Lattice QED with dual variables

Hélvio Vairinhos
ETHzürich

in collaboration with Philippe de Forcrand

Plymouth University
02 Aug 2016

Introduction

- Goal: Ab initio simulations of eXtreme QCD (at finite density and temperature), with a modest sign problem: Taming the sign rather than killing it.
- What is the sign problem?
- In lattice QCD, fermion fields are integrated out first \Rightarrow det (ID)
- At finite density $\mu, \operatorname{det}(\not D(\mu))$ is complex-valued, i.e. the probabilistic interpretation in Euclidean space is lost.
- However, the sign problem is basis-dependent, e.g. it does not exist in the eigenbasis of any quantum Hamiltonian:

- Technical goal: To find a suitable basis for the partition sum of lattice QCD, in which the sign problem becomes sufficiently mild.

[^0]
Introduction

- Goal: Ab initio simulations of eXtreme QCD (at finite density and temperature), with a modest sign problem: Taming the sign rather than killing it.
- What is the sign problem?
- In lattice QCD, fermion fields are integrated out first $\Rightarrow \operatorname{det}(\not D)$
- At finite density μ, $\operatorname{det}(\not D(\mu))$ is complex-valued, i.e. the probabilistic interpretation in Euclidean space is lost.
- However, the sign problem is basis-dependent, e.g. it does not exist in the eigenbasis of any quantum Hamiltonian:

$$
\begin{aligned}
& Z=\operatorname{Tr} e^{-\beta \hat{H}}=\operatorname{Tr}\left\{e^{-\frac{\beta}{N} \hat{H}} \sum_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right| e^{-\frac{\beta}{N} \hat{H}} \sum_{j}\left|\Psi_{j}\right\rangle\left\langle\Psi_{j}\right| \cdots\right\} \\
& \left\langle\Psi_{i}\right| e^{-\beta \hat{H}}\left|\Psi_{j}\right\rangle \geq 0, \forall i, j
\end{aligned}
$$

- Technical goal: To find a suitable basis for the partition sum of
- Sensible candidates are the color-neutral fermionic states obtained after integrating out the gauge fields \approx asymptotic confined states of

Introduction

- Goal: Ab initio simulations of eXtreme QCD (at finite density and temperature), with a modest sign problem: Taming the sign rather than killing it.
- What is the sign problem?
- In lattice QCD, fermion fields are integrated out first $\Rightarrow \operatorname{det}(\not D)$
- At finite density $\mu, \operatorname{det}(\not D(\mu))$ is complex-valued, i.e. the probabilistic interpretation in Euclidean space is lost.
- However, the sign problem is basis-dependent, e.g. it does not exist in the eigenbasis of any quantum Hamiltonian:

$$
\begin{aligned}
& Z=\operatorname{Tr} e^{-\beta \hat{H}}=\operatorname{Tr}\left\{e^{-\frac{\beta}{N} \hat{H}} \sum_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right| e^{-\frac{\beta}{N} \hat{H}} \sum_{j}\left|\Psi_{j}\right\rangle\left\langle\Psi_{j}\right| \cdots\right\} \\
& \left\langle\Psi_{i}\right| e^{-\beta \hat{H}}\left|\Psi_{j}\right\rangle \geq 0, \forall i, j
\end{aligned}
$$

- Technical goal: To find a suitable basis for the partition sum of lattice QCD, in which the sign problem becomes sufficiently mild.
- Sensible candidates are the color-neutral fermionic states obtained after integrating out the gauge fields \approx asymptotic confined states of QCD.

$S U\left(N_{c}\right)$ lattice QCD, at $\beta=0$

In $S U\left(N_{c}\right)$ lattice QCD, analytical integration of $U_{x \mu}$ *before* $\psi_{x}, \bar{\psi}_{x}$ is possible at $\beta=0 \Rightarrow$ monomer-dimer-loop system [Rossi-Wolff '84]

$$
\begin{aligned}
Z & =\int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{2 a m \sum_{x} \operatorname{Tr}\left(\bar{\psi}_{x} \psi_{x}\right)+\sum_{x, \mu} \eta_{x \mu} \operatorname{Tr}\left(e^{a \mu} \bar{\psi}_{x} U_{x \mu} \psi_{x+\hat{\mu}}-e^{-a \mu} \bar{\psi}_{x} U_{x \mu} \psi_{x+\hat{\mu}}\right)} \\
& =\sum_{\{n, k, \ell\}} \frac{\sigma(\ell)}{N_{c}!|\ell|} e^{N_{c} N_{t} a \mu \Omega(\ell)}\left(\prod_{x} \frac{N_{c}!}{n_{x}!}(2 a m)^{n_{x}}\right)\left(\prod_{x, \mu} \frac{\left(N_{c}-k_{x \mu}\right)!}{N_{c}!k_{x \mu}!}\right)
\end{aligned}
$$

- Content:
$n_{x}, k_{x \mu} \in\left\{0, \ldots, N_{c}\right\}, \quad \ell_{x \mu} \in\{0, \pm 1\}$
- Grassmann constraints:

$$
n_{x}+\sum_{ \pm \mu}\left(k_{x \mu}+\frac{N_{c}}{2}\left|\ell_{x \mu}\right|\right) \stackrel{!}{=} N_{c}
$$

- Configurations are generated using a directed path (worm) algorithm. [Adams-Chandrasekharan '03]

$S U\left(N_{c}\right)$ lattice QCD, at $\beta=0$

In $S U\left(N_{c}\right)$ lattice QCD, analytical integration of $U_{x \mu}$ *before* $\psi_{x}, \bar{\psi}_{x}$ is possible at $\beta=0 \Rightarrow$ monomer-dimer-loop system [Rossi-Wolff '84]

$$
\begin{aligned}
Z & =\int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{2 a m \sum_{x} \operatorname{Tr}\left(\bar{\psi}_{x} \psi_{x}\right)+\sum_{x, \mu} \eta_{x \mu} \operatorname{Tr}\left(e^{a \mu} \bar{\psi}_{x} U_{x \mu} \psi_{x+\hat{\mu}}-e^{-a \mu} \bar{\psi}_{x} U_{x \mu} \psi_{x+\hat{\mu}}\right)} \\
& =\sum_{\{n, k, \ell\}} \frac{\sigma(\ell)}{N_{c}!\ell \ell} e^{N_{c} N_{t} a \mu \Omega(\ell)}\left(\prod_{x} \frac{N_{c}!}{n_{x}!}(2 a m)^{n_{x}}\right)\left(\prod_{x, \mu} \frac{\left(N_{c}-k_{x \mu}\right)!}{N_{c}!k_{x \mu}!}\right)
\end{aligned}
$$

- Baryonic sign problem: $\sigma(\ell)= \pm 1$
- Quantitative measure of the severity of the sign problem:

$$
\langle\operatorname{sign}\rangle=Z / Z_{\|}=e^{V \Delta f}
$$

- For small μ, the sign problem is milder than in the traditional formulation of
 lattice QCD, by a factor $O\left(10^{-4}\right)$.

$S U\left(N_{c}\right)$ lattice QCD, at $O(\beta)$

In $S U\left(N_{c}\right)$ lattice QCD, analytical integration of $U_{x \mu}$ *before* $\psi_{x}, \bar{\psi}_{x}$ is also possible order-by-order in $\beta \Rightarrow$ monomer-dimer-loop-plaquette system [Forcrand-Langelage-Philipsen-Unger '14]

$$
\begin{aligned}
Z= & \int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{2 a m} \sum_{x} \operatorname{Tr}\left(\bar{\psi}_{x} \psi_{x}\right)+\sum_{x, \mu} \eta_{x \mu} \operatorname{Tr}\left(e^{a \mu} \bar{\psi}_{x} U_{x \mu} \psi_{x+\hat{\mu}}-e^{-a \mu} \bar{\psi}_{x} U_{x \mu} \psi_{x+\hat{\mu}}\right) \\
& \times\left(1+\frac{\beta}{N_{c}} \sum_{\square} \operatorname{Re} \operatorname{Tr}\left(U_{\square}\right)\right) \\
= & \sum_{\{n, k, \ell, p\}} \frac{\sigma(\ell)}{N_{c}!\ell \ell} e^{N_{c} N_{t} a \mu \Omega(\ell)}\left(\prod_{x} \frac{N_{c}!v_{x}}{n_{x}!}(2 a m)^{n_{x}}\right)\left(\prod_{x, \mu} \frac{\left(N_{c}-k_{x \mu}\right)!}{N_{c}!\left(k_{x \mu}-p_{x \mu}\right)!}\right) \prod_{\square}\left(\frac{\beta}{2 N_{c}}\right)^{p} \square
\end{aligned}
$$

- New content: Plaquette occupation numbers, $p_{x \mu \nu}$
- Grassmann constraints:

$$
n_{x}+\sum_{ \pm \mu} k_{x \mu} \stackrel{!}{=} N_{c}+\sum_{\mu<\nu} p_{x \mu \nu}
$$

- Configurations are generated using a directed path (worm) algorithm. [Adams-Chandrasekharan '03]

$S U\left(N_{c}\right)$ lattice QCD, at $O(\beta)$

In $S U\left(N_{c}\right)$ lattice QCD, analytical integration of $U_{x \mu}$ *before* $\psi_{x}, \bar{\psi}_{x}$ is also possible order-by-order in $\beta \Rightarrow$ monomer-dimer-loop-plaquette system [Forcrand-Langelage-Philipsen-Unger '14]

$$
\begin{aligned}
& Z=\int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{2 a m \sum_{x} \operatorname{Tr}\left(\bar{\psi}_{x} \psi_{x}\right)+\sum_{x, \mu} \eta_{x \mu} \operatorname{Tr}\left(e^{a \mu} \bar{\psi}_{x} U_{x \mu} \psi_{x+\hat{\mu}}-e^{-a \mu} \bar{\psi}_{x} U_{x \mu} \psi_{x+\hat{\mu}}\right)} \\
& \times\left(1+\frac{\beta}{N_{c}} \sum_{\square} \operatorname{Re} \operatorname{Tr}\left(U_{\square}\right)\right) \\
& =\sum_{\{n, k, \ell, p\}} \frac{\sigma(\ell)}{N_{c}!!\ell \mid} e^{N_{c} N_{t} a \mu \Omega(\ell)}\left(\prod_{x} \frac{N_{c}!v_{x}}{n_{x}!}(2 a m)^{n_{x}}\right)\left(\prod_{x, \mu} \frac{\left(N_{c}-k_{x \mu}\right)!}{N_{c}!\left(k_{x \mu}-p_{x \mu}\right)!}\right) \prod_{\square}\left(\frac{\beta}{2 N_{c}}\right)^{p} \square
\end{aligned}
$$

- The sign problem is mild enough to allow the mapping of the full phase diagram of strongly-coupled lattice QCD. [Forcrand-Langelage-Philipsen-Unger '14]
- But, beyond $O(\beta)$, it becomes combinatorially hard to control the necessary diagrammatics. [Unger '16] A new approach is required!

Integrating out the link variables

Use auxiliary bosonic fields to decouple the links around plaquettes:
[Forcrand-HV '14]

$$
Z=\int \prod_{x, \mu} d U_{x \mu} e^{\frac{\beta}{N_{c}} \sum \square \operatorname{ReTr}(U U U U)}
$$

1. Add two sets of auxiliary bosonic fields living on plaquettes, $Q_{x \mu \nu}$ and $R_{x \mu \nu}$ (Gaussian).

2. Use Hubbard-Stratonovich transformations to decouple all links:

$$
\begin{aligned}
Q_{x \mu \nu} & \mapsto \sqrt{\frac{\beta}{N_{c}}}\left(Q_{x \mu \nu}+U_{x \mu} U_{x+\hat{\mu}, \nu}+U_{x \nu} U_{x+\hat{\nu}, \mu}\right) \\
R_{x \mu \nu} & \mapsto \sqrt{\frac{\beta}{N_{c}}}\left(R_{x \mu \nu}+Q_{x \mu \nu} U_{x+\hat{\mu}, \nu}^{\dagger}+U_{x \mu}\right)
\end{aligned}
$$

Integrating out the link variables

The Wilson plaquette action becomes linear, and so the partition sum factorizes as a product of exactly solvable one-link integrals:

$$
Z=\int \mathcal{D} Q \mathcal{D} R e^{-\frac{3 \beta}{2 N_{c}} \operatorname{Tr}\left(Q Q^{\dagger}\right)-\frac{\beta}{2 N_{c}} \operatorname{Tr}\left(R R^{\dagger}\right)}\left(\prod_{x, \mu} \int d U e^{\frac{\beta}{N_{c}} \operatorname{Re} \operatorname{Tr}\left(J_{x \mu}^{\dagger} U\right)}\right)
$$

$J_{x \mu}$ only depends on the auxiliary fields,

$$
J_{x \mu}=\sum_{\nu \neq \mu}\left(R_{x-\hat{\nu}, \nu \mu}^{\dagger} Q_{x-\hat{\nu}, \nu \mu}+R_{x \mu \nu}\right)
$$

Wilson loops are path-ordered products of effective links, \widetilde{U}_{l} :

$$
\begin{aligned}
\langle W(\ell)\rangle & =\left\langle\operatorname{Tr} \prod_{l \in \ell} U_{l}\right\rangle=\left\langle\operatorname{Tr} \prod_{l \in \ell} \widetilde{U}_{l}\right\rangle \\
\widetilde{U}_{l} & =\int d U U e^{\beta \operatorname{Re}\left(J_{l}^{\dagger} U\right)}
\end{aligned}
$$

Compact $U(1)$ lattice gauge theory

In pure $U(1)$ lattice gauge theory, the bosonic variables $Q_{x \mu \nu}, R_{x \mu \nu} \in \mathbb{C}$ decouple the 4 links around the plaquette, reducing the Boltzmann factor to a product of solvable $U(1)$ one-link integrals:

$$
\int d U e^{\beta \operatorname{Re}\left(J^{\dagger} U\right)}=I_{0}(\beta|J|)
$$

The representation of the partition sum without link variables (0-link) is:

$$
Z=\int \mathcal{D} U \prod_{\square} e^{\beta \operatorname{Re}\left(U_{\square}\right)}=\int \mathcal{D} Q \mathcal{D} R e^{-\frac{3 \beta}{2}|Q|^{2}-\frac{\beta}{2}|R|^{2}} \prod_{l} I_{0}\left(\beta\left|J_{l}\right|\right)
$$

$U(1)$ loop observables in the 0 -link representation,

$$
\langle W(\ell)\rangle=\left\langle\prod_{l \in \ell} U_{l}\right\rangle=\left\langle\prod_{l \in \ell} \widetilde{U}_{l}\right\rangle
$$

are defined in terms of $U(1)$ effective links:

$$
\widetilde{U}_{l}=\langle U\rangle_{J_{l}}=\int d U U e^{\beta \operatorname{Re}\left(J_{l}^{\dagger} U\right)}=\frac{I_{1}\left(\beta\left|J_{l}\right|\right)}{I_{0}\left(\beta\left|J_{l}\right|\right)} \frac{J_{l}}{\left|J_{l}\right|}
$$

Compact lattice QED

The generalization of this formalism to compact lattice QED is straightforward:

$$
\begin{aligned}
Z & =\int \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{2 a m \bar{\psi} \psi} \int \mathcal{D} Q \mathcal{D} R e^{-\frac{3 \beta}{2}|Q|^{2}-\frac{\beta}{2}|R|^{2}} \prod_{x, \mu} \int d U e^{\operatorname{Re}\left(\left(\beta J_{x \mu}^{\dagger}+2 \eta_{x \mu} \psi_{x} \psi_{x+\hat{\mu}}\right)^{\dagger} U\right)} \\
& =\int \mathcal{D} Q \mathcal{D} R e^{-\frac{3 \beta}{2}|Q|^{2}-\frac{\beta}{2}|R|^{2}} \prod_{l} I_{0}\left(\beta\left|J_{l}\right|\right) \sum_{\{n, k, \ell\}}(2 a m)^{N_{M}} \sigma_{F}(\ell) \prod_{i=1}^{\# \ell} 2 \operatorname{Re}\left(W\left(\ell_{i}\right)\right)
\end{aligned}
$$

- Sign problem(s): $\sigma_{F}(\ell)= \pm 1$, but $\operatorname{Re}\left(W\left(\ell_{i}\right)\right)$ can also be negative!
- Grassmann constraints:

$$
n_{x}+\sum_{ \pm \mu}\left(k_{x \mu}+\frac{N_{c}}{2}\left|\ell_{x \mu}\right|\right) \stackrel{!}{=} 1
$$

- Gauss' law: Only the zero-winding sector contributes

Monte Carlo algorithm

1. Gaussian heatbath, for (Q, R)

+ HS transformations, with the help of an auxiliary $U(1)$ field
+ Metropolis, for the electron loop corrections:

$$
\underbrace{\mathcal{D} Q \mathcal{D} R e^{-\frac{3 \beta}{2} \operatorname{Tr}\left(Q Q^{\dagger}\right)-\frac{\beta}{2} \operatorname{Tr}\left(R R^{\dagger}\right)} \prod_{l} I_{0}\left(\beta\left|J_{l}\right|\right)}_{\text {Heatbath (local) }} \underbrace{\prod_{i=1}^{\# \ell} 2 \operatorname{Re}\left(W\left(\ell_{i}\right)\right)}_{\text {Metropolis (global) }}
$$

2. "Mesonic" worm, for the monomer-dimer cover:
[Prokof'ev-Svistunov '01] [Adams-Chandrasekharan '03]

$$
w=\prod_{x}(2 a m)^{n_{x}} \prod_{l} 1
$$

3. Electron worm, for (unoriented) electron loops, and dimers:

$$
w=\prod_{l} 1 \prod_{i=1}^{\# \ell}\left|2 \operatorname{Re}\left(W\left(\ell_{i}\right)\right)\right|=\underbrace{\prod_{l}\left(\frac{I_{1}\left(\beta\left|J_{l}\right|\right)}{I_{0}\left(\beta\left|J_{l}\right|\right)}\right)^{\ell_{l}}}_{\text {Worm (local) }} \underbrace{\prod_{i=1}^{\# \ell}\left|2 \cos \left(\arg \left(W\left(\ell_{i}\right)\right)\right)\right|}_{\text {Metropolis (global) }}
$$

Sign problem(s)

The $\operatorname{sign} \sigma(\ell)$ has a bosonic $\sigma_{B}(\ell)$ and a fermionic $\sigma_{F}(\ell)$ contribution:

$$
\sigma(\ell)=\sigma_{B}(\ell) \sigma_{F}(\ell)=\operatorname{sign}\left(\prod_{i=1}^{\# \ell} 2 \operatorname{Re}\left(W\left(\ell_{i}\right)\right)\right)(-1)^{N_{-}(\ell)+\omega_{t}(\ell)+1} \prod_{l \in \ell} \eta_{l}
$$

2×2 lattice

Sign problem(s)

The $\operatorname{sign} \sigma(\ell)$ has a bosonic $\sigma_{B}(\ell)$ and a fermionic $\sigma_{F}(\ell)$ contribution:

$$
\sigma(\ell)=\sigma_{B}(\ell) \sigma_{F}(\ell)=\operatorname{sign}\left(\prod_{i=1}^{\# \ell} 2 \operatorname{Re}\left(W\left(\ell_{i}\right)\right)\right)(-1)^{N_{-}(\ell)+\omega_{t}(\ell)+1} \prod_{l \in \ell} \eta_{l}
$$

4×4 lattice

Sign problem(s)

The $\operatorname{sign} \sigma(\ell)$ has a bosonic $\sigma_{B}(\ell)$ and a fermionic $\sigma_{F}(\ell)$ contribution:

$$
\sigma(\ell)=\sigma_{B}(\ell) \sigma_{F}(\ell)=\operatorname{sign}\left(\prod_{i=1}^{\# \ell} 2 \operatorname{Re}\left(W\left(\ell_{i}\right)\right)\right)(-1)^{N_{-}(\ell)+\omega_{t}(\ell)+1} \prod_{l \in \ell} \eta_{l}
$$

6×6 lattice

Sign problem(s)

The $\operatorname{sign} \sigma(\ell)$ has a bosonic $\sigma_{B}(\ell)$ and a fermionic $\sigma_{F}(\ell)$ contribution:

$$
\sigma(\ell)=\sigma_{B}(\ell) \sigma_{F}(\ell)=\operatorname{sign}\left(\prod_{i=1}^{\# \ell} 2 \operatorname{Re}\left(W\left(\ell_{i}\right)\right)\right)(-1)^{N_{-}(\ell)+\omega_{t}(\ell)+1} \prod_{l \in \ell} \eta_{l}
$$

$$
8 \times 8 \text { lattice }
$$

Sign problem(s)

The $\operatorname{sign} \sigma(\ell)$ has a bosonic $\sigma_{B}(\ell)$ and a fermionic $\sigma_{F}(\ell)$ contribution:

$$
\begin{gathered}
\sigma(\ell)=\sigma_{B}(\ell) \sigma_{F}(\ell)=\operatorname{sign}\left(\prod_{i=1}^{\# \ell} 2 \operatorname{Re}\left(W\left(\ell_{i}\right)\right)\right)(-1)^{N_{-}(\ell)+\omega_{t}(\ell)+1} \prod_{l \in \ell} \eta_{l} \\
8 \times 8 \text { lattice }
\end{gathered}
$$

Origin: Negative tail of the distribution of $W\left(\ell_{i}\right)$ at $\beta \approx 0$
Solution: Integrating out oscillating d.o.f. \Rightarrow variance reduction

Solution of the bosonic sign problem for $U(1)$

- Consider the linearized form of the partition sum (pure gauge theory):

$$
Z=\int \mathcal{D} Q \mathcal{D} R \mathcal{D} U e^{-\frac{3 \beta}{2}|Q|^{2}-\frac{\beta}{2}|R|^{2}+\beta \sum_{x, \mu} \operatorname{Re}\left(J_{x \mu} U_{x \mu}^{\dagger}\right)}
$$

- In order to reduce the variance from fluctuations of Q, R, U, integrate the complex phases analytically:
- First, let the R-phases absorb the U-phases: The Boltzmann weight thus becomes:

Solution of the bosonic sign problem for $U(1)$

- Consider the linearized form of the partition sum (pure gauge theory):

$$
Z=\int \mathcal{D} Q \mathcal{D} R \mathcal{D} U e^{-\frac{3 \beta}{2}|Q|^{2}-\frac{\beta}{2}|R|^{2}+\beta \sum_{x, \mu} \operatorname{Re}\left(J_{x \mu} U_{x \mu}^{\dagger}\right)}
$$

- In order to reduce the variance from fluctuations of Q, R, U, integrate the complex phases analytically:

$$
\begin{aligned}
& Q_{x \mu \nu}=\left|Q_{x \mu \nu}\right| e^{i \psi_{x \mu \nu}}, \quad R_{x \mu \nu}=\left|R_{x \mu \nu}\right| e^{i \varphi_{x \mu \nu}}, \quad U_{x \mu}=e^{i \theta_{x \mu}} \\
& J_{x \mu}=\sum_{\nu \neq \mu}\left(\left|R_{x-\hat{\nu}, \nu \mu}\right|\left|Q_{x-\hat{\nu}, \nu \mu}\right| e^{i\left(\psi_{x-\hat{\nu}, \nu \mu}-\varphi_{x-\hat{\nu}, \nu \mu}\right)}+\left|R_{x \mu \nu}\right| e^{i \varphi_{x \mu \nu}}\right)
\end{aligned}
$$

- First, let the R-phases absorb the U-phases:

The Boltzmann weight thus becomes:

Solution of the bosonic sign problem for $U(1)$

- Consider the linearized form of the partition sum (pure gauge theory):

$$
Z=\int \mathcal{D} Q \mathcal{D} R \mathcal{D} U e^{-\frac{3 \beta}{2}|Q|^{2}-\frac{\beta}{2}|R|^{2}+\beta \sum_{x, \mu} \operatorname{Re}\left(J_{x \mu} U_{x \mu}^{\dagger}\right)}
$$

- In order to reduce the variance from fluctuations of Q, R, U, integrate the complex phases analytically:

$$
\begin{aligned}
& Q_{x \mu \nu}=\left|Q_{x \mu \nu}\right| e^{i \psi_{x \mu \nu}}, \quad R_{x \mu \nu}=\left|R_{x \mu \nu}\right| e^{i \varphi_{x \mu \nu}}, \quad U_{x \mu}=e^{i \theta_{x \mu}} \\
& J_{x \mu}=\sum_{\nu \neq \mu}\left(\left|R_{x-\hat{\nu}, \nu \mu}\right|\left|Q_{x-\hat{\nu}, \nu \mu}\right| e^{i\left(\psi_{x-\hat{\nu}, \nu \mu}-\varphi_{x-\hat{\nu}, \nu \mu}\right)}+\left|R_{x \mu \nu}\right| e^{i \varphi_{x \mu \nu}}\right)
\end{aligned}
$$

- First, let the R-phases absorb the U-phases: $\varphi_{x \mu \nu} \leftarrow \varphi_{x \mu \nu}-\theta_{x \mu}$ The Boltzmann weight thus becomes:

$$
\begin{aligned}
e^{-S} & =e^{\beta \sum_{x, \mu} \operatorname{Re}\left(J_{x \mu} U_{x \mu}^{\dagger}\right)} \\
& =\prod_{x, \mu \neq \nu} e^{\beta\left(\left|R_{x \nu \mu}\right|\left|Q_{x \nu \mu}\right| \cos \left(\psi_{x \nu \mu}-\varphi_{x \nu \mu}-\theta_{x+\hat{\nu}, \mu}-\theta_{x \nu}\right)+\left|R_{x \mu \nu}\right| \cos \left(\varphi_{x \mu \nu}\right)\right)}
\end{aligned}
$$

Solution of the bosonic sign problem for $U(1)$

- Using: $e^{z \cos \alpha}=\sum_{p} I_{p}(z) e^{i p \alpha}$, and integrating out the Q-phases:

$$
\begin{aligned}
& \int[d \psi] e^{-S}=\prod_{x, \mu<\nu}\left\{e^{\beta\left|R_{x \mu \nu}\right| \cos \left(\varphi_{x \mu \nu}\right)} e^{\beta\left|R_{x \nu \mu}\right| \cos \left(\varphi_{x \nu \mu}\right)}\right. \\
& \times \sum_{p_{x \mu \nu}} I_{p_{x \mu \nu}}\left(\beta\left|R_{x \mu \nu}\right|\left|Q_{x \mu \nu}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|R_{x \nu \mu}\right|\left|Q_{x \mu \nu}\right|\right) \\
&\left.\quad \times e^{i p_{x \mu \nu}\left(\varphi_{x \nu \mu}-\varphi_{x \mu \nu}-\theta_{x \mu \nu}\right)}\right\}
\end{aligned}
$$

where $\theta_{x \mu \nu}=\theta_{x \mu}+\theta_{x+\hat{\mu}, \nu}-\theta_{x+\hat{\nu}, \mu}-\theta_{x \nu}$ is the phase of a plaquette.

- The integration of the U-phases yields:

and imposes a constraint on the p 's:

Solution of the bosonic sign problem for $U(1)$

- Using: $e^{z \cos \alpha}=\sum_{p} I_{p}(z) e^{i p \alpha}$, and integrating out the Q-phases:

$$
\begin{aligned}
& \int[d \psi] e^{-S}=\prod_{x, \mu<\nu}\left\{e^{\beta\left|R_{x \mu \nu}\right| \cos \left(\varphi_{x \mu \nu}\right)} e^{\beta\left|R_{x \nu \mu}\right| \cos \left(\varphi_{x \nu \mu}\right)}\right. \\
& \times \sum_{p_{x \mu \nu}} I_{p_{x \mu \nu}}\left(\beta\left|R_{x \mu \nu} \| Q_{x \mu \nu}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|R_{x \nu \mu}\right|\left|Q_{x \mu \nu}\right|\right) \\
&\left.\times e^{i p_{x \mu \nu}\left(\varphi_{x \nu \mu}-\varphi_{x \mu \nu}-\theta_{x \mu \nu}\right)}\right\}
\end{aligned}
$$

where $\theta_{x \mu \nu}=\theta_{x \mu}+\theta_{x+\hat{\mu}, \nu}-\theta_{x+\hat{\nu}, \mu}-\theta_{x \nu}$ is the phase of a plaquette.

- The integration of the U-phases yields:

$$
\begin{aligned}
\int[d \psi d \theta] e^{-S}=\prod_{x, \mu \neq \nu} \sum_{p_{x \mu \nu}} & e^{\beta\left|R_{x \mu \nu}\right| \cos \left(\varphi_{x \mu \nu}\right)+i p_{x \mu \nu} \varphi_{x \mu \nu}} \\
& \times I_{p_{x \mu \nu}}\left(\beta\left|R_{x \mu \nu}\right|\left|Q_{x \mu \nu}\right|\right) I_{p_{x \nu \mu}}\left(\beta\left|R_{x \nu \mu} \| Q_{x \mu \nu}\right|\right)
\end{aligned}
$$

and imposes a constraint on the p 's:

$$
\sum_{\nu \neq \mu}\left(p_{x-\hat{\nu}, \nu \mu}-p_{x \nu \mu}\right) \stackrel{!}{=} 0
$$

Solution of the bosonic sign problem for $U(1)$

- Finally, integrating over the R-phases yields:

$$
\int[d \psi d \theta d \varphi] e^{-S}=\sum_{\{p\}} \prod_{x, \mu \neq \nu} I_{p_{x \mu \nu}}\left(\beta\left|R_{x \nu \mu}\right|\left|Q_{x \mu \nu}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|R_{x \mu \nu}\right|\right)
$$

- The full partition sum of lattice QED then becomes:

$\prod I_{p_{x \mu \nu}}\left(\beta\left|R_{x \nu \mu}\right|\left|Q_{x \mu \nu}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|R_{x \mu \nu}\right|\right)$
which has no bosonic sign problem!
- In the presence of fermion loops, the sum of p 's around a link is compensated by the fermionic content on that link:

Solution of the bosonic sign problem for $U(1)$

- Finally, integrating over the R-phases yields:

$$
\int[d \psi d \theta d \varphi] e^{-S}=\sum_{\{p\}} \prod_{x, \mu \neq \nu} I_{p_{x \mu \nu}}\left(\beta\left|R_{x \nu \mu}\right|\left|Q_{x \mu \nu}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|R_{x \mu \nu}\right|\right)
$$

- The full partition sum of lattice QED then becomes:

$$
\begin{aligned}
Z=\sum_{\{n, k, \ell, p\}} \sigma_{F}(\ell)(2 a m)^{N_{M}} & \int_{[0, \infty)} \mathcal{D}|Q|^{2} \mathcal{D}|R|^{2} e^{-\frac{3 \beta}{2}|Q|^{2}-\frac{\beta}{2}|R|^{2}} \\
& \times \prod_{x, \mu \neq \nu} I_{p_{x \mu \nu}}\left(\beta\left|R_{x \nu \mu}\right|\left|Q_{x \mu \nu}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|R_{x \mu \nu}\right|\right)
\end{aligned}
$$

which has no bosonic sign problem!

- In the presence of fermion loops, the sum of p 's around a link is compensated by the fermionic content on that link:

Solution of the bosonic sign problem for $U(1)$

- Finally, integrating over the R-phases yields:

$$
\int[d \psi d \theta d \varphi] e^{-S}=\sum_{\{p\}} \prod_{x, \mu \neq \nu} I_{p_{x \mu \nu}}\left(\beta\left|R_{x \nu \mu}\right|\left|Q_{x \mu \nu}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|R_{x \mu \nu}\right|\right)
$$

- The full partition sum of lattice QED then becomes:

$$
\begin{aligned}
Z=\sum_{\{n, k, \ell, p\}} \sigma_{F}(\ell)(2 a m)^{N_{M}} & \int_{[0, \infty)} \mathcal{D}|Q|^{2} \mathcal{D}|R|^{2} e^{-\frac{3 \beta}{2}|Q|^{2}-\frac{\beta}{2}|R|^{2}} \\
& \times \prod_{x, \mu \neq \nu} I_{p_{x \mu \nu}}\left(\beta\left|R_{x \nu \mu}\right|\left|Q_{x \mu \nu}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|R_{x \mu \nu}\right|\right)
\end{aligned}
$$

which has no bosonic sign problem!

- In the presence of fermion loops, the sum of p 's around a link is compensated by the fermionic content on that link:

$$
\sum_{\nu \neq \mu}\left(p_{x-\hat{\nu}, \nu \mu}-p_{x \nu \mu}\right) \stackrel{!}{=} \ell_{x \mu}
$$

Solution of the bosonic sign problem for $U(1)$

Admissible plaquette configurations in the pure $U(1)$ gauge theory:

$$
\sum_{\nu \neq \mu}\left(p_{x-\hat{\nu}, \nu \mu}-p_{x \nu \mu}\right) \stackrel{!}{=} 0
$$

Solution of the bosonic sign problem for $U(1)$

Admissible plaquette configurations in compact lattice QED:

$$
\sum_{\nu \neq \mu}\left(p_{x-\hat{\nu}, \nu \mu}-p_{x \nu \mu}\right) \stackrel{!}{=} \ell_{x \mu}
$$

Proposed Monte Carlo algorithm

(in progress)

1. Bosonic updates:

- "Exponential" heatbath + Metropolis, for $\left(\left|Q_{x \mu \nu}\right|^{2},\left|R_{x \mu \nu}\right|^{2}\right)$:

$$
\begin{aligned}
& P_{Q_{x \mu \nu} \rightarrow Q_{x \mu \nu}^{\prime}}=\frac{I_{p_{x \mu \nu}}\left(\beta\left|Q_{x \mu \nu}^{\prime}\right|\left|R_{x \mu \nu}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|Q_{x \mu \nu}^{\prime}\right|\left|R_{x \nu \mu}\right|\right)}{I_{p_{x \mu \nu}}\left(\beta\left|Q_{x \mu \nu}\right|\left|R_{x \mu \nu}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|Q_{x \mu \nu}\right|\left|R_{x \nu \mu}\right|\right)} \\
& P_{R_{x \mu \nu} \rightarrow R_{x \mu \nu}^{\prime}}=\frac{I_{p_{x \mu \nu}}\left(\beta\left|Q_{x \mu \nu}\right|\left|R_{x \mu \nu}^{\prime}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|R_{x \mu \nu}^{\prime}\right|\right)}{I_{p_{x \mu \nu}}\left(\beta\left|Q_{x \mu \nu}\right|\left|R_{x \mu \nu}\right|\right) I_{p_{x \mu \nu}}\left(\beta\left|R_{x \mu \nu}\right|\right)}
\end{aligned}
$$

" "Mesonic" worm, for the monomer-dimer cover:

$$
w(n, k)=\prod_{x}(2 a m)^{n_{x}} \prod_{l} 1
$$

2. Fermionic updates:

- In $d=$ 2: Electron worm, for (oriented) electron loops
+ Metropolis for $p \equiv p_{x \mu \nu}$:

$$
P_{p \rightarrow p^{\prime}}=\frac{I_{p^{\prime}}\left(\beta\left|Q_{x \mu \nu}\right|\left|R_{x \mu \nu}\right|\right) I_{p^{\prime}}\left(\beta\left|Q_{x \mu \nu}\right|\left|R_{x \nu \mu}\right|\right) I_{p^{\prime}}\left(\beta\left|R_{x \mu \nu}\right|\right) I_{p^{\prime}}\left(\beta\left|R_{x \nu \mu}\right|\right)}{I_{p}\left(\beta\left|Q_{x \mu \nu}\right|\left|R_{x \mu \nu}\right|\right) I_{p}\left(\beta\left|Q_{x \mu \nu}\right|\left|R_{x \nu \mu}\right|\right) I_{p}\left(\beta\left|R_{x \mu \nu}\right|\right) I_{p}\left(\beta\left|R_{x \nu \mu}\right|\right)}
$$

- In $d>2$: Surface worm, for $p_{x \mu \nu}$ and (oriented) electron loops.

Summary and outlook

- The analytical integration of color d.o.f. in $S U\left(N_{c}\right)$ lattice QCD with staggered quarks can be done order-by-order in a strong coupling expansion: it reduces the severity of the sign problem by $O\left(10^{-4}\right)$, but the integration becomes increasingly difficult beyond $O(\beta)$.
- The analytical integration of the lattice gauge and fermionic fields in compact lattice QED can be done for any value of β, at the cost of introducing auxiliary bosonic fields.
- Fluctuations of the auxiliary bosonic d.o.f. at $\beta \approx 0$ induce a bosonic sign problem, in addition to the sign problem due to the shape and topology of fermionic loops.
- The analytical integration of the phases of the auxiliary fields solves the bosonic sign problem in lattice QED.

Next:

- Severity of the remaining fermionic sign problem?
- Dual representation, and variance reduction, for $S U(2), S U(3)$

[^0]: - Sensible candidates are the color-neutral fermionic states obtained after integrating out the gauge fields \approx asymptotic confined states of QCD.

