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graphene

• triangular lattice 
   (2 atoms per unit cell)

- hexagonal Brillouin zone

• single-particle energy bands

K 
K'
M

E±(k) = ± |�(k)|

�(k) = t
X

i

eik·�i

structure factor:

E(p) = ±~vf |p| , vf = 3ta/2 ' 1⇥ 106m/s ' c/300

• massless dispersion around Dirac points K± [Wallace, 1947]
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•mass terms (gaps)

2

and related to the Fourier modes on the fine lattice by

ak =
1

3

2X

l=0

ck+l� (15)

bk =
1

3

2X

l=0

e
2⇡i
3 l ck+l� . (16)

The modes created by a†k therefore only involve sublat-

tice A sites while b†k modes only involve B sites. The
canonical anti-commutators then become,

[ak, a
†
k0 ]+ =

N2

3

2X

l=0

�k+l�,k0 ,

[bk, b
†
k0 ]+ =

N2

3

2X

l=0

e
2⇡i
3 l �k+l�,k0 ,

[ak, b
†
k0 ]+ = [bk, a

†
k0 ]+ = 0 . (17)

With these conventions the tight-binding Hamiltonian is
written in momentum space as

Htb = � 

N2

X

k,�

�
a†k,��k bk,� + b†k,��

⇤
k ak,�

�
. (18)

Here, the sum over k stands for that over m, n in the
finite volume with 2N2/3 sites and Born-von Karman
boundary conditions along the nearest-neighbor direc-
tions as per (11), and

�k =
3X

i=1

eik·�i = e
2⇡i
N m + e

2⇡i
N n + e�

2⇡i
N (m+n) (19)

is the structure factor of the tight-binding model.
The sublattice symmetry breaking staggered on-site

potential is analogously written as

H
m

=
1

N2

X

k,�

m
�

�
a†k,�ak,� � b†k,�bk,�

�
. (20)

For the generalized Coulomb interaction we start from

H
C

=
1

2

X

i,j,�,�0

Vij

⇣
a†i,�a

†
j,�0aj,�0ai,� + a†i,�b

†
j,�0bj,�0ai,�

+ b†i,�a
†
j,�0aj,�0bi,� + b†i,�b

†
j,�0bj,�0bi,�

⌘
, (21)

where, ai, a
†
i and bi, b

†
i for each spin are simply defined

as the inverse Fourier transfroms of ak, a
†
k and bk, b

†
k in

Eq. (12) on the fine triangular lattice, i.e.,

ai =
1

N2

X

k

eik·i ak =

⇢
ci , i on sublattice A,
0 , otherwise.

(22)

bi =
1

N2

X

k

eik·i bk =

⇢
ci , i on sublattice B,
0 , otherwise.

With the same Fourier transform of the translationally
invariant interaction potential on the fine triangular lat-
tice,

Vij =
1

N2

X

q

eiq·(i�j) Vq , Vq =
X

i

e�iq·i Vi0 , (23)

we can write the Coulomb interaction as

H
C

=
1

2N6

X

k,p,q,�,�0

⇣
V AA

q a†p+q,�a
†
k�q,�0ak,�0ap,�

+ V AB

q a†p+q,�b
†
k�q,�0bk,�0ap,�

+ V BA

q b†p+q,�a
†
k�q,�0ak,�0bp,�

+ V BB

q b†p+q,�b
†
k�q,�0bk,�0bp,�

⌘
. (24)

Herein, the interaction between momentum modes on like
sites is given by

V AA

q = V BB

q =
1

3

2X

l=0

Vq+l� , (25)

whereas for interactions of momentum modes on di↵erent
sublattices, one has

V AB

q = V BA

q
⇤
=

1

3

2X

l=0

e�
2⇡i
3 l Vq+l� . (26)

Note that for real and symmetric interactions Vij = Vji

we also have real Vq on the fine triangular lattice. Also
note that we have an exact overcounting in all terms of
the momentum space Hamiltonian in the sums over the
larger Brillouin zone of the fine triangular lattice here.
Every momentum can be shifted by one or two units of�,
so each term in the momentum sums occurs three times.
The overcounting is compensated by the fact that N2

here is three times larger than the number of unit cells of
the standard triangular lattice with two-component ba-
sis. Under these shifts by multiples of �, �k and V AB

k

transform as b†k while �⇤k and V BA

k transform as bk, so
that the products in the di↵erent terms of the Hamil-
tonian are invariant under the momentum shifts by �.
This reflects the fact that the momentum space Hamilto-
nian remains of course periodic in the three-times smaller
Brillouin zone but structure factor and interactions be-
tween di↵erent sublattices are not, they acquire a third
root of unity as a phase and are thus individually only pe-
riodic in the three times larger Brillouin zone used here.
Next we define two-component fermion fields for prop-

erly normalized momentum states on the two sublattices,

 k,� =

p
3

N

✓
ak,�
bk,�

◆
,  ̄k,� =  †

k,��
0 =

p
3

N

⇣
a†k,�,�b†k,�

⌘
,

(27)

where we have used �0 = �3 in the two-dimensional sub-
lattice space so that the staggered on-site potential can

(pseudo-spin) staggered on-site potential

Graphene Gets a Good Gap on SiC
Nevis et al., PRL 115 (2015) 136802 
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We study fermions with instantaneous Coulomb interactions on a honeycomb lattice

PACS numbers: place holder pacs

I. INTRODUCTION AND SETUP

We study the Coulomb-Hubbard model on the hon-
eycomb lattice, consisting of a free tight-binding Hamil-
tonian Htb with a staggered on-site potential H

m

and
a generalized Coulomb interaction term H

C

. In the
tight-binding Hamiltonian we consider for simplicity only
nearest-neighbor hoppings without overlap corrections.
It is then given by the nearest-neighbor hi, ji sum of hop-
ping terms with strength ,

Htb = �
X

hi,ji,�

�
c†i,�cj,� + c†j,�ci,�

�
, (1)

where c†i,� (ci,�) creates (annihilates) a fermion with spin
� = u, d on site i of the honeycomb lattice. Dividing the
sum over the sites i of the bipartite honeycomb lattice
into two triangular sublattices i

s

with s = 0, 1 for sublat-
tice A, B explicitly, we can write the symmetry breaking
staggered on-site potential as

H
m

=
X

is,s,�

(�1)sm
�

c†is,�cis,� . (2)

For a charge-staggered ground state we use m
u

= m
d

and for spin-staggering m
u

= �m
d

. Or, in general,

mcdw =
1

2
(m

u

+m
d

) , (3)

msdw =
1

2
(m

u

�m
d

) , (4)

if we want to allow for competing charge or spin-denisty
wave order in the ground state. The generalized Coulomb
interaction is of the form

H
C

=
1

2

X

i,j,�,�0

Vij c†i,�c
†
j,�0cj,�0ci,� (5)

= U
X

i

ni,uni,d +
1

2

X

i 6=j,�,�0

Vij ni,�nj,�0 (6)

with U = Vii = const. as in Ref [1]. In order to resolve
the nearest-neighbor distance a we introduce a fine tri-
angular Bravais lattice with basis vectors which coincide
with two of the three nearest-neighbor vectors �

i

, e.g.
a1 = �1 = a(0, 1) and a2 = �2 = a

2 (
p
3,�1). On this

lattice, which is a factor
p
3 finer than the standard tri-

angular lattice of two-component unit cells, we then have

to distinguish three types of sites at i = ia1 + ja2 by

i+ j mod 3 = 0 : sublattice A, (7)

i+ j mod 3 = 1 : sublattice B, (8)

i+ j mod 3 = 2 : unoccupied. (9)

In order to define momentum modes on sublattices A
and B we therefore use Fourier transforms on the fine
triangular lattice with contstaints

1

3

2X

l=0

e�
2⇡i
3 (i+j�s)l =

⇢
1 , i+ j mod 3 = s ,
0 , otherwise.

(10)

With Born-von Karman boundary conditions and recip-
rocal basis vectors b1 = 2⇡

3a (
p
3, 3) and b2 = 4⇡

3a (
p
3, 0)

we define discrete momenta

k
mn

=
m

N
b1 +

n

N
b2 (11)

for periodicity on a fine triangular N⇥N -lattice of a size
that corresponds toN2/3 of the standard two-component
unit cells. The Brillouin zone (BZ) spanned by b1, b2 is
larger by the same factor of 3 than the standard BZ,
accordingly. As mentioned above, we need this enlarged
BZ in order to resolve nearest-neighbor distances while
maintaining the periodicity of all correlation functions in
momentum space. Momentum modes on sublattices A

and B are then created and annihilated by a†k, ak and

b†k, bk with

ak =
1

3

X

i,j

2X

l=0

e�
2⇡i
N

�
(m+Nl

3 )i+(n+Nl
3 )j

�
ci , (12)

bk =
1

3

X

i,j

2X

l=0

e
2⇡i
3 l e�

2⇡i
N

�
(m+Nl

3 )i+(n+Nl
3 )j

�
ci ,

respectively. Assuming N to be a multiple of 3, they are
periodic under shifts along the diagonal in momentum
space by � = (b1 + b2)/3,

ak = ak+� = ak+2� , (13)

and periodic up to a third root of unity,

bk = e
2⇡i
3 bk+� = e

4⇡i
3 bk+2� , (14)

•spin (flavor) dependence

Graphene Gets a Good Gap on SiC
Nevis et al., PRL 115 (2015) 136802 



1 August 2016  |  Lorenz von Smekal  |  p.

Honeycomb Lattice

5eXtreme QCD 2016

•mass terms (gaps)

2

and related to the Fourier modes on the fine lattice by

ak =
1

3

2X

l=0

ck+l� (15)

bk =
1

3

2X

l=0

e
2⇡i
3 l ck+l� . (16)

The modes created by a†k therefore only involve sublat-

tice A sites while b†k modes only involve B sites. The
canonical anti-commutators then become,

[ak, a
†
k0 ]+ =

N2

3

2X

l=0

�k+l�,k0 ,

[bk, b
†
k0 ]+ =

N2

3

2X

l=0

e
2⇡i
3 l �k+l�,k0 ,

[ak, b
†
k0 ]+ = [bk, a

†
k0 ]+ = 0 . (17)

With these conventions the tight-binding Hamiltonian is
written in momentum space as

Htb = � 

N2

X

k,�

�
a†k,��k bk,� + b†k,��

⇤
k ak,�

�
. (18)

Here, the sum over k stands for that over m, n in the
finite volume with 2N2/3 sites and Born-von Karman
boundary conditions along the nearest-neighbor direc-
tions as per (11), and

�k =
3X

i=1

eik·�i = e
2⇡i
N m + e

2⇡i
N n + e�

2⇡i
N (m+n) (19)

is the structure factor of the tight-binding model.
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3, 3) and b2 = 4⇡

3a (
p
3, 0)

we define discrete momenta

k
mn

=
m

N
b1 +

n

N
b2 (11)

for periodicity on a fine triangular N⇥N -lattice of a size
that corresponds toN2/3 of the standard two-component
unit cells. The Brillouin zone (BZ) spanned by b1, b2 is
larger by the same factor of 3 than the standard BZ,
accordingly. As mentioned above, we need this enlarged
BZ in order to resolve nearest-neighbor distances while
maintaining the periodicity of all correlation functions in
momentum space. Momentum modes on sublattices A

and B are then created and annihilated by a†k, ak and

b†k, bk with

ak =
1

3

X

i,j

2X

l=0

e�
2⇡i
N

�
(m+Nl

3 )i+(n+Nl
3 )j

�
ci , (12)

bk =
1

3

X

i,j

2X

l=0

e
2⇡i
3 l e�

2⇡i
N

�
(m+Nl

3 )i+(n+Nl
3 )j

�
ci ,

respectively. Assuming N to be a multiple of 3, they are
periodic under shifts along the diagonal in momentum
space by � = (b1 + b2)/3,

ak = ak+� = ak+2� , (13)

and periodic up to a third root of unity,

bk = e
2⇡i
3 bk+� = e

4⇡i
3 bk+2� , (14)
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and related to the Fourier modes on the fine lattice by

ak =
1

3

2X

l=0

ck+l� (15)

bk =
1

3

2X

l=0

e
2⇡i
3 l ck+l� . (16)

The modes created by a†k therefore only involve sublat-

tice A sites while b†k modes only involve B sites. The
canonical anti-commutators then become,

[ak, a
†
k0 ]+ =

N2

3

2X

l=0

�k+l�,k0 ,

[bk, b
†
k0 ]+ =

N2

3

2X

l=0

e
2⇡i
3 l �k+l�,k0 ,

[ak, b
†
k0 ]+ = [bk, a

†
k0 ]+ = 0 . (17)

With these conventions the tight-binding Hamiltonian is
written in momentum space as

Htb = � 

N2

X

k,�

�
a†k,��k bk,� + b†k,��

⇤
k ak,�

�
. (18)

Here, the sum over k stands for that over m, n in the
finite volume with 2N2/3 sites and Born-von Karman
boundary conditions along the nearest-neighbor direc-
tions as per (11), and

�k =
3X

i=1

eik·�i = e
2⇡i
N m + e

2⇡i
N n + e�

2⇡i
N (m+n) (19)

is the structure factor of the tight-binding model.
The sublattice symmetry breaking staggered on-site

potential is analogously written as

H
m

=
1

N2

X

k,�

m
�

�
a†k,�ak,� � b†k,�bk,�

�
. (20)

For the generalized Coulomb interaction we start from

H
C

=
1

2

X

i,j,�,�0

Vij

⇣
a†i,�a

†
j,�0aj,�0ai,� + a†i,�b

†
j,�0bj,�0ai,�

+ b†i,�a
†
j,�0aj,�0bi,� + b†i,�b

†
j,�0bj,�0bi,�

⌘
, (21)

where, ai, a
†
i and bi, b

†
i for each spin are simply defined

as the inverse Fourier transfroms of ak, a
†
k and bk, b

†
k in

Eq. (12) on the fine triangular lattice, i.e.,

ai =
1

N2

X

k

eik·i ak =

⇢
ci , i on sublattice A,
0 , otherwise.

(22)

bi =
1

N2

X

k

eik·i bk =

⇢
ci , i on sublattice B,
0 , otherwise.

With the same Fourier transform of the translationally
invariant interaction potential on the fine triangular lat-
tice,

Vij =
1

N2

X

q

eiq·(i�j) Vq , Vq =
X

i

e�iq·i Vi0 , (23)

we can write the Coulomb interaction as

H
C

=
1

2N6

X

k,p,q,�,�0

⇣
V AA

q a†p+q,�a
†
k�q,�0ak,�0ap,�

+ V AB

q a†p+q,�b
†
k�q,�0bk,�0ap,�

+ V BA

q b†p+q,�a
†
k�q,�0ak,�0bp,�

+ V BB

q b†p+q,�b
†
k�q,�0bk,�0bp,�

⌘
. (24)

Herein, the interaction between momentum modes on like
sites is given by

V AA

q = V BB

q =
1

3

2X

l=0

Vq+l� , (25)

whereas for interactions of momentum modes on di↵erent
sublattices, one has

V AB

q = V BA

q
⇤
=

1

3

2X

l=0

e�
2⇡i
3 l Vq+l� . (26)

Note that for real and symmetric interactions Vij = Vji

we also have real Vq on the fine triangular lattice. Also
note that we have an exact overcounting in all terms of
the momentum space Hamiltonian in the sums over the
larger Brillouin zone of the fine triangular lattice here.
Every momentum can be shifted by one or two units of�,
so each term in the momentum sums occurs three times.
The overcounting is compensated by the fact that N2

here is three times larger than the number of unit cells of
the standard triangular lattice with two-component ba-
sis. Under these shifts by multiples of �, �k and V AB

k

transform as b†k while �⇤k and V BA

k transform as bk, so
that the products in the di↵erent terms of the Hamil-
tonian are invariant under the momentum shifts by �.
This reflects the fact that the momentum space Hamilto-
nian remains of course periodic in the three-times smaller
Brillouin zone but structure factor and interactions be-
tween di↵erent sublattices are not, they acquire a third
root of unity as a phase and are thus individually only pe-
riodic in the three times larger Brillouin zone used here.
Next we define two-component fermion fields for prop-

erly normalized momentum states on the two sublattices,

 k,� =

p
3

N

✓
ak,�
bk,�

◆
,  ̄k,� =  †

k,��
0 =

p
3

N

⇣
a†k,�,�b†k,�

⌘
,

(27)

where we have used �0 = �3 in the two-dimensional sub-
lattice space so that the staggered on-site potential can
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We study fermions with instantaneous Coulomb interactions on a honeycomb lattice
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I. INTRODUCTION AND SETUP

We study the Coulomb-Hubbard model on the hon-
eycomb lattice, consisting of a free tight-binding Hamil-
tonian Htb with a staggered on-site potential H

m

and
a generalized Coulomb interaction term H

C

. In the
tight-binding Hamiltonian we consider for simplicity only
nearest-neighbor hoppings without overlap corrections.
It is then given by the nearest-neighbor hi, ji sum of hop-
ping terms with strength ,

Htb = �
X

hi,ji,�

�
c†i,�cj,� + c†j,�ci,�

�
, (1)

where c†i,� (ci,�) creates (annihilates) a fermion with spin
� = u, d on site i of the honeycomb lattice. Dividing the
sum over the sites i of the bipartite honeycomb lattice
into two triangular sublattices i

s

with s = 0, 1 for sublat-
tice A, B explicitly, we can write the symmetry breaking
staggered on-site potential as

H
m

=
X

is,s,�

(�1)sm
�

c†is,�cis,� . (2)

For a charge-staggered ground state we use m
u

= m
d

and for spin-staggering m
u

= �m
d

. Or, in general,

mcdw =
1

2
(m

u

+m
d

) , (3)

msdw =
1

2
(m

u

�m
d

) , (4)

if we want to allow for competing charge or spin-denisty
wave order in the ground state. The generalized Coulomb
interaction is of the form

H
C

=
1

2

X

i,j,�,�0

Vij c†i,�c
†
j,�0cj,�0ci,� (5)

= U
X

i

ni,uni,d +
1

2

X

i 6=j,�,�0

Vij ni,�nj,�0 (6)

with U = Vii = const. as in Ref [1]. In order to resolve
the nearest-neighbor distance a we introduce a fine tri-
angular Bravais lattice with basis vectors which coincide
with two of the three nearest-neighbor vectors �

i

, e.g.
a1 = �1 = a(0, 1) and a2 = �2 = a

2 (
p
3,�1). On this

lattice, which is a factor
p
3 finer than the standard tri-

angular lattice of two-component unit cells, we then have

to distinguish three types of sites at i = ia1 + ja2 by

i+ j mod 3 = 0 : sublattice A, (7)

i+ j mod 3 = 1 : sublattice B, (8)

i+ j mod 3 = 2 : unoccupied. (9)

In order to define momentum modes on sublattices A
and B we therefore use Fourier transforms on the fine
triangular lattice with contstaints

1

3

2X

l=0

e�
2⇡i
3 (i+j�s)l =

⇢
1 , i+ j mod 3 = s ,
0 , otherwise.

(10)

With Born-von Karman boundary conditions and recip-
rocal basis vectors b1 = 2⇡

3a (
p
3, 3) and b2 = 4⇡

3a (
p
3, 0)

we define discrete momenta

k
mn

=
m

N
b1 +

n

N
b2 (11)

for periodicity on a fine triangular N⇥N -lattice of a size
that corresponds toN2/3 of the standard two-component
unit cells. The Brillouin zone (BZ) spanned by b1, b2 is
larger by the same factor of 3 than the standard BZ,
accordingly. As mentioned above, we need this enlarged
BZ in order to resolve nearest-neighbor distances while
maintaining the periodicity of all correlation functions in
momentum space. Momentum modes on sublattices A

and B are then created and annihilated by a†k, ak and

b†k, bk with

ak =
1

3

X

i,j

2X

l=0

e�
2⇡i
N

�
(m+Nl

3 )i+(n+Nl
3 )j

�
ci , (12)

bk =
1

3

X

i,j

2X

l=0

e
2⇡i
3 l e�

2⇡i
N

�
(m+Nl

3 )i+(n+Nl
3 )j

�
ci ,

respectively. Assuming N to be a multiple of 3, they are
periodic under shifts along the diagonal in momentum
space by � = (b1 + b2)/3,

ak = ak+� = ak+2� , (13)

and periodic up to a third root of unity,

bk = e
2⇡i
3 bk+� = e

4⇡i
3 bk+2� , (14)
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2

and related to the Fourier modes on the fine lattice by

ak =
1

3

2X

l=0

ck+l� (15)

bk =
1

3

2X

l=0

e
2⇡i
3 l ck+l� . (16)

The modes created by a†k therefore only involve sublat-

tice A sites while b†k modes only involve B sites. The
canonical anti-commutators then become,

[ak, a
†
k0 ]+ =

N2

3

2X

l=0

�k+l�,k0 ,

[bk, b
†
k0 ]+ =

N2

3

2X

l=0

e
2⇡i
3 l �k+l�,k0 ,

[ak, b
†
k0 ]+ = [bk, a

†
k0 ]+ = 0 . (17)

With these conventions the tight-binding Hamiltonian is
written in momentum space as

Htb = � 

N2

X

k,�

�
a†k,��k bk,� + b†k,��

⇤
k ak,�

�
. (18)

Here, the sum over k stands for that over m, n in the
finite volume with 2N2/3 sites and Born-von Karman
boundary conditions along the nearest-neighbor direc-
tions as per (11), and

�k =
3X

i=1

eik·�i = e
2⇡i
N m + e

2⇡i
N n + e�

2⇡i
N (m+n) (19)

is the structure factor of the tight-binding model.
The sublattice symmetry breaking staggered on-site

potential is analogously written as

H
m

=
1

N2

X

k,�

m
�

�
a†k,�ak,� � b†k,�bk,�

�
. (20)

For the generalized Coulomb interaction we start from

H
C

=
1

2

X

i,j,�,�0

Vij

⇣
a†i,�a

†
j,�0aj,�0ai,� + a†i,�b

†
j,�0bj,�0ai,�

+ b†i,�a
†
j,�0aj,�0bi,� + b†i,�b

†
j,�0bj,�0bi,�

⌘
, (21)

where, ai, a
†
i and bi, b

†
i for each spin are simply defined

as the inverse Fourier transfroms of ak, a
†
k and bk, b

†
k in

Eq. (12) on the fine triangular lattice, i.e.,

ai =
1

N2

X

k

eik·i ak =

⇢
ci , i on sublattice A,
0 , otherwise.

(22)

bi =
1

N2

X

k

eik·i bk =

⇢
ci , i on sublattice B,
0 , otherwise.

With the same Fourier transform of the translationally
invariant interaction potential on the fine triangular lat-
tice,

Vij =
1

N2

X

q

eiq·(i�j) Vq , Vq =
X

i

e�iq·i Vi0 , (23)

we can write the Coulomb interaction as

H
C

=
1

2N6

X

k,p,q,�,�0

⇣
V AA

q a†p+q,�a
†
k�q,�0ak,�0ap,�

+ V AB

q a†p+q,�b
†
k�q,�0bk,�0ap,�

+ V BA

q b†p+q,�a
†
k�q,�0ak,�0bp,�

+ V BB

q b†p+q,�b
†
k�q,�0bk,�0bp,�

⌘
. (24)

Herein, the interaction between momentum modes on like
sites is given by

V AA

q = V BB

q =
1

3

2X

l=0

Vq+l� , (25)

whereas for interactions of momentum modes on di↵erent
sublattices, one has

V AB

q = V BA

q
⇤
=

1

3

2X

l=0

e�
2⇡i
3 l Vq+l� . (26)

Note that for real and symmetric interactions Vij = Vji

we also have real Vq on the fine triangular lattice. Also
note that we have an exact overcounting in all terms of
the momentum space Hamiltonian in the sums over the
larger Brillouin zone of the fine triangular lattice here.
Every momentum can be shifted by one or two units of�,
so each term in the momentum sums occurs three times.
The overcounting is compensated by the fact that N2

here is three times larger than the number of unit cells of
the standard triangular lattice with two-component ba-
sis. Under these shifts by multiples of �, �k and V AB

k

transform as b†k while �⇤k and V BA

k transform as bk, so
that the products in the di↵erent terms of the Hamil-
tonian are invariant under the momentum shifts by �.
This reflects the fact that the momentum space Hamilto-
nian remains of course periodic in the three-times smaller
Brillouin zone but structure factor and interactions be-
tween di↵erent sublattices are not, they acquire a third
root of unity as a phase and are thus individually only pe-
riodic in the three times larger Brillouin zone used here.
Next we define two-component fermion fields for prop-

erly normalized momentum states on the two sublattices,

 k,� =

p
3

N

✓
ak,�
bk,�

◆
,  ̄k,� =  †

k,��
0 =

p
3

N

⇣
a†k,�,�b†k,�

⌘
,

(27)

where we have used �0 = �3 in the two-dimensional sub-
lattice space so that the staggered on-site potential can
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I. INTRODUCTION AND SETUP

We study the Coulomb-Hubbard model on the hon-
eycomb lattice, consisting of a free tight-binding Hamil-
tonian Htb with a staggered on-site potential H

m

and
a generalized Coulomb interaction term H

C

. In the
tight-binding Hamiltonian we consider for simplicity only
nearest-neighbor hoppings without overlap corrections.
It is then given by the nearest-neighbor hi, ji sum of hop-
ping terms with strength ,

Htb = �
X

hi,ji,�

�
c†i,�cj,� + c†j,�ci,�

�
, (1)

where c†i,� (ci,�) creates (annihilates) a fermion with spin
� = u, d on site i of the honeycomb lattice. Dividing the
sum over the sites i of the bipartite honeycomb lattice
into two triangular sublattices i

s

with s = 0, 1 for sublat-
tice A, B explicitly, we can write the symmetry breaking
staggered on-site potential as

H
m

=
X

is,s,�

(�1)sm
�

c†is,�cis,� . (2)

For a charge-staggered ground state we use m
u

= m
d

and for spin-staggering m
u

= �m
d

. Or, in general,

mcdw =
1

2
(m

u

+m
d

) , (3)

msdw =
1

2
(m

u

�m
d

) , (4)

if we want to allow for competing charge or spin-denisty
wave order in the ground state. The generalized Coulomb
interaction is of the form

H
C

=
1

2

X

i,j,�,�0

Vij c†i,�c
†
j,�0cj,�0ci,� (5)

= U
X

i

ni,uni,d +
1

2

X

i 6=j,�,�0

Vij ni,�nj,�0 (6)

with U = Vii = const. as in Ref [1]. In order to resolve
the nearest-neighbor distance a we introduce a fine tri-
angular Bravais lattice with basis vectors which coincide
with two of the three nearest-neighbor vectors �

i

, e.g.
a1 = �1 = a(0, 1) and a2 = �2 = a

2 (
p
3,�1). On this

lattice, which is a factor
p
3 finer than the standard tri-

angular lattice of two-component unit cells, we then have

to distinguish three types of sites at i = ia1 + ja2 by

i+ j mod 3 = 0 : sublattice A, (7)

i+ j mod 3 = 1 : sublattice B, (8)

i+ j mod 3 = 2 : unoccupied. (9)

In order to define momentum modes on sublattices A
and B we therefore use Fourier transforms on the fine
triangular lattice with contstaints

1

3

2X

l=0

e�
2⇡i
3 (i+j�s)l =

⇢
1 , i+ j mod 3 = s ,
0 , otherwise.

(10)

With Born-von Karman boundary conditions and recip-
rocal basis vectors b1 = 2⇡

3a (
p
3, 3) and b2 = 4⇡

3a (
p
3, 0)

we define discrete momenta

k
mn

=
m

N
b1 +

n

N
b2 (11)

for periodicity on a fine triangular N⇥N -lattice of a size
that corresponds toN2/3 of the standard two-component
unit cells. The Brillouin zone (BZ) spanned by b1, b2 is
larger by the same factor of 3 than the standard BZ,
accordingly. As mentioned above, we need this enlarged
BZ in order to resolve nearest-neighbor distances while
maintaining the periodicity of all correlation functions in
momentum space. Momentum modes on sublattices A

and B are then created and annihilated by a†k, ak and

b†k, bk with

ak =
1

3

X

i,j

2X

l=0

e�
2⇡i
N

�
(m+Nl

3 )i+(n+Nl
3 )j

�
ci , (12)

bk =
1

3

X

i,j

2X

l=0

e
2⇡i
3 l e�

2⇡i
N

�
(m+Nl

3 )i+(n+Nl
3 )j

�
ci ,

respectively. Assuming N to be a multiple of 3, they are
periodic under shifts along the diagonal in momentum
space by � = (b1 + b2)/3,

ak = ak+� = ak+2� , (13)

and periodic up to a third root of unity,

bk = e
2⇡i
3 bk+� = e

4⇡i
3 bk+2� , (14)
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m ! 0
with strong interactions: 
Mott-insulator transition

charge-density wave (CDW)

AF spin-density wave (SDW)

rameter, for instance, grows as (V1 ! V1c) rather than the
usual "V1 ! V1c#1=2 [13].

Spinful fermions and the QSH state.—Next, we take into
account the spin degrees of freedom and include an on-site
Hubbard repulsion in our model Hamiltonian (! $ 0):

 

H$!
X

hiji"
t"cyi"cj"%H:c:#%U

X
i
ni"ni#

%V1

X

hi;ji
"ni!1#"nj!1#%V2

X

hhi;jii
"ni!1#"nj!1#; (7)

where ni $ ni" % ni#. Since the honeycomb lattice is bi-
partite, on-site repulsion gives rise to a SDW phase at half-
filling; a standard decomposition of the Hubbard term
introduces the SDW order parameter M: M $ 1

2 "hSiAi!
hSiBi#. As in the spinless case, nearest-neighbor repulsion
favors a CDW. Since the second-neighbor repulsion is
frustrated, we are again led to the possibility of a topologi-
cal phase similar to the QAH. However, the spin degrees of
freedom introduce two possibilities (translation invariance
along with spin conservation eliminate other possibilities):
(1) two copies of QAH states—i.e. the chirality of the
second-neighbor hopping is the same for each spin projec-
tion, (2) the QSH state, where the chiralities are opposite
for each spin projection. The latter possibility breaks a
continuous global SU"2# symmetry associated with choos-
ing the spin projection axis; however, time-reversal sym-
metry is preserved. The QSH state on the honeycomb
lattice was considered in Ref. [7], where the insulating
gap arises from the microscopic spin-orbit coupling. It
was later shown that the magnitude of the spin-orbit gap
is negligibly small in graphene [17,18]. In our case, how-
ever, the insulating gap is generated dynamically from the
many-body interaction and can be viewed as an example of
dynamic generation of spin-orbit interaction [19].
Introducing the Hubbard-Stratonovich fields (sum over
repeated indices implied) #!ij $ cyi$"

!
$%cj%, ! $

0; . . . ; 3, where "! $ "1;!#, the next-neighbor interac-
tions can be recast using the identity "ni ! 1#"nj ! 1# $
1! 1

2 "#
!
ij#y#!ij. Physically, h#0i ! 0 corresponds to the

QAH phase, whereas if one of the vector components
h#ii ! 0, then the QSH phase occurs. A translationally
invariant decomposition of the next-neighbor interactions
via h#!i;i%bsi $ #!ei&

!
A ; i 2 A (and similarly for the other

sublattice) gives rise to a 4& 4 Hamiltonian that is readily
diagonalized in a tensor product basis ! ' ", where ! and
" are Pauli matrices in spin and sublattice space, respec-
tively. This way, each phase corresponds to a particular
nonzero expectation value of a fermion bilinearP

~k!
y
~k
d̂" ~k#! ~k, where d̂" ~k# / '3 for the CDW and QAH,

and d̂" ~k# / "3'3 for SDW and QSH. A detailed and stan-
dard numerical study of the free-energy at T $ 0 and its
saddle point solutions produces the phase diagram shown
in Fig. 3. In addition to the ordinary CDW and SDW
insulating phases, there is a phase for V2 >V2c ( 1:2t in

which the 4-vector is purely imaginary (as in the spinless
case), collinear, and staggered from one sublattice to the
next: h#!ii%bn;Ai $ !h#

!
ii%bn;Bi, and both QAH and QSH are

equally favorable ground states, having identical free en-
ergies within mean-field theory. Additionally, there is
never a coexistence of both QAH and QSH phases; indeed,
a Landau-Ginzburg treatment in this region explicitly
shows the absence SO"4# symmetry of the vector #!.
This occurs due to the difference of the manner in which
#0 and ~# are coupled to the fermionic fields—which
favors either a phase with broken Z2 symmetry (QAH) or
with broken SU"2# symmetry, but never both simulta-
neously [16].

Quantum fluctuations, however, lift the mean-field
degeneracy between the QAH and QSH phases. To qua-
dratic order in quantum fluctuations (RPA) about
the QSH phase, we obtain an effective action Seff $P

~k(#
!" ~k;"#K!)" ~k;"#(#)"! ~k;!"#, which shows the

presence of six modes (2 longitudinal and 4 transverse
modes), and 2 of the transverse modes correspond to
degenerate Goldstone modes whose dispersion is given

by ""q# $
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
jtk%qj2 ! jtktk%qj

q
, which for q small is linear

with velocity v ( vf $ 3t=2jaj. Thus, the zero-point mo-
tion associated with these gapless modes lowers the free-
energy of the QSH state relative to the QAH state. In the
presence of spin-orbit coupling (SOC), considering for
concreteness the Rashba SOC HR $ *R"s& p# ) ẑ, the
Goldstone modes become gapped and do not interfere
with the gapless edge excitations. Thus, by breaking the
SU"2# spin symmetry, the Rashba term stabilizes the QSH
phase by ensuring that the only low energy excitations in
the system are the helical edge modes of the QSH phase.

Renormalization Group Analysis.—Next, we go beyond
mean-field theory and RPA using the temperature (T)-flow
functional renormalization group (fRG)[20]. In this
scheme, we discretize the ~k- dependence of the interaction
[21] and consider all possible scattering processes between
a set of initial and final momenta that occur between points
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FIG. 3 (color online). Complete mean-field phase diagram for
the spinful model. The transitions from the semimetal (SM) to
the insulating phases are continuous, whereas transitions be-
tween any two insulating phases are first order.
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2

and related to the Fourier modes on the fine lattice by

ak =
1

3

2X

l=0

ck+l� (15)

bk =
1

3

2X

l=0

e
2⇡i
3 l ck+l� . (16)

The modes created by a†k therefore only involve sublat-

tice A sites while b†k modes only involve B sites. The
canonical anti-commutators then become,

[ak, a
†
k0 ]+ =

N2

3

2X

l=0

�k+l�,k0 ,

[bk, b
†
k0 ]+ =

N2

3

2X

l=0

e
2⇡i
3 l �k+l�,k0 ,

[ak, b
†
k0 ]+ = [bk, a

†
k0 ]+ = 0 . (17)

With these conventions the tight-binding Hamiltonian is
written in momentum space as

Htb = � 

N2

X

k,�

�
a†k,��k bk,� + b†k,��

⇤
k ak,�

�
. (18)

Here, the sum over k stands for that over m, n in the
finite volume with 2N2/3 sites and Born-von Karman
boundary conditions along the nearest-neighbor direc-
tions as per (11), and

�k =
3X

i=1

eik·�i = e
2⇡i
N m + e

2⇡i
N n + e�

2⇡i
N (m+n) (19)

is the structure factor of the tight-binding model.
The sublattice symmetry breaking staggered on-site

potential is analogously written as

H
m

=
1

N2

X

k,�

m
�

�
a†k,�ak,� � b†k,�bk,�

�
. (20)

For the generalized Coulomb interaction we start from

H
C

=
1

2

X

i,j,�,�0

Vij

⇣
a†i,�a

†
j,�0aj,�0ai,� + a†i,�b

†
j,�0bj,�0ai,�

+ b†i,�a
†
j,�0aj,�0bi,� + b†i,�b

†
j,�0bj,�0bi,�

⌘
, (21)

where, ai, a
†
i and bi, b

†
i for each spin are simply defined

as the inverse Fourier transfroms of ak, a
†
k and bk, b

†
k in

Eq. (12) on the fine triangular lattice, i.e.,

ai =
1

N2

X

k

eik·i ak =

⇢
ci , i on sublattice A,
0 , otherwise.

(22)

bi =
1

N2

X

k

eik·i bk =

⇢
ci , i on sublattice B,
0 , otherwise.

With the same Fourier transform of the translationally
invariant interaction potential on the fine triangular lat-
tice,

Vij =
1

N2

X

q

eiq·(i�j) Vq , Vq =
X

i

e�iq·i Vi0 , (23)

we can write the Coulomb interaction as

H
C

=
1

2N6

X

k,p,q,�,�0

⇣
V AA

q a†p+q,�a
†
k�q,�0ak,�0ap,�

+ V AB

q a†p+q,�b
†
k�q,�0bk,�0ap,�

+ V BA

q b†p+q,�a
†
k�q,�0ak,�0bp,�

+ V BB

q b†p+q,�b
†
k�q,�0bk,�0bp,�

⌘
. (24)

Herein, the interaction between momentum modes on like
sites is given by

V AA

q = V BB

q =
1

3

2X

l=0

Vq+l� , (25)

whereas for interactions of momentum modes on di↵erent
sublattices, one has

V AB

q = V BA

q
⇤
=

1

3

2X

l=0

e�
2⇡i
3 l Vq+l� . (26)

Note that for real and symmetric interactions Vij = Vji

we also have real Vq on the fine triangular lattice. Also
note that we have an exact overcounting in all terms of
the momentum space Hamiltonian in the sums over the
larger Brillouin zone of the fine triangular lattice here.
Every momentum can be shifted by one or two units of�,
so each term in the momentum sums occurs three times.
The overcounting is compensated by the fact that N2

here is three times larger than the number of unit cells of
the standard triangular lattice with two-component ba-
sis. Under these shifts by multiples of �, �k and V AB

k

transform as b†k while �⇤k and V BA

k transform as bk, so
that the products in the di↵erent terms of the Hamil-
tonian are invariant under the momentum shifts by �.
This reflects the fact that the momentum space Hamilto-
nian remains of course periodic in the three-times smaller
Brillouin zone but structure factor and interactions be-
tween di↵erent sublattices are not, they acquire a third
root of unity as a phase and are thus individually only pe-
riodic in the three times larger Brillouin zone used here.
Next we define two-component fermion fields for prop-

erly normalized momentum states on the two sublattices,

 k,� =

p
3

N

✓
ak,�
bk,�

◆
,  ̄k,� =  †

k,��
0 =

p
3

N

⇣
a†k,�,�b†k,�

⌘
,

(27)

where we have used �0 = �3 in the two-dimensional sub-
lattice space so that the staggered on-site potential can

(pseudo-spin) staggered on-site potential
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We study fermions with instantaneous Coulomb interactions on a honeycomb lattice

PACS numbers: place holder pacs

I. INTRODUCTION AND SETUP

We study the Coulomb-Hubbard model on the hon-
eycomb lattice, consisting of a free tight-binding Hamil-
tonian Htb with a staggered on-site potential H

m

and
a generalized Coulomb interaction term H

C

. In the
tight-binding Hamiltonian we consider for simplicity only
nearest-neighbor hoppings without overlap corrections.
It is then given by the nearest-neighbor hi, ji sum of hop-
ping terms with strength ,

Htb = �
X

hi,ji,�

�
c†i,�cj,� + c†j,�ci,�

�
, (1)

where c†i,� (ci,�) creates (annihilates) a fermion with spin
� = u, d on site i of the honeycomb lattice. Dividing the
sum over the sites i of the bipartite honeycomb lattice
into two triangular sublattices i

s

with s = 0, 1 for sublat-
tice A, B explicitly, we can write the symmetry breaking
staggered on-site potential as

H
m

=
X

is,s,�

(�1)sm
�

c†is,�cis,� . (2)

For a charge-staggered ground state we use m
u

= m
d

and for spin-staggering m
u

= �m
d

. Or, in general,

mcdw =
1

2
(m

u

+m
d

) , (3)

msdw =
1

2
(m

u

�m
d

) , (4)

if we want to allow for competing charge or spin-denisty
wave order in the ground state. The generalized Coulomb
interaction is of the form

H
C

=
1

2

X

i,j,�,�0

Vij c†i,�c
†
j,�0cj,�0ci,� (5)

= U
X

i

ni,uni,d +
1

2

X

i 6=j,�,�0

Vij ni,�nj,�0 (6)

with U = Vii = const. as in Ref [1]. In order to resolve
the nearest-neighbor distance a we introduce a fine tri-
angular Bravais lattice with basis vectors which coincide
with two of the three nearest-neighbor vectors �

i

, e.g.
a1 = �1 = a(0, 1) and a2 = �2 = a

2 (
p
3,�1). On this

lattice, which is a factor
p
3 finer than the standard tri-

angular lattice of two-component unit cells, we then have

to distinguish three types of sites at i = ia1 + ja2 by

i+ j mod 3 = 0 : sublattice A, (7)

i+ j mod 3 = 1 : sublattice B, (8)

i+ j mod 3 = 2 : unoccupied. (9)

In order to define momentum modes on sublattices A
and B we therefore use Fourier transforms on the fine
triangular lattice with contstaints

1

3

2X

l=0

e�
2⇡i
3 (i+j�s)l =

⇢
1 , i+ j mod 3 = s ,
0 , otherwise.

(10)

With Born-von Karman boundary conditions and recip-
rocal basis vectors b1 = 2⇡

3a (
p
3, 3) and b2 = 4⇡

3a (
p
3, 0)

we define discrete momenta

k
mn

=
m

N
b1 +

n

N
b2 (11)

for periodicity on a fine triangular N⇥N -lattice of a size
that corresponds toN2/3 of the standard two-component
unit cells. The Brillouin zone (BZ) spanned by b1, b2 is
larger by the same factor of 3 than the standard BZ,
accordingly. As mentioned above, we need this enlarged
BZ in order to resolve nearest-neighbor distances while
maintaining the periodicity of all correlation functions in
momentum space. Momentum modes on sublattices A

and B are then created and annihilated by a†k, ak and

b†k, bk with

ak =
1

3

X

i,j

2X

l=0

e�
2⇡i
N

�
(m+Nl

3 )i+(n+Nl
3 )j

�
ci , (12)

bk =
1

3

X

i,j

2X

l=0

e
2⇡i
3 l e�

2⇡i
N

�
(m+Nl

3 )i+(n+Nl
3 )j

�
ci ,

respectively. Assuming N to be a multiple of 3, they are
periodic under shifts along the diagonal in momentum
space by � = (b1 + b2)/3,

ak = ak+� = ak+2� , (13)

and periodic up to a third root of unity,

bk = e
2⇡i
3 bk+� = e

4⇡i
3 bk+2� , (14)

•spin (flavor) dependence

Graphene Gets a Good Gap on SiC
Nevis et al., PRL 115 (2015) 136802 

�!
�!

m ! 0
with strong interactions: 
Mott-insulator transition

charge-density wave (CDW)

AF spin-density wave (SDW)

rameter, for instance, grows as (V1 ! V1c) rather than the
usual "V1 ! V1c#1=2 [13].

Spinful fermions and the QSH state.—Next, we take into
account the spin degrees of freedom and include an on-site
Hubbard repulsion in our model Hamiltonian (! $ 0):

 

H$!
X

hiji"
t"cyi"cj"%H:c:#%U

X
i
ni"ni#

%V1

X

hi;ji
"ni!1#"nj!1#%V2

X

hhi;jii
"ni!1#"nj!1#; (7)

where ni $ ni" % ni#. Since the honeycomb lattice is bi-
partite, on-site repulsion gives rise to a SDW phase at half-
filling; a standard decomposition of the Hubbard term
introduces the SDW order parameter M: M $ 1

2 "hSiAi!
hSiBi#. As in the spinless case, nearest-neighbor repulsion
favors a CDW. Since the second-neighbor repulsion is
frustrated, we are again led to the possibility of a topologi-
cal phase similar to the QAH. However, the spin degrees of
freedom introduce two possibilities (translation invariance
along with spin conservation eliminate other possibilities):
(1) two copies of QAH states—i.e. the chirality of the
second-neighbor hopping is the same for each spin projec-
tion, (2) the QSH state, where the chiralities are opposite
for each spin projection. The latter possibility breaks a
continuous global SU"2# symmetry associated with choos-
ing the spin projection axis; however, time-reversal sym-
metry is preserved. The QSH state on the honeycomb
lattice was considered in Ref. [7], where the insulating
gap arises from the microscopic spin-orbit coupling. It
was later shown that the magnitude of the spin-orbit gap
is negligibly small in graphene [17,18]. In our case, how-
ever, the insulating gap is generated dynamically from the
many-body interaction and can be viewed as an example of
dynamic generation of spin-orbit interaction [19].
Introducing the Hubbard-Stratonovich fields (sum over
repeated indices implied) #!ij $ cyi$"

!
$%cj%, ! $

0; . . . ; 3, where "! $ "1;!#, the next-neighbor interac-
tions can be recast using the identity "ni ! 1#"nj ! 1# $
1! 1

2 "#
!
ij#y#!ij. Physically, h#0i ! 0 corresponds to the

QAH phase, whereas if one of the vector components
h#ii ! 0, then the QSH phase occurs. A translationally
invariant decomposition of the next-neighbor interactions
via h#!i;i%bsi $ #!ei&

!
A ; i 2 A (and similarly for the other

sublattice) gives rise to a 4& 4 Hamiltonian that is readily
diagonalized in a tensor product basis ! ' ", where ! and
" are Pauli matrices in spin and sublattice space, respec-
tively. This way, each phase corresponds to a particular
nonzero expectation value of a fermion bilinearP

~k!
y
~k
d̂" ~k#! ~k, where d̂" ~k# / '3 for the CDW and QAH,

and d̂" ~k# / "3'3 for SDW and QSH. A detailed and stan-
dard numerical study of the free-energy at T $ 0 and its
saddle point solutions produces the phase diagram shown
in Fig. 3. In addition to the ordinary CDW and SDW
insulating phases, there is a phase for V2 >V2c ( 1:2t in

which the 4-vector is purely imaginary (as in the spinless
case), collinear, and staggered from one sublattice to the
next: h#!ii%bn;Ai $ !h#

!
ii%bn;Bi, and both QAH and QSH are

equally favorable ground states, having identical free en-
ergies within mean-field theory. Additionally, there is
never a coexistence of both QAH and QSH phases; indeed,
a Landau-Ginzburg treatment in this region explicitly
shows the absence SO"4# symmetry of the vector #!.
This occurs due to the difference of the manner in which
#0 and ~# are coupled to the fermionic fields—which
favors either a phase with broken Z2 symmetry (QAH) or
with broken SU"2# symmetry, but never both simulta-
neously [16].

Quantum fluctuations, however, lift the mean-field
degeneracy between the QAH and QSH phases. To qua-
dratic order in quantum fluctuations (RPA) about
the QSH phase, we obtain an effective action Seff $P

~k(#
!" ~k;"#K!)" ~k;"#(#)"! ~k;!"#, which shows the

presence of six modes (2 longitudinal and 4 transverse
modes), and 2 of the transverse modes correspond to
degenerate Goldstone modes whose dispersion is given

by ""q# $
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
jtk%qj2 ! jtktk%qj

q
, which for q small is linear

with velocity v ( vf $ 3t=2jaj. Thus, the zero-point mo-
tion associated with these gapless modes lowers the free-
energy of the QSH state relative to the QAH state. In the
presence of spin-orbit coupling (SOC), considering for
concreteness the Rashba SOC HR $ *R"s& p# ) ẑ, the
Goldstone modes become gapped and do not interfere
with the gapless edge excitations. Thus, by breaking the
SU"2# spin symmetry, the Rashba term stabilizes the QSH
phase by ensuring that the only low energy excitations in
the system are the helical edge modes of the QSH phase.

Renormalization Group Analysis.—Next, we go beyond
mean-field theory and RPA using the temperature (T)-flow
functional renormalization group (fRG)[20]. In this
scheme, we discretize the ~k- dependence of the interaction
[21] and consider all possible scattering processes between
a set of initial and final momenta that occur between points
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FIG. 3 (color online). Complete mean-field phase diagram for
the spinful model. The transitions from the semimetal (SM) to
the insulating phases are continuous, whereas transitions be-
tween any two insulating phases are first order.
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effective coupling

• sign-problem in HMC with mcdw > 0
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• suspended graphene
" ! 1

↵g =
e2

4⇡ ~vf
⇡ 300

137
⇡ 2.19

remains conducting, semimetal
Elias et al., Nature Phys. 2049 (2011) 

• puzzle
predictions at the time ↵crit ⇠ 1

• screening at short distances Wehling et al., PRL 106 (2011) 236805 

Semimetal-insulator phase transition

Our follow-up work: Use di-electric screening function at long distances!

ϵ−1(⃗k ) = 1
ϵ1

ϵ1 + 1 + (ϵ1 − 1)e−kd

ϵ1 + 1− (ϵ1 − 1)e−kd

Wehling et al.
Phys.Rev. Lett. 106, 236805 (2011)

(ϵ1 = 2.4 and d = 2.8 )

Obtain partially screened potential from
Fourier back-transform of Ṽ0(⃗k ) = (2πe2)/k :

V (⃗r ) = 1
(2π)2

∫

K2
d2k Ṽ0(⃗k) ϵ−1(⃗k) e−i⃗ k⃗ r

=e2
∞∫

0

dk ϵ−1(⃗k) J0(kr ) .

Asymptotically approaches unscreened
potential.
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Results recently published: DS, von Smekal,
Phys. Rev. B 89, 195429 (2014)
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• interpolate at intermediate distances
with dielectric thin-film model



1 August 2016  |  Lorenz von Smekal  |  p.

HMC on Hexagonal Lattice

7eXtreme QCD 2016

Semimetal-insulator phase transition

“Chiral limit”: m → 0 extrapolation done with ⟨∆N⟩ = a0 + a1m + a2m2.
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Phase transition sets in around α ≈ 3.0 ≫ 2.2.
Far in unphysical regime! No significant difference between two setups!
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Semimetal-insulator phase transition

Currently checking volume effects (Nx ,Ny → 36). Maybe relevant...
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•chiral extrapolation
msdw ! 0

•semimetal-insulator transition in unphysical regime

↵crit ⇡ 3 > 2.19
Ulybyshev, Buividovich, Katsnelson, Polikarpov,  
PRL 111 (2013) 056801

Smith, LvS, PRB 89 (2014) 195429
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Dyson-Schwinger Equations

12eXtreme QCD 2016

•hexagonal lattice, screened Coulomb

Manon Bischoff, MSc, TU Da (2015)  
Katja Kleeberg, MSc, JLU Gi (2015) 

graphene’s single-particle band structure

•no Lindhard screening ↵crit ⇡ 1.5

⇧(!, ~q) =

-1 = -1
+ +

+ +

+ +

•what about CDW and the other insulating phases?

from π-band electrons
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Dyson-Schwinger Equations

13eXtreme QCD 2016

•hexagonal Hubbard model, Hartree-Fock
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Fermion Self-Energy
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with on-site U and nearest-neighbor V

first order
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Dyson-Schwinger Equations

14eXtreme QCD 2016

•hexagonal Hubbard model, Hartree-Fock

Dyson-Schwinger Equations

Fermion Self-Energy

i⌃(~p) = �1 � �1

= �

4 / 6

Katja Kleeberg et al., 
in preparation 

with on-site U and nearest-neighbor V

Miransky scaling

first order

fermion self-energy

first order



1 August 2016  |  Lorenz von Smekal  |  p.

HMC on Hexagonal Lattice

15eXtreme QCD 2016

•chiral extrapolation, SDW
only on-site U first
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HMC on Hexagonal Lattice

15eXtreme QCD 2016

•chiral extrapolation, SDW
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Sorella, Tosatti, EPL 19 (1992) 699: Uc ⇡ 4.5

Assaad, Herbut, PRX 3 (2013) 031010: Uc ⇡ 3.8
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HMC with Geometric Mass

16eXtreme QCD 2016

8 ⇥ 8 lattice 12 ⇥ 12 lattice

•hexagonal Brillouin zone

• removes Dirac points 

•preserves symmetries 

• improves invertibility



1 August 2016  |  Lorenz von Smekal  |  p.

Suitable Order Parameters

17eXtreme QCD 2016

O =
1

L2

s⌦�X

i2A

Oi

�2↵
+

⌦�X

i2B

Oi

�2↵

for zero(geometric)-mass simulations, use

with
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O =
1

L2

s⌦�X

i2A

Oi

�2↵
+

⌦�X

i2B
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�2↵

•charge-density wave:

Oi ! Qi =
X

�

�
c†i,�ci,� � 1

�

•spin-density wave:
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HMC with Geometric Mass

18eXtreme QCD 2016
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•pure on-site U, SDW

L = 8, 14, 20, 26

U

as before: Uc ⇡ 3.8

Nt = 80
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HMC with Geometric Mass

19eXtreme QCD 2016

•violation of spin symmetry!

L = 8, 14, 20, 26
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HMC with Geometric Mass

20eXtreme QCD 2016

•violation of spin symmetry!

S
x

, U

Sz, U

Nt = 160

lower temperatures don’t help
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HMC with Geometric Mass

21eXtreme QCD 2016

S
x

, U

Sz, U

continuum limit in time does

Nt = 640

•violation of spin symmetry!
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 Perfect Action

22eXtreme QCD 2016

• time-discretisation breaks sublattice symmetry
already in non-interacting tight-binding theory

 replace in fermion matrix 1 � Htb �⌧ ! e�Htb �⌧

Nt:

with exponential 
for continuous  
time-evolution in  
fermion matrix
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Phase Diagram 

23eXtreme QCD 2016

•hexagonal Hubbard model
with on-site U and nearest-neighbor V
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Phase Diagram

24eXtreme QCD 2016
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Phase Diagram

26eXtreme QCD 2016
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Phase Diagram

27eXtreme QCD 2016
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Phase Diagram 

28eXtreme QCD 2016

•hexagonal Hubbard model
with on-site U and nearest-neighbor V

Hartree-Fock
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Conclusions

29eXtreme QCD 2016

• HMC on hexagonal graphene lattice

• continuous time-evolution in improved fermion matrix

• geometric mass, no explicit sublattice symmetry breaking

• study competing CDW/SDW order in extended Hubbard model

screened Coulomb interactions ➟ suspended graphene in semimetal phase

maintain full spin and sublattice symmetries

no explicit symmetry breaking ➟ study competition between various insulating phases

Uc ≈ 3.8 κ confirmed for anti-ferromagnetic Mott insulator transition (SDW) 
extend results into U-V plane with first order transition to CDW (sign-problem)   
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Thank you for your attention!


