Finite temperature lattice QCD

Daniel Nogradi

Eotvos University Budapest

August 3 - 2016

In this review

$$
\begin{aligned}
& T>0 \\
& \mu=0 \\
& B=0
\end{aligned}
$$

Outline

- Determinations of T_{c}
- Equation of state
- Cosmological application: axion

Determinations of T_{c} from $\chi_{\bar{\psi} \psi}$ peak

$m_{\text {phys }}$, continuum

- stout staggered: $T_{c}=151(3)(3) \mathrm{MeV}$ (WB hep-lat/0609068)
- HISQ staggered: $T_{c}=154(9) \mathrm{MeV}(H o t Q C D ~ 1111.1710)$
$m_{p h y s}, N_{t}=8$
- domain wall: $T_{c}=155(1)(8) \mathrm{MeV}$ (HotQCD 1402.5175)

Note: T_{c} from Polyakov Ioop and/or $\chi_{s} \sim 20-25 \mathrm{MeV}$ higher

Determinations of T_{c}

Full agreement among different staggered discretizations

Lessons: fully controlled continuum limit, physical quark masses, balance between $T=0$ and $T>0$

Huge success of lattice QCD!

Note 1: Continuum Wilson results available but $m>m_{\text {phys }}$

Note 2: Domain wall $m=m_{p h y s}$ but single lattice spacing

Note 3: Flavor content is $2+1$ (okay around T_{c})

Equation of state

Important input to hydrodynamical models of quark-gluon plasma \rightarrow used by experimentalists/phenomenologists

Energy momentum tensor: $T_{\mu \nu}$

$$
\begin{gathered}
\frac{T_{\mu \mu}(T)}{T^{4}}=\frac{I(T)}{T^{4}}=\frac{\varepsilon-3 p}{T^{4}}=T \frac{d}{d T}\left(\frac{p}{T^{4}}\right) \\
c_{s}^{2}=\frac{d p}{d \varepsilon} \\
\frac{s}{T^{3}}=\frac{\varepsilon+p}{T^{4}}
\end{gathered}
$$

Equation of state

Typically calculated up to $2 T_{c}, 3 T_{c}, 4 T_{c}, \ldots$

Flavor content $2+1$ or rather $2+1+1$
$m_{\text {phys }}$ and continuum results are available

Equation of state, $2+1$

WB: 1309.5258
HotQCD: 1407.6387

Equation of state

Agreement another huge success of lattice QCD!

Note 1: Only staggered (but different) discretizations so far

Note 2: These are $2+1$ flavor, but $m_{c}=1.3 \mathrm{GeV}$

Equation of state, $2+1+1$

Perturbative expectation: at around 300 MeV charm becomes non-negligible

Borsanyi Fodor Kampert Katz Kawanai Kovacs Mages Pasztor Pittler Redondo Ringwald Szabo 1606.07494 ($m_{p h y s}$, continuum)

HTL: $2+1+1$ flavor NNLO

Equation of state, $2+1+1$

Apparently, charm contribution for ratio is well-described by leading order perturbation theory

$$
\frac{p_{(2+1+1)}(T)}{p_{(2+1)}(T)}=\frac{S B(3)+F\left(m_{c} / T\right)}{S B(3)}
$$

Equation of state, $2+1+1+1$?

Bottom threshold: 2 additional steps

- Bottom mass dependence from leading order ratio

$$
\frac{p_{(2+1+1+1)}(T)}{p_{(2+1+1)}(T)}=\frac{S B(4)+F\left(m_{b} / T\right)}{S B(4)}
$$

Hindmarsh Philipsen hep-ph/0501232

Laine Schroder hep-ph/0603048

- Use $2+1+1, O\left(g^{6}\right)$ perturbative formula, fit unknown coefficient q_{c} on $500 \ldots 1000 \mathrm{MeV}$ directly from continuum extrapolated lattice data

Combine the 2 steps: extend EoS to include bottom up to 10 GeV

Equation of state, $2+1+1+1$

Borsanyi et al. 1606.07494

Equation of state, $2+1+1+1$, up to $T \sim 10 \mathrm{GeV}$

Equation of state, $2+1+1+1$, up to $T \sim 10 \mathrm{GeV}$

All very nice, would be even nicer:

Independent cross-check of $2+1+1$ continuum $m_{\text {phys }}$ EoS with different discretization

Twisted mass 1510.02262 (gluonic contribution only)

Equation of state, up to $T \sim 100 \mathrm{GeV}$

Rest of the Standard Model: added as before, Laine Schroder hep-ph/0603048, Laine Meyer 1503.04935

$$
\frac{\varepsilon}{T^{4}}=\frac{\pi^{2}}{30} g_{\rho} \quad \frac{s}{T^{3}}=\frac{2 \pi^{2}}{45} g_{s}
$$

Borsanyi et al. 1606.07494

Cosmological applications: axion

Axion physics (very) briefly

Peccei-Quinn: solution to strong CP-problem

KSVZ variant:
$\mathcal{L}(\phi, \Psi)=\partial_{\mu} \phi^{*} \partial_{\mu} \phi+V\left(\phi^{*} \phi\right)+\phi \bar{\Psi}_{L} \Psi_{R}+\phi^{*} \bar{\Psi}_{R} \Psi_{L}+\bar{\Psi} D(A) \Psi+\mathcal{L}_{Q C D}(A)$
$V:$ Mexican hat, $\mathrm{SSB}, \mathrm{vev}=f_{A}, \phi=f_{A} e^{i \theta}, f_{A} \theta$: axion

Chiral rotation of ψ and $U(1)$ rotation of ϕ by $\theta(x)$:

$$
\begin{gathered}
\mathcal{L}=f_{A}^{2} \partial_{\mu} \theta \partial_{\mu} \theta+\partial_{\mu} f_{A} \partial_{\mu} f_{A}+V\left(f_{A}^{2}\right)+f_{A} \bar{\Psi} \Psi+\bar{\Psi} D(A) \Psi+ \\
+\theta q(x)+\partial_{\mu} \theta \bar{\Psi}_{\gamma_{5} \gamma_{\mu}} \Psi+\mathcal{L}_{Q C D}(A)
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{L}=f_{A}^{2} \partial_{\mu} \theta \partial_{\mu} \theta+\partial_{\mu} f_{A} \partial_{\mu} f_{A}+V\left(f_{A}^{2}\right)+f_{A} \bar{\Psi} \Psi+\bar{\Psi} D(A) \Psi+ \\
+\theta q(x)+\partial_{\mu} \theta \bar{\Psi}_{\gamma_{5} \gamma_{\mu}} \Psi+\mathcal{L}_{Q C D}(A)
\end{gathered}
$$

f_{A} assumed to be large \rightarrow radial excitation, Ψ can be integrated out, at low energy only $\theta+$ QCD

Low energy Lagrangian:

$$
\mathcal{L}=f_{A}^{2} \partial_{\mu} \theta \partial_{\mu} \theta+i \theta q+\partial_{\mu} \theta \cdot(\ldots)+\mathcal{L}_{Q C D}
$$

If originally $\theta_{Q C D}$ present, $\theta \rightarrow \theta+\theta_{Q C D}$

Effective potential is generated for constant θ

Axion

Effective potential is generated for constant θ

$$
e^{-V_{4} V_{e f f}(\theta)}=\left\langle e^{i Q \theta}\right\rangle
$$

At high temperature $V_{e f f}(\theta, T)=\chi(T)(1-\cos (\theta))$
Axion mass: $f_{A}^{2} m_{A}^{2}(T)=\chi(T)$, purely QCD quantity

Mexican hat tilted by $V_{e f f}$, degeneracy lifted, new minimum at $\theta=0 \rightarrow$ misalignment or realignment
\rightarrow Strong CP solved

Axion

Key assumption: $\theta=$ const, no axion strings, domain walls, etc.

For cosmological evolution: $\varepsilon(T)$ and $s(T)$ needed, beside $\chi(T)$

All 3 are purely QCD quantities

Axion, topological susceptibility

Expectation from 1-instanton

$$
\begin{gathered}
\chi(T) \sim \frac{1}{T^{b}} \\
b=11-2 / 3 N_{f}-4+N_{f}
\end{gathered}
$$

$11-2 / 3 N_{f}$: from β-function
4: dimension 4
N_{f} : from determinant with light non-zero mass

Expected to work at high temperature, corrections from DIGA $\rightarrow b(T)$

Axion, topological susceptibility

Even in pure gauge very difficult: $\chi(T)$ for high T

Because $\chi(T)=T \frac{\left\langle Q^{2}\right\rangle}{V_{3}}$ is tiny and Q integer

Axion, topological susceptibility, pure gauge

Berkowitz Buchoff Rinaldi 1505.07455

$N_{t}=6, b=5.64(4)$, no systematic errors, $T \sim 2.5 T_{c}$

Axion, topological susceptibility, pure gauge

Borsanyi Dierigl Fodor Katz Mages N Redondo Ringwald Szabo 1508.06917

Continuum from $N_{t}=5,6,8, b=7.1(4)(2), T \sim 4 T_{c}$, over-all factor mismatch with DIGA

First $2+1$ dynamical result (staggered, stout, $m_{p h y s}$)
Bonati D'Elia Mariti Martinelli Mesiti Negro Sanfilippo Villadoro 1512.06746

Fixed scale approach, $b=2.90(65) \ll 8, T \sim 3.5 T_{c}$
Note: cut-off effects large

Another $2+1$ dynamical staggered result (HISQ, $m_{\pi}=160 \mathrm{MeV}$)

Petreczky Schadler Sharma 1606.03145

Note: cut-off effects large, gluonic definition for Q (as everybody else)

Axion, topological susceptibility

Petreczky Schadler Sharma 1606.03145

Use fermionic definition $Q=m \operatorname{Tr}^{-1} \gamma_{5} \rightarrow \chi=m^{2} \chi_{5, \text { disc }}$

Note: direction of continuum limit opposite (good!) but still large

Axion, topological susceptibility

Petreczky Schadler Sharma 1606.03145

Note 1: $b=7.4(6)$ for $T>1.5 T_{c}$
Note 2: Bonati et al. reproduced from $N_{t}=6,8$
Due to large cut-off effects, final result has large errors, even for $\chi^{1 / 4}$

Axion, topological susceptibility

Q1: Why are there so large cut-off effects on fine lattices with staggered fermions?

Q2: Is there a more efficient way of calculating χ at high T in general?

A1: Due to lack of exact zero-modes \rightarrow not sufficient suppression of $Q \neq 0$ sectors \rightarrow measured Q^{2} too large \rightarrow measured b too small (Borsanyi et al. 1606.07494)

A2: Integral method at fixed-Q (pure gauge: Frison Kitano Matsufuru Mori Yamada 1606.07175, dynamical: Borsanyi et al. 1606.07494, same day submission to arXiv)

Q1: Why are there so large cut-off effects on fine lattices (high T) with staggered fermions?

Related: How to get smaller errors at high T ?

Borsanyi et al. 1606.07494

- Fix definition of Q (e.g. gradient flow)
- Look at lowest Q eigenvalues $\lambda_{i}(U)+m, \lambda_{i}(U) \neq 0$
- Should be (in continuum) m only
- Reweight for each flavor

$$
w(U)=\prod_{i} \frac{m}{\lambda_{i}(U)+m}
$$

Q1: Why are there so large cut-off effects on fine lattices (high T) with staggered fermions?

Reweighting: replaces the "wrong" low eigenvalues with the "correct" ones

Borsanyi et al. 1606.07494

Axion, topological susceptibility

Zero mode reweighting

Borsanyi et al. 1606.07494
$T=300 \mathrm{MeV}$, Ratio: $\chi(T) / \chi(0)$

Q2: Is there a more efficient way of calculating χ at high T in general?

Fix definition of Q, Z_{Q} : partition function in sector Q
At high T only $|Q|=1$ relevant, $Z_{-1}=Z_{1}$

$$
\left\langle Q^{2}\right\rangle=\frac{2 Z_{1}}{Z_{0}}
$$

Take derivatives: $b_{1}=T \frac{d \log \left(Z_{1} / Z_{0}\right)}{d T}$
Get Z_{1} / Z_{0} by integrating b_{1} in T

Fix-Q integral method
pure gauge: Frison Kitano Matsufuru Mori Yamada 1606.07175

Julien's poster
dynamical: Borsanyi et al. 1606.07494

On the lattice in pure gauge:

$$
b_{1}=a \frac{d \beta}{d a}\left\langle S_{g}\right\rangle_{1-0}
$$

Need to measure $\left\langle S_{g}\right\rangle_{1-0}=\left\langle S_{g}\right\rangle_{1}-\left\langle S_{g}\right\rangle_{0}$ in fixed-Q simulations and need scale $\beta(a)$

Important: difficulty does not grow with T

Axion, topological susceptibility

Fix-Q integral method in pure gauge

Left: Frison Kitano Matsufuru Mori Yamada 1606.07175 Right: Borsanyi et al. 1606.07494, pink: $Q=8$ (less statistics needed)

Note: over-all factor mismatch with DIGA, as before

Axion, topological susceptibility

Fix-Q integral method with staggered dynamical fermions Borsanyi et al. 1606.07494

$$
b_{1}=a \frac{d \beta}{d a}\left\langle S_{g}\right\rangle_{1-0}+\sum_{f} \frac{d \log m_{f}}{d \log a} m_{f}\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{1-0}
$$

Line of constant physics enters in fermionic contribution

Integration in both β and m

Note 1: $m_{f}\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle_{1-0}$ finite \rightarrow can integrate in m separately, using staggered or overlap fermions

Note 2: zero mode reweighting $w(U)$ has m-dependence

Axion, topological susceptibility

Fix-Q integral method with staggered/overlap dynamical fermions Borsanyi et al. 1606.07494

Left: $3+1$
Right: $2+1+1$ integrating with overlap in mass

Continuum, $m_{\text {phys }}$

Axion cosmology

Once $\chi(T)=f_{A}^{2} m_{A}^{2}(T), \varepsilon(T), s(T)$ available:
Axion equations of motion + Einstein equations

$$
\begin{gathered}
\frac{d^{2} \theta}{d t^{2}}+3 H(T) \frac{d \theta}{d t}+m_{A}^{2}(T) \frac{d}{d \theta}(1-\cos \theta)=0 \\
H^{2}(T)=\frac{8 \pi}{3 M_{p l}^{2}} \varepsilon(T) \\
\frac{d \varepsilon}{d t}=-3 H(T) s(T) T
\end{gathered}
$$

Key assumption: $\theta(x)=\theta(t)$ spatially constant \rightarrow no strings, domain walls, etc

Axion cosmology

Numerical integration straightforward from initial $\theta_{0} \rightarrow \theta\left(T, \theta_{0}, m_{A}\right)$

Qualitatively:

- Initially, $3 H(T) \gg m_{A}(T)$, axion massless, number density $n_{A}=$ 0
- Later, $m_{A}(T)$ increases, $H(T)$ decreases, θ goes towards zero
- At some point $3 H(T)=m_{A}(T)$, oscillations, n_{A} jumps to nonzero value

Axion cosmology

Wantz Shellard 0910.1066

Axion cosmology

- Decaying oscillations, θ settles
- N_{A} conserved afterwards, S also (adiabatic) $\rightarrow n_{A} / s$ also
- $n_{A}($ today $)=n_{A}(T) / s(T) s(t o d a y)$
- $s($ today $)=\frac{2 \pi^{2} 43}{45} \frac{41}{11} T_{C M B}^{3}, T_{C M B}=2.725 K$ (neutrinos, photons)
- $\rightarrow \varepsilon_{A}($ today $)=m_{A} n_{A}($ today $)$ energy density of axions today

From the numerical integration: $\rightarrow \varepsilon_{A}\left(\right.$ today, $\left.m_{A}, \theta_{0}\right)$

Axion cosmology

From the numerical integration: $\rightarrow \varepsilon_{A}\left(\right.$ today, $\left.m_{A}, \theta_{0}\right)$

Interpretation depends on whether symmetry breaking (scale f_{A}) before or after inflation

- pre-inflation scenario: single θ_{0} (we are in one domain)
- post-inflation scenario: all θ_{0} visible \rightarrow average over them
R_{A} : axion component of dark matter

$$
\Omega_{A}=\frac{\varepsilon_{A}(\text { today })}{\varepsilon_{\text {crit }}} \quad \quad R_{A}=\frac{\Omega_{A}}{\Omega_{D M}}
$$

Axion cosmology

Pre-inflation scenario: $R=R\left(\theta_{0}, m_{A}\right)$, assuming a fix R value gives an implicit relation between θ_{0} and m_{A}, for example $R=1$. Measuring m_{A} in the future \rightarrow initial condition of the Universe $\left(\theta_{0}\right)$, defects inflated away, less important

Post-inflation scenario: $\bar{R}=\bar{R}\left(m_{A}\right)$, assuming a fix \bar{R} gives m_{A} directly. For example varying \bar{R} between 1% and $50 \% \rightarrow$ most plausible $m_{A^{-}}$range, defects may be important

Axion cosmology, mass bounds

Borsanyi et al. 1606.07494
Only realignment: $m_{A}=28(2) \mu e V$
50% realignment: $m_{A}=50(4) \mu e V$
1% realignment: $m_{A} \sim 1500 \mu e V$
Rest from defects (strings, domain walls, etc) within axion picture, potentially more types of DM also

Summary, continuum $m_{\text {phys }}$ results

- T_{c} very mature from lattice QCD
- $2+1$ EoS also
- $2+1+1$ EoS available with stout staggered
- $\chi(T)$ available up to more than $10 T_{c}$
- Solid axion mass bounds from QCD

Haven't talked about lots of interesting developments

- Renormalization of energy momentum tensor \rightarrow gradient flow (Monday 15:15 Yusuke Taniguchi)
- Correlators, transport coefficients (Monday 14:50 Victor Braguta)
- Finite density (Tuesday)
- Fluctuations of conserved charges at $\mu=0$ (today Christian Schmidt)
- QCD on non-orientable manifolds, χ
- Shifted boundary conditions (pure gauge EoS high precision)
- etc.

Thank you for your attention!

