Single photon production in neutrino experiments

Z-boson

Photon

outline

- 1. Neutrino oscillation experiments
- 2. Motivation of ALPs search
- 3. Single photon search in neutrino experiments
- 4. Light WIMP in MiniBooNE

IoP astroparticle physics

facebook.com/IOPAPP/

5. Conclusion

Ν

Neutrino-induced Anomaly mediated photon production PRL99(2007)261601

Particle Zoo, http://www.particlezoo.net/

meson

 ω -meson

Queen Mary

ω

Teppei Katori and Pierre Lasorak Queen Mary University of London ALPs workshop, Durham, Apr. 14, 2016

Single photon production in neutrino experiments

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

1. Neutrino oscillation experiments

- 2. Motivation of ALPs search in neutrino experiments
- 3. Single photon searches in neutrino experiments
- 4. Light WIMP search in MiniBooNE
- 5. Conclusion

Teppei Katori, Queen Mary University of London 2016/04/14

1. Neutrino physics is the future of particle physics

P5 (particle physics project prioritization panel) recommend neutrinos to DOE

Contents	Summary of Scenarios										
Executive Summary	V			Scenarios		s	icien	ice D	rivers		(jej
Chapter 1: Introduction	1						so	atter	vccel.	uwu	ue (Front
 1.1: Particle Physics is a Global Field for Discovery — 2 1.2: Brief Summary of the Science Drivers and Main Opportunities — 3 1.3: Criteria — 6 		Project/Activity	Scenario A	Scenario B	Senario C	Higgs	Neutrin	Dark M	Cosm./	The Un	Techniq
Chapter 2: Recommendations	7	Large Projects									
2.1: Program-wide Recommendations — 8 2.2: Project-specific Recommendations — 10 2.3: Funding Scenarios — 15 2.4: Enabling R&D — 19		Muon program: Mu2e, Muon g-2	Y, Mu2e small reprofile reeded	Y	Y					~	I.
		HL-LHC	Y	Y	Y	~		~		~	E
		LBNF + PIP-II	LBNF components Y, delayed relative to Scenario B.	Y	Y, enhanced		~			~ I	I,C
Chapter 3: The Science Drivers	23	ILC	R&D only	R&D, bardware contri- butions. See text.	Y	~		~		~	E
3.1: Use the Higgs Boson as a New Tool for Discovery - 25 3.2: Pursue the Physics Associated with Neutrino Mass - 29 3.3: Identify the New Physics of Dark Matter - 35 3.4: Understand Cosmic Acceleration: Dark Energy and Inflation - 39 3.5: Explore the Unknown: New Particles, Interactions, and Physical Principles - 43 3.6: Enabling R&D and Computing - 46 Chapter 4: Benefits and Broader Impacts		NuSTORM	N	N	N		~				I.
		RADAR	N	N	N		~				I.
		Medium Projects									
		LSST	Y	Y	Y		~		~		С
		DM G2	Y	Y	Y			~			С
Appendices	53	Small Projects Portfolio	Y	Y	Y		~	~	~	~	AII
Appendix A: Charge – 54		Accelerator R&D and Test Facilities	Y, reduced	Y, PIP-II development	Y, enhanced	~	~	~		~	E,I
Appendix B: Panel Members – 57 Appendix C: Process and Meetings – 58		CMB-S4	Y	Y	Y		~		~		с
Appendix D: Snowmass Questions — 63 Appendix E: Full List of Recommendations — 64		DM G3	Y, reduced	Y	Y			~			С
		PINGU	Further develop	ment of concept e	ncouraged		~	~			с
$CERN \rightarrow IHC$		ORKA	N	N	N					~	I.
		МАР	N	N	N	~	~	~		~	E,I
Fermilab → Neutrino		CHIPS	N	N	N		~				i.
		LArl	N	N	N		~				I.
Additional Small Projects (beyond the Small Projects Portfolio above)											
		DESI	N	Y	Y		~		~		с

Short Baseline Neutrino Portfolio

Y

Υ

Y

~

Tahla 1

1. CERN-USA, KEK-ICRR...

Political pacts are made to strengthen large collaborations...

CERN - USA

DUNE

- LArTPC detector
- argon target
- wideband 1-4 GeV

(on-axis beam)

Teppei Katori, Queen Ma London Hyper-Kamiokande

- Water Cherenkov detector
- water target
- narrowband 0.6 GeV
- (off-axis beam)

KEK - ICRR

Symposium of the Hyper-Kamiokande P

1月31日(土) 柏の葉カンファレンスセンター 主催 ハイパーカミオカ

1. Neutrino Standard Model (vSM)

Next goal of particle physics after Higgs discovery

- Establish vSM = "SM + 3 active massive neutrinos"

Unknown parameters of vSM

- 1. Dirac CP phase
- 2. θ_{23} (θ_{23} =40° and 50° are same for sin2 θ_{23} , but not for sin θ_{23})
- 3. Mass ordering, normal $m_1 < m_2 < m_3$, or inverted $m_3 < m_1 < m_2$
- 4. Dirac or Majorana
- 5. Majorana phase (x2)
- 6. absolute neutrino mass

oscillation physics

There is a strong emphasis on 1-10 GeV energy region

Teppei Katori, Queen Mary University of London

Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307

1. Next generation neutrino oscillation experiments

Neutrino oscillation experiments

- Past to Present: K2K, MiniBooNE, MINOS, T2K
- Present to Future: T2K, NOvA, PINGU, ORCA, Hyper-Kamiokande, DUNE...

Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307

1. Next generation neutrino oscillation experiments

Neutrino oscillation experiments

- Past to Present: K2K, MiniBooNE, MINOS, T2K
- Present to Future: T2K, NOvA, PINGU, ORCA, Hyper-Kamiokande, DUNE...

Formaggio and Zeller, Rev.Mod.Phys.84(2012)1307

1. Next generation neutrino oscillation experiments

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

Neutrino oscillation experiments

- Past to Present: K2K, MiniBooNE, MINOS, T2K
- Present to Future: T2K, NOvA, PINGU, ORCA, Hyper-Kamiokande, DUNE...

There is a strong emphasis on 1-10 GeV due to oscillation physics, but there are not many things to measure. We need more topics!

- T2K (~500 collaborators) ~ 10 papers/year
- (oscillation=2, cross section=4, detector=1, others=2 in 2015)
- CDF (~500 collaborators) ~ 50 papers/year

MiniBooNE,PRD79(2009)072002

1. Neutrino beam

1. Neutrino beam

1. Neutrino beam

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

Modeling of meson production is based on the measurement done by HARP collaboration. HARP,Eur.Phys.J.C52(2007)29

- Identical, but 5% λ Beryllium target
- 8.9 GeV/c proton beam momentum

1. Neutrino beam

Neutrino flux from simulation by GEANT4

MiniBooNE is a v_e (anti v_e) appearance oscillation experiment, so we need to know the distribution of beam origin v_e and anti v_e (intrinsic v_e)

1. Oscillation 2. Motivation 3. Experiments

4. Light WIMP 5. Conclusion

$K \rightarrow \mu \nu_{\mu}$ μ → e ν _μ ν _e		ι νμ			neutrino m	node	antineutrino mode			
			intrinsic v_e contamination	0.6%		0.6%				
			intrinsic v_e from	y 49%	49%		55%			
			intrinsic ν_e from	y 47%		41%				
$K \rightarrow \pi e v_e$			others	4%		4%				
0 0.5 1	1.5 2 2.:	5 3	wrong sign fra	action	6%			16%		
Booster	target and horn	^{₽V)} de	cay region		absorber	C	dirt	detector		
Booster primary beam (protons)	secondary b (mesons)		tertiary	v_{μ} -	→ v _e ???					
QUEEN University of Lon	Mary Teppei	Katori, Que	een Mary Univ	Acceler experim	ator-based ients are be	neutr amd	ino os ump e	scillation experiments		

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

1. Neutrino oscillation experiments

2. Motivation of ALPs search in neutrino experiments

- 3. Single photon searches in neutrino experiments
- 4. Light WIMP search in MiniBooNE
- 5. Conclusion

Teppei Katori, Queen Mary University of London 2016/04/14

$$v_{\mu} \xrightarrow{oscillation} v_{e} + n \longrightarrow e^{-} + p$$
$$\overline{v}_{\mu} \xrightarrow{oscillation} \overline{v}_{e} + p \longrightarrow e^{+} + n$$

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

Electron or photon?

- MiniBooNE observed excesses from final oscillation samples
- The largest misID background is photon from NC π^o production
- Any high energy photon can be backgrounds

$$v_{\mu} \xrightarrow{\text{oscillation}} v_{e} + n \rightarrow e^{-} + p$$

$$\overline{v}_{\mu} \xrightarrow{\text{oscillation}} \overline{v}_{e} + p \rightarrow e^{+} + n$$

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

Electron or photon?

- MiniBooNE observed excesses from final oscillation samples
- The largest misID background is photon from NC π^o production
- Any high energy photon can be backgrounds

$$v_{\mu} \xrightarrow{\text{oscillation}} v_{e} + n \rightarrow e^{-} + p$$
$$\overline{v}_{\mu} \xrightarrow{\text{oscillation}} \overline{v}_{e} + p \rightarrow e^{+} + n$$

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

Electron or photon?

- MiniBooNE observed excesses from final oscillation samples
- The largest misID background is photon from NC π^{o} production
- Any high energy photon can be backgrounds

Lasorak,arXiv:1602.00084

2. New photon sources within the Standard Model

generalized Compton scattering

anomaly mediated triangle diagram

Oscillation
 Motivation
 Experiments

4. Light WIMP 5. Conclusion

Teppei Katori, Queen Mary University of London

2016/04/14 18

ALPS, PLB689(2010)149, Ahlers et al., PRD77(2008)095001 Gninenko, PRL103(2009)241802

2. New photon sources Beyond the Standard Model

Heavy neutrino decay

- A model designed to explain LSND, KARMEN, and MiniBooNE

Photon-Dark photon oscillation

- Light-Shining-Through-the-Wall type experiment
- Neutrino experiments (=beamdump experiments) may offer natural place to look for photon-dark photon oscillation

Teppei Katori, Queen Mary University of London

2016/04/14

Pradler, EPS2015 Redondo, PRD77 (2008) 095001

2. Landscape of ALPs

Pradler, EPS2015 Redondo, PRD77 (2008) 095001

2. Landscape of ALPs

Pradler, EPS2015 Redondo, PRD77 (2008) 095001

2. Photon-Dark photon oscillation

$$P_{\text{trans}} = 16\chi^4 \left[\sin\left(\frac{\Delta kL_1}{2}\right) \sin\left(\frac{\Delta kL_2}{2}\right) \right]^2$$

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

Sensitive of neutrino experiments

- Current LSW limit reaches χ ~10⁻⁶
- Oscillation probability ~ power 4 of coupling constant
- In T2K beamline, ~1013 neutral pions are created in 10% total statistics (now)
- \rightarrow T2K limit would be at best χ ~10⁻³

T2K, or any neutrino experiments are not competitive for dark photon oscillation measurements

2. Landscape of ALPs

BABAR, PRL 113, 201801 (2014)

2. Dark photon decay

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

Any interesting models for neutrino experiments?

- current limit is ~10⁻³ in coupling constant
- there is no testable models for neutrino experiments

We (=T2K) are wondering what kind of models we can test in this region

Event signature in BABAR, but probably we should look for other topologies...

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

- **1. Neutrino oscillation experiments**
- 2. Motivation of ALPs search in neutrino experiments
- 3. Single photon searches in neutrino experiments
- 4. Light WIMP search in MiniBooNE
- 5. Conclusion

Teppei Katori, Queen Mary University of London 2016/04/14

Gargemelle, Phys.Lett.74B(1978)422 Gershtein et al.,Sov.J.Nucl.Phys33(1981)6

3. Bubble chamber experiments

ν_{μ} -e elastic scattering

- Important test of Standard Model
- Excess of gamma like events
- Earliest models are made to explain these, but Ev~25GeV.

Selection of gamma event candidate

- single e⁺-e⁻ pair
- fiducial cut
- W<50 MeV

Selection of gamma event candidate

- single e⁺-e⁻ pair
- fiducial cut
- W<50 MeV

3 major backgrounds

- NC coherent π^o production (Cohpi)
 - → Cohpi model in MC is tuned to the distribution of measured 2γ sample
- outside of fiducial volume background (OBG)
 - → Data sample outside of fiducial volume is used for normalization
- NC-DIS π^{o} production (NC-DIS)
 - → Tune using the region $\zeta_{\gamma} = E_{\gamma}(1 \cos \theta_{\gamma}) > 0.5$

no excess is found, set limit, $xs(NC\gamma/CC) < 4x10^{-4}$

Teppei Katori, Queen Mary University London

Result

- no excess is found, set limit, $xs(NC\gamma/CC) < 4x10^{-4}$

Lesson

- There will be 2 types of backgrounds, internal and external background
- internal background is dominated by NC π° production with single γ final state - external background is γ coming from outside of the fiducial volume (also mostly π° origin)

29

1. Neutrino oscillation experiments

2. Motivation

3. Past single photon searches

4. Future single photon searches

5. Conclusion

Teppei Katori, Queen Mary University of London 2016/04/14

4. Single photon measurement in T2K

Fine Grained Detector (FGD1)

- The main vertex detector of ND280
- extruded scintillator+WLS fiber X-Y tracker
- 2.3x2.4x0.4m³, fiducial volume (1.1 ton)

Teppei Katori, Queen Mary University of London T2K Collaboration, NIMA659(2011)106, PRD87(2013)092003

4. Single photon measurement in T2K

Fine Grained Detector (FGD1)

- The main vertex detector of ND280
- extruded scintillator+WLS fiber X-Y tracker
- 2.3x2.4x0.4m³, fiducial volume (1.1 ton)

1. Oscillation 2. Motivation 3. Experiments 4. Light WIMP 5. Conclusion

γ candidate in FGD1 ŧ. Jueen Mary Teppei Katori, Queen Mai

University of London

e⁺ and e⁻ tracks are reconstructed, invariant mass is reconstructed \rightarrow >95% purity gamma sample

4. Single photon measurement in T2K

1. Oscillation 2. Motivation 3. Experiments Liaht WIMP 5. Conclusion

Gamma selection in FGD1

University of London

- 95% pure gamma ray sample
 - \rightarrow half is NC1 π° with one gamma missing (internal background)
 - \rightarrow other half is from outside of fiducial volume (external background)

MINERvA, PRL116(2016)081802, arXiv:1604.01728 Wolcott, NuInt15

4. Single photon measurement in MINERvA

MINERvA v_e CCQE analysis

- The main vertex detector is extruded scintillator+WLS fiber U-V tracker
- Fiducial volume is (5.57 ton)

MINERvA, PRL116(2016)081802, arXiv:1604.01728 Wolcott, NuInt15

4. Single photon measurement in MINERvA

MINERvA $\nu_e \text{CCQE}$ analysis

- The main vertex detector is extruded scintillator+WLS fiber U-V tracker
- Fiducial volume is (5.57 ton)
- no magnetic field, but good e/ γ separation by dE/dx
- photon samples are dominated various π^{o} background

ArgoNeuT, arXiv:1511.00941

3. Single photon measurement in MicroBooNE

Liquid Argon Time Projection Chamber (LArTPC)

- Modern bubble chamber, amazing resolution
- 2.3x2.6x10.4m³ (86 ton TPC volume), fiducial volume may be smaller than that
- ArgoNeuT demonstrated shower event measurement and π^{o} reconstruction

Teppei Katori, Queen Mary University of London

2016/04/14

36

3. Single photon measurement in MicroBooNE

Liquid Argon Time Projection Chamber (LArTPC)

- Modern bubble chamber, amazing resolution
- 2.3x2.6x10.4m³ (86 ton TPC volume), fiducial volume may be smaller than that
- ArgoNeuT demonstrated shower event measurement and π^{o} reconstruction

LArTPC has excellent e/ γ separation, but it's not clear how to remove single photon background from π^o

Seems all detectors have problem to reject photon background from $\pi^{\rm o}$

	γ reconstruction	internal background	internal external background background	
NOMAD	magnet	DIS, RES, COH π°	large	done
T2K	magnet	RES, COH πº	very large	running
MINERvA	dE/dx	DIS, RES, COH π°	large?	running
MicroBooNE	LArTPC	RES, COH πº?	large?	running

Teppei Katori, Queen Mary University of London Oscillation
 Motivation
 Experiments

4. Light WIMP 5. Conclusion

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

- **1. Neutrino oscillation experiments**
- 2. Motivation of ALPs search in neutrino experiments
- 3. Single photon searches in neutrino experiments

4. Light WIMP search in MiniBooNE

5. Conclusion

Teppei Katori, Queen Mary University of London 2016/04/14

Batell and Van de Water, Fermilab PAC (2014)

4. Light WIMP search in MiniBooNE

Thornton, arXiv:1411.4311

4. Light WIMP search in MiniBooNE

Light WIMP with new U(1) gauge boson (dark photon)

- Candidate of cold dark matter
- Not accessible with direct dark matter techniques

MiniBooNE beam dump mode

University of London

- beam is steered to avoid the target and hit the iron beam dump 50m away.

- event signature is nucleon recoil

 $\mathcal{L}_{V,\chi} = -\frac{1}{4}V_{\mu\nu}^{2} + \frac{1}{2}m_{V}^{2}V_{\mu}^{2} + \kappa V_{\nu}\partial_{\mu}F^{\mu\nu}$ $+ |D_{\mu}\chi|^{2} - m_{\chi}^{2}|\chi|^{2} + \mathcal{L}_{h'},$

 $\chi + X \rightarrow \chi + NX'$ (scintillation)

40

1. Oscillation 2. Motivation 3. Experiments Liaht WIMP 5. Conclusion

Batell et al., PRD90(2014)115014

4. Light WIMP search in MiniBooNE

Phase space

$$\begin{aligned} \mathcal{L}_{V,\chi} &= -\frac{1}{4} V_{\mu\nu}^2 + \frac{1}{2} m_V^2 V_{\mu}^2 + \kappa V_{\nu} \partial_{\mu} F^{\mu\nu} \\ &+ |D_{\mu}\chi|^2 - m_{\chi}^2 |\chi|^2 + \mathcal{L}_{h'}, \end{aligned}$$

Thornton, arXiv:1411.4311

4. Light WIMP search in MiniBooNE

First 30% of beam-dump mode data

- Total data ~2E20POT
- The first result will be ~2016

Nucleon kinetic energy

2 types of backgrounds

- beam-uncorrelated events
- neutrino interactions (neutral current elastic scattering)

Very conservative systematic errors are assigned.

Teppei Katori, Queen Mary University of London

1. Oscillation Motivation 3. Experiments 4. Light WIMP 5. Conclusion

$$\mathcal{L}_{V,\chi} = -\frac{1}{4}V_{\mu\nu}^2 + \frac{1}{2}m_V^2 V_{\mu}^2 + \kappa V_{\nu}\partial_{\mu}F^{\mu\nu} + |D_{\mu}\chi|^2 - m_{\chi}^2|\chi|^2 + \mathcal{L}_{h'},$$

Thornton, arXiv:1411.4311

4. Light WIMP search in MiniBooNE

First 30% of beam-dump mode data

- Total data ~2E20POT
- The first result will be ~2016

Dark matter TOF

- dark matter is slower than \boldsymbol{v}
- Booster bunch separation~19ns

 $\mathcal{L}_{V,\chi} = -\frac{1}{4}V_{\mu\nu}^2 + \frac{1}{2}m_V^2 V_{\mu}^2 + \kappa V_{\nu}\partial_{\mu}F^{\mu\nu}$ $+ |D_{\mu}\chi|^2 - m_{\chi}^2 |\chi|^2 + \mathcal{L}_{h'},$

Teppei Katori, Queen Mary University of London

5. Conclusions

Accelerator-based neutrino physics is the future of particle physics

Neutrino physics around 1-10 GeV does not have enough topics, and part of the community can contribute ALPs searches

There are many efforts to understand NC-like photon in neutrino detectors, both theoretically and experimentally, for ν_e appearance search

It is not clear any of near future neutrino experiments can perform interesting measurement on ALPs

Thank you for your attention!

Teppei Katori, Queen Mary University of London

2016/04/14

44

Oscillation
 Motivation
 Experiments
 Light WIMP
 Conclusion

Backup

Teppei Katori, Queen Mary University of London 20

NC $\gamma,$ as ν_e appearance background

- all generators estimate NC γ from radiative Δ -decay $\Delta \rightarrow N\gamma$
- cross section is roughly ~0.5% of NC1 π° channel

MiniBooNE

- Final oscillation paper estimates NC γ is roughly ~20% of NC π° background in v_{e} candidate sample.
- To explain all excess by NC γ , NC γ cross section needs to be higher x2 to x3.

1. Oscillation

- 2. BLOWIGANDation
- 3. 32 Explentenenas
- 4. MicrigBooMEP
- 5. MinaBoolMaen
- 6. Conclusion

ALPS, PLB689(2010)149 T2K,PRD87(2013)012001 **2. LSW experiment with magnetic field**

ALPs

- Light-Shining-Through-the-Wall type experiment
- photon-dark photon oscillation

T2K

- 1.7T toroidal field to focus mesons (total 6m horn)
- ~280m of dirt
- 0.2T dipole magnet in the near detector

Single gamma search

Very simple, but robust analysis. They identified all issues on this measurement.

- single e⁺-e⁻ pair
- fiducial cut
- W<50 MeV

Single gamma search

Very simple, but robust analysis. They identified all issues on this measurement.

- single e⁺-e⁻ pair
- fiducial cut
- W<50 MeV

PAN=measure of energy asymmetry between E_{γ} and E_{NC}

- $E_{_{\gamma}}$ = measured gamma energy
- E_{NC} = ECAL energy deposit by neutral particles

PAN is big \rightarrow less likely to be DIS and more interesting data

Teppei Katori, Queen Mary University London

Single gamma search

Very simple, but robust analysis. They identified all issues on this measurement.

- single e⁺-e⁻ pair
- fiducial cut
- W<50 MeV

PAN=measure of energy asymmetry between $E_{_{\!Y}}$ and $E_{_{\!NC}}$

- E_{γ} = measured gamma energy
- E_{NC} = ECAL energy deposit by neutral particles

- 3 major backgrounds
- NC coherent π^o production (Cohpi)
- outside of fiducial volume background (OBG)
- NC-DIS π^{o} production (NC-DIS)

Teppei Katori, Queen Mary University London

Single gamma search

Very simple, but robust analysis. They identified all issues on this measurement.

- single e⁺-e⁻ pair
- fiducial cut
- W<50 MeV

PAN=measure of energy asymmetry between E_{γ} and E_{NC}

- $E_{_{\gamma}}$ = measured gamma energy
- E_{NC}^{\cdot} = ECAL energy deposit by neutral particles

- 3 major backgrounds
- NC coherent π^o production (Cohpi)
 - → Cohpi model in MC is tuned to the distribution of measured 2γ sample
- outside of fiducial volume background (OBG)
 - → Data sample outside of fiducial volume is used for normalization
- NC-DIS π^o production (NC-DIS)
 - → Tune using the region $\zeta_{\gamma} = E_{\gamma}(1 \cos \theta_{\gamma}) > 0.5$

Teppei Katori, Queen Mary University London

NOMAD,PLB706(2012)268

3. NOMAD

Result

- no excess, set limit, $xs(NC\gamma/CC) < 4x10^{-4}$

NOMAD,PLB706(2012)268

3. NOMAD

Result

- no excess, set limit, $xs(NC\gamma/CC) < 4x10^{-4}$

Lesson

- There will be 2 types of backgrounds, internal and external background

- internal background is dominated by NC π^o production with single γ final state

→ NC π° production rate needs to be constraint from the own data (In general, NC γ cross section is ~0.5% of NC π° , so you need to reject 99% of π° with 10% error, then NC γ would be ~2 σ significance (assuming no other background)

- external background is γ coming from outside of the fiducial volume (also mostly π° origin)
 - \rightarrow External background needs to be tuned from the own data
 - → 3mx3mx4m is not big enough to suppressed external background

58