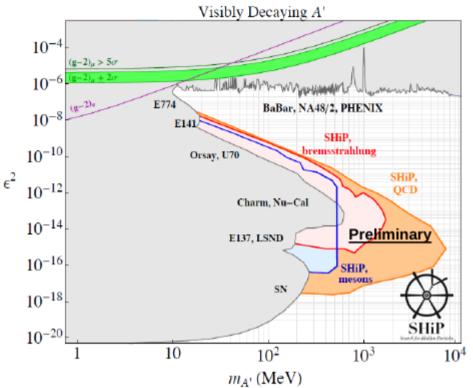
No events selected in MC → Expected background UL @ 90% CL

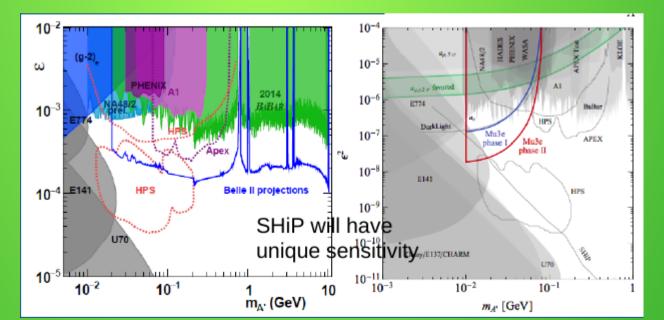

Background source	Stat. weight	Expected background (UL 90% CL)
v-induced	0	1 0 (, , , ,
2.0	1.4	1.6
4.0	2.5	0.9
$p > 10 { m ~GeV/c}$	3.0	0.8
$\overline{\nu}$ -induced		
2.0	2.4	1.0
4.0	2.8	0.8
$p > 10 { m ~GeV/c}$	6.8	0.3
Muon inelastic	0.5	4.6
Muon combinatorial	_	<0.1
Cosmics		
$p < 100 { m ~GeV/c}$	2.0	1.2
$p>100~{\rm GeV/c}$	1600	0.002

Sensitivity to HNL

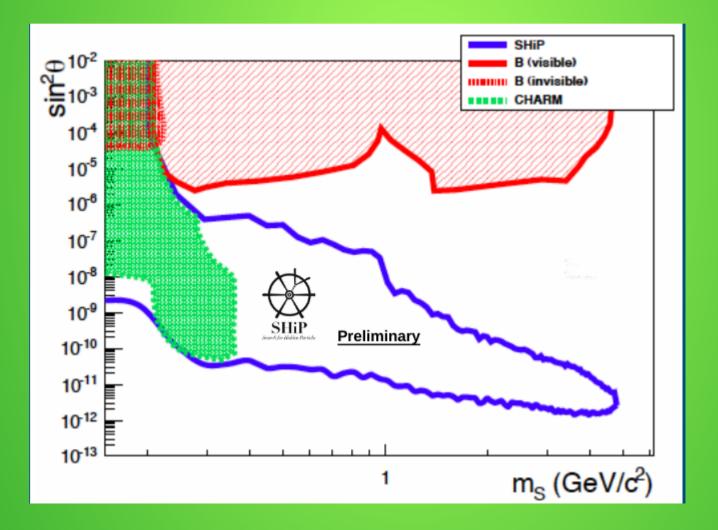

- Visible decays = At least two tracks crossing the spectrometer
 - Ex. For $m_N = 1$ GeV with $U^2 = 10^{-8}$ and $\mathcal{BR}(N \to \mu \pi) = 20\%$, expect ~330 signal events

Scenarios for which baryogenesis was numerically proven


 $U_e^2: U_{\mu}^2: U_{\tau}^2 \sim 1: 11: 11$, normal hierarchy

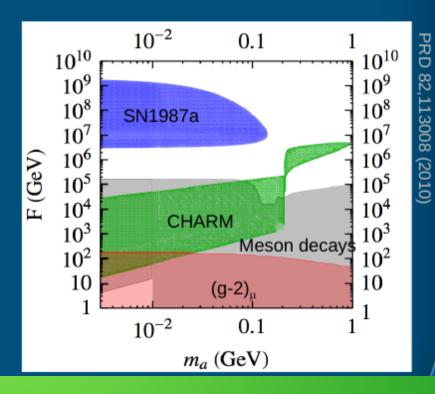


Sensitivity to dark photons


Production

- Decays of π⁰ → Vγ, η → Vγ, ω → Vπ⁰
- Proton bremsstrahlung and parton bremsstrahlung above AQCD
- Decay into pair of SM particles

Hidden scalars Production from B and K decays Decay into fermion or meson pairs

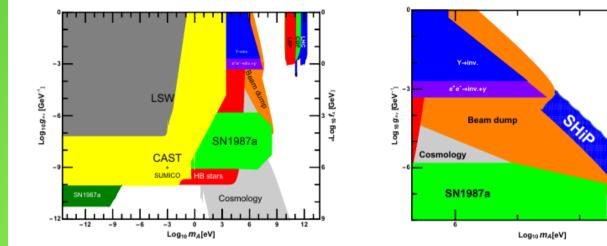

Axion portal

- Axion Like Particles, pseudo-scalars pNGB, axial vectors a
 - Appear in extended Higgs, SUSY breaking, motivated by coupling with dark sector, possibility of inflaton, etc
 - Generically light pseudo-scalars arise in spontaneous breaking of approximate symmetries at a high mass scale F
 - \rightarrow Couplings suppressed by the breaking scale F and masses are light $\sim \Lambda/F^2$
 - SM portal through mixing with gauge bosons and fermions

$$\mathcal{L} = \frac{a}{F} G_{\mu\nu} \tilde{G}^{\mu\nu}, \frac{\partial_{\mu}a}{F} \bar{\psi} \gamma_{\mu} \gamma_{5} \psi$$
, etc

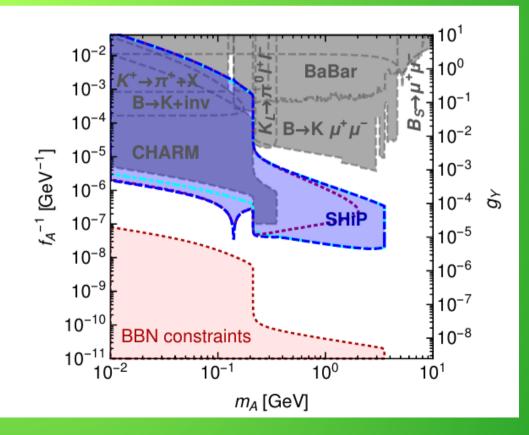
Production

- Resonant production from Drell-Yan photons
- Production from mixing with pions and heavy meson decays
- Decays
 - Decays to e^+e^- , $\mu^+\mu^-$, hadrons above 1 GeV
 - Decays to photon pair

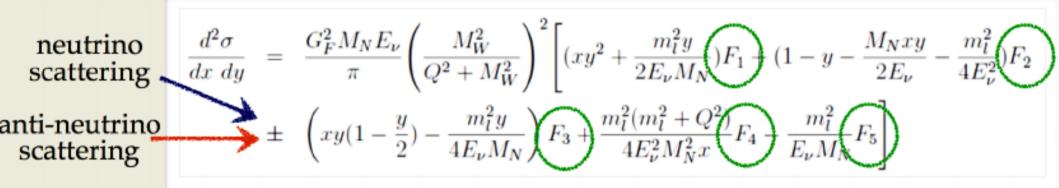


Perspectives for ShiP (from physics paper)

 $pp \rightarrow A + X, \ A \xrightarrow{\text{long lived}} \gamma \gamma$


An extension of the ECAL needed to increase acceptance to photon pairs.

Some coverage in the region of interest in models where ALP serve as mediators to a DM sector


$$pp \to B + X \to A + K + X, \ A \xrightarrow{\text{long lived}} \mu^+ \mu^-$$

Associate production of axions and strange mesons from B-meson decays can be observed in dimuon final state. It covers similar mass range but smaller couplings than the b-factories

Tau neutrino physics

Charged current neutrino nucleon scattering

Structure functions

F₁
 F₂
 F₂
 F₃
 F₃
 F₄
 F₅
 More precise estimation from other experiments
 Opposite sign for v and anti-v
 F₄
 Dependent on the lepton mass. Suppressed in case of v_µ interactions, becomes relevant

for v_{τ} interactions

- Evaluation of F₃
- First evaluation of F₄ and F₅, not accessible with lighter neutrinos

Some tau neutrino numbers

Current status of tau neutrino observations:

- DONUT observed 9 events (from charm) with a background of 1.5
- OPERA observed 4 events (from oscillations)
- No tau antineutrino has been even observed
- Ship can increase by 200 the current tau neutrino sample, and discover tau antineutrinos
- Measurement of tau neutrino differential cross-section in CC interactions
- Measurement of charm production for muon neutrinos and antineutrino (factor of
- 100 increase wrt CHORUS)
- A good fraction of the old OPERA collaborators are joining SHiP to build the neutrino sub-detector and analyse its data.

Ship people: experiment and theory

arXiv:1504.04956v1 [physics.ins-det]

The SHiP Collaboration

M. Anelli¹⁴, S. Aoki¹⁷, G. Arduini^{33(BE)}, J.J. Back⁴⁰, A. Bagulya²⁴, W. Baldini¹¹, A. Baranov³⁰, G.J. Barker⁴⁰, S. Barsuk⁴, M. Battistin^{33(EN)}, J. Bauche^{33(TE)}, A. Bay³⁵ V. Bayliss⁴¹, L. Bellagamba⁹, G. Bencivenni¹⁴, M. Bertani¹⁴, O. Bezshyyko⁴⁴, D. Bick⁷, N. Bingefors³², A. Blondel³⁴, M. Bogomilov¹, A. Boyarsky⁴⁴, D. Bonacorsi^{9,b}, D. Bondarenko²³, W. Bonivento¹⁰, J. Borburgh^{33(TE)}, T. Bradshaw⁴¹, R. Brenner³² D. Breton⁴, N. Brook⁴³, M. Bruschi⁹, A. Buonaura^{12,6}, S. Buontempo¹², S. Cadeddu¹⁰, A. Calcaterra¹⁴, M. Calviani^{33(EN)}, M. Campanelli⁴³, C. Capoccia¹⁴, A. Cecchetti¹⁴, A. Chatterjee³⁴, J. Chauveau⁵, A. Chepurnov²⁹, M. Chernyavskiy²⁴, P. Ciambrone¹⁴, C. Cicalo¹⁰, G. Conti³³, K. Cornelis^{33(BE)}, M. Courthold⁴¹, M. G. Dallavalle⁹, N. D'Ambrosio¹³, G. De Lellis^{12, \epsilon}, M. De Serio^{8, a}, L. Dedenko²⁹, A. Di Crescenzo¹², N. Di Marco¹³, C. Dib², J. Dietrich⁶, H. Diikstra³³, D. Domenici¹⁴, S. Donskov²⁶, D. Druzhkin^{25,g}, J. Ebert⁷, U. Egede⁴², A. Egorov²⁷, V. Egorychev²², M.A. El Alaoui², T. Enik²¹, A. Etenko²⁵ F. Fabbri⁹, L. Fabbri^{9,b}, G. Fedorova²⁹, G. Felici¹⁴, M. Ferro-Luzzi³³, R.A. Fini⁸, M. Franke⁶, M. Fraser^{33(TE)}, G. Galati^{12,c}, B. Giacobbe⁹, B. Goddard^{33(TE)}, L. Golinka-Bezshyyko⁴⁴, D. Golubkov²², A. Golutvin⁴², D. Gorbunov²³, E. Graverini³⁶, J-L Grenard^{33(EN)}, A.M. Guler³⁷, C. Hagner⁷, H. Hakobyan², J.C. Helo², E. van Herwijnen³³, D. Horvath^{33(EN)}, M. Iacovacci^{12,e}, G. Iaselli^{8,a}, R. Jacobsson³³, I. Kadenko⁴⁴, M. Kamiscioglu³⁷ C. Kamiscioglu³⁸, G. Khaustov²⁶, A. Khotjansev²³, B. Kilminster³⁶, V. Kim²⁷, N. Kitagawa¹⁸ K. Kodama¹⁶, A. Kolesnikov²¹, D. Kolev¹, M. Komatsu¹⁸, N. Konovalova²⁴, S. Koretskiv^{25,g} I. Korolko²², A. Korzenev³⁴, S. Kovalenko², Y. Kudenko²³, E. Kuznetsova²⁷, H. Lacker⁷, A. Lai¹⁰, G. Lanfranchi¹⁴, A. Lauria^{12,e}, H. Lebbolo⁵, J.-M. Levy⁵, L. Lista¹², P. Loverre^{15,f} A. Lukiashin²⁹, V.E. Lyubovitskij^{2,k}, A. Malinin²⁵, M. Manfredi^{33[GS]} A. Perillo-Marcone³³(EN), A. Marrone^{8,a}, R. Matev¹, E.N. Messomo³⁴, P. Mermod³⁴ S. Mikado¹⁹, Yu. Mikhaylov²⁶, J. Miller², D. Milstead³¹, O. Mineev²³, R. Mingazheva²⁴ G. Mitselmakher⁴⁵, M. Mivanishi¹⁸, P. Monacelli^{15,f}, A. Montanari⁹, M.C. Montesi^{12,e} G. Morello¹⁴, K. Morishima¹⁸, S. Movtchan²¹, V. Murzin²⁷, N. Naganawa¹⁸, T. Naka¹⁸, M. Nakamura¹⁸, T. Nakano¹⁸, N. Nurakhov²⁵, B. Obinyakov²⁵, K. Ocalan³⁷, S. Ogawa²⁰ V. Oreshkin²⁷, A. Orlov^{25,g}, J. Osborne^{33(GS)}, P. Pacholek^{33(EN)}, J. Panman³³, A. Paoloni¹⁴ L. Paparella^{8,e}, A. Pastore⁸, M. Patel⁴², K. Petridis³⁹, M. Petrushin^{25,g}, M. Poli-Lener¹⁴ N. Polukhina²⁴, V. Polyakov²⁶, M. Prokudin²², G. Puddu^{10,c}, F. Pupilli¹⁴, F. Rademakers³³ A. Rakai^{33(EN)}, T. Rawlings⁴¹, F. Redi⁴², S. Ricciardi⁴¹, R. Rinaldesi^{33(EN)}, T. Roganova²⁹ A. Rogozhnikov³⁰, H. Rokujo¹⁸, A. Romaniouk²⁸, G. Rosa^{15,f}, I. Rostovtseva²², T. Rovelli^{9,6}, O. Ruchayskiy³⁵, T. Ruf³³, G. Saitta^{10,c}, V. Samoylenko²⁶, V. Samsonov²⁸, A. Sanz Ull^{33(TE)}, A. Saputi¹⁴, O. Sato¹⁸, W. Schmidt-Parzefall⁷, N. Serra³⁶, S. Sgobba^{33(EN)} M. Shaposhnikov³⁵, P. Shatalov²², A. Shaykhiev²³, L. Shchutska⁴⁵, V. Shevchenko²⁵, H. Shibuya²⁰, Y. Shitov⁴², S. Silverstein³¹, S. Simone^{8,e}, M. Skorokhvatov^{28,25}, S. Smirnov²⁸ E. Solodko^{33(TE)}, V. Sosnovtsev^{28,25}, R. Spighi⁹, M. Spinetti¹⁴, N. Starkov²⁴, B. Storaci³⁰ C. Strabel^{33(DOS)}, P. Strolin^{12,c}, S. Takahashi¹⁷, P. Teterin²⁸, V. Tioukov¹² D. Tommasini^{33(TE)}, D. Treille³³, R. Tsenov¹, T. Tshchedrina²⁴, A. Ustyuzhanin^{25,30}, F. Vannucci⁵, V. Venturi^{33(EN)}, M. Villa^{9,5}, Heinz Vincke^{33(DGS)}, Helmut Vincke^{33(DGS)} M. Vladymyrov²⁴, S. Xella³, M. Yalvac³⁷, N. Yershov²³, D. Yilmaz³⁸, A. U. Yilmazer³⁸, G. Vankova-Kirilova¹, Y. Zaitsev²², A. Zoccoli^{9,6}

arXiv:1504.04855v1 [hep-ph]

A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case

Sergey Alekhin,^{1,2} Wolfgang Altmannshofer,³ Takehiko Asaka,⁴ Brian Batell,⁵ Fedor Bezrukov,^{6,7} Kyrylo Bondarenko,⁸ Alexey Boyarsky^{*},⁸ Nathaniel Craig,⁹ Ki-Young Choi,¹⁰ Cristóbal Corral,¹¹ David Curtin,¹² Sacha Davidson,^{13,14} André de Gouvêa,¹⁵ Stefano Dell'Oro,¹⁶ Patrick deNiverville,¹⁷ P. S. Bhupal Dev,¹⁸ Herbi Dreiner,¹⁹ Marco Drewes, 20 Shintaro Eijima, 21 Rouven Essig, 22 Anthony Fradette, 17 Björn Garbrecht, 20 Belen Gavela,²³ Gian F. Giudice,⁵ Dmitry Gorbunov,^{24,25} Stefania Gori,³ Christophe Grojean[§],^{26,27} Mark D. Goodsell,^{28,29} Alberto Guffanti,³⁰ Thomas Hambye,³¹ Steen H. Hansen, 32 Juan Carlos Helo, 11 Pilar Hernandez, 33 Alejandro Ibarra, 20 Artem Ivashko.^{3,34} Eder Izaguirre.³ Joerg Jaeckel[§].³⁵ Yu Seon Jeong.³⁶ Felix Kahlhoefer.²⁷ Yonatan Kahn,³⁷ Andrey Katz,^{5,38,39} Choong Sun Kim,³⁶ Sergey Kovalenko,¹¹ Gordan Krnjaic,³ Valery E. Lyubovitskij,^{40,41,42} Simone Marcocci,¹⁶ Matthew Mccullough,⁵ David McKeen,43 Guenakh Mitselmakher,44 Sven-Olaf Moch,45 Rabindra N. Mohapatra,46 David E. Morrissey,⁴⁷ Maksym Ovchynnikov,³⁴ Emmanuel Paschos,⁴⁸ Apostolos Pilaftsis,¹⁸ Maxim Pospelov[§],^{3,17} Mary Hall Reno,⁴⁹ Andreas Ringwald,²⁷ Adam Ritz,¹⁷ Leszek Roszkowski,⁵⁰ Valery Rubakov,²⁴ Oleg Ruchavskiy*,²¹ Jessie Shelton,⁵¹ Ingo Schienbein,⁵² Daniel Schmeier,¹⁹ Kai Schmidt-Hoberg,²⁷ Pedro Schwaller,⁵ Goran Senjanovic, 53,54 Osamu Seto, 55 Mikhail Shaposhnikov*, §, 21 Brian Shuve, 3 Robert Shrock.³⁶ Lesva Shchutska[§],⁴⁴ Michael Spannowsky.⁵⁷ Andy Sprav.³⁸ Florian Staub.⁵ Daniel Stolarski,⁵ Matt Strassler,³⁹ Vladimir Tello,⁵³ Francesco Tramontano[§],^{59,60} Anurag Tripathi,⁵⁹ Sean Tulin,⁶¹ Francesco Vissani,^{16,62} Martin W. Winkler,⁶³ Kathryn M. Zurek^{64,65}

coolificato

45 institutes in SHiP > 80 theorists

www.cern.ch/ship

Come aboard !

Timescale

	2		2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
		ପାରୀ ପରି ପରି	0,02,03	4 01 02 03 0	4 02 02 03 04	യയയം	ରା ପା ପଥା ପଥ	ଷ୍ୟ୍ୟୁ	01020304	ଘଟଣ୍ଡ	01020304	010203040	1 02 03 04 01	02 05 04
	G LHC operation SPS operation					lons								
Operation :	Facility HW commissioning/dry runs on availability SHIP facility commissioning with beam SHIP detector commissioning SHIP operation SHIP Technical Proposal													
Detector :	SHIP Project approval Technical Design Reports and R&D TDR approval Detector production Detector installation													
Civil Engineering :	Integration studies (CE, CV, EL, RP, etc) Pre-construction activities (EIA, design, permit, tendering) WP1: TDC juntion cavern/first section extraction tunnel WP2: Second section extraction tunnel WP3: Target area WP4: Experimental area					Î								
Infrastructure	Temporary removal in TDC2 (100m) Installation in TDC2 (100m) Installation for new beam line to target Installation in target area Installation in experimental area								,	,				
system : Beam line :	Design studies, specs and tender docs Technical Design Report Manufacturing new components Refurbishment existing components TDC2 dismantling (100m)					•		, ,						
Target :	TDC2 re-installation and tests (splitter and bends) New beam line to target installation and tests Muon shield installation (section 1 + section 2) Target complex design studies, specs and tender docs Target complex services - design and manufacturing Target studies and prototyping													
	Target production and installation									,	*			

- CERN decision on the strategy with SHiP within a year
- Detector construction, 5 years of data taking (from 2022) and data analysis of 2x10²⁰ protons on target can be all achieved within 10 years

SHiP in the UK

 Imperial College London has been involved since the very beginning, and expresses the spokesperson

(Andrei Golutvin); main activity active muon filter

- UCL (N.Brook, M.C) to work on trigger/DAQ
- RAL PPD (engineering support, but also physicists like S.Ricciardi)
- Bristol (K. Petridis)
- Warwick (G.Barker)
- Manchester, Liverpool may join in a second stage

Conclusions, and considerations on the future of particle physics

- LHC Run 1 results geve no positive evidence for new physics; Run 2 results out soon, let's hope for the best
- But in current (and foreseable) resource climate, a next big brute-force, general-purpose high-energy collider is difficult
- Particle physics could reinvent itself in becoming smaller and smarter, designing experiments that target specific problems (dark matter, neutrinos, etc.)
- A detector like ShiP perfectly fits this philosophy
- Very positive feedback so far from CERN, we have just been invited to submit a CDR (2-3 years of work) by the new management, that will also organise workshops to investigate further uses of the facility.