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Compressed Sensing in Physics

Typical analog/infinite-dimensional inverse problem where
compressed sensing is/can be used:

(i) Magnetic Resonance Imaging (MRI)
(ii) X-ray Computed Tomography
(iii) Thermoacoustic and Photoacoustic Tomography
(iv) Single Photon Emission Computerized Tomography
(v) Nuclear Magnetic Resonance (NMR)
(vi) Electron Microscopy/Tomography
(vii) Reflection seismology
(viii) Radio interferometry
(ix) Helium Atom Scattering
(x) Fluorescence Microscopy
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Compressed Sensing in Inverse Problems

Most of these problems are modelled by the Fourier transform

F f (!) =

Z

Rd

f (x)e�2⇡i!·x dx ,

or the Radon transform Rf : S⇥ R ! C (where S denotes the circle)

Rf (✓, p) =

Z

hx,✓i=p

f (x) dm(x),

where dm denotes Lebesgue measure on the hyperplane {x : hx , ✓i = p}.
I Fourier slice theorem ) both problems can be viewed as the

problem of reconstructing f from pointwise samples of its Fourier
transform.

g = F f , f 2 L2(Rd). (1)
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Compressed Sensing

I Given the linear system

Ux
0

= y .

I Solve
min kzk

1

subject to P
⌦

Uz = P
⌦

y ,

where P
⌦

is a projection and ⌦ ⇢ {1, . . . ,N} is subsampled
with |⌦| = m.

If
m � C · N · µ(U) · s · log(✏�1) · log (N) .

then P(z = x
0

) � 1� ✏, where

µ(U) = max
i ,j

|U
i ,j |2

is referred to as the incoherence parameter.
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Pillars of Compressed Sensing

I Sparsity

I Incoherence

I Uniform Random Subsampling
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MRI Example

Suppose that
f = Fg , g 2 L2(R),

and supp(g) ⇢ [�T ,T ] for some T > 0. If ✏  1

2T

(the Nyquist
rate) then

g = ✏
1X

k=�1
f (k✏)e2⇡i✏k·, L2 convergence. (2)

In practice, one forms the approximation

g
N

= ✏
NX

k=�N

f (k✏)e2⇡i✏k·.
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MRI Example

Let g be
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Approximating with the truncated Fourier series
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Figure : The figure displays g
N

(left) as well as the error g � g
N

(right).
N = 128
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The Discrete Problem

Note that

g
N

= ✏
NX

k=�N+1

f (k✏)e2⇡i✏k·.

can be written as

y = U
df

x , U
df

2 C2N⇥2N , y , x 2 C2N ,

where y represents a vector of the sampled values of f , x
represents a vector of the point wise values of g

N

(on a equidistant
grid on [-1,1]), and U

df

is a scalar multiple of the discrete Fourier
transform.
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The Finite Dimensional Compressed Sensing Problem

I If g is sparse in the Haar basis one could hope that

x
0

= V
dw

x

is sparse, where V
dw

is the discrete wavelet transform
corresponding to the Haar wavelet.

I If that was the case we could randomly sample a set
⌦ ⇢ {1, . . . , 2N} of size |⌦| = m < 2N and try to reconstruct
x
0

(and hence x) from the subsampled vector P
⌦

y by finding
a minimizer ⇠ to

min
⌘2Cn

k⌘k
l

1

: P
⌦

U
df

V�1

dw

⌘ = P
⌦

y , (3)

where P
⌦

denotes the projection onto span{e
j

}
j2⌦, and hope

that ⇠ = x
0

with high probability.
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Finite Dimensional Compressed Sensing Results
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Figure : The left part displays the compressed sensing approximation
V�1

dw

⇠ to g
N

from solving (3) with |⌦| = 130. The right part displays the
error and g � V�1

dw

⇠.
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Question

I Why does this happen? After all this is a super sparse
problem?
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Why not solve the true infinite-dimensional problem?

I Physical problems are often continuous/infinite-dimensional.
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The Model

I Given a separable Hilbert space H with an orthonormal set
{'

k

}
k2N.

I Given a vector

x
0

=
1X

k=1

�
k

'
k

, � = {�
1

,�
2

, . . .}.

I Suppose also that we are given a set of linear functionals
{⇣

j

}
j2N such that we can ”measure” the vector x

0

by applying
the linear functionals e.g. we can obtain {⇣

j

(x
0

)}
j2N.
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An Infinite System of Equations

With some appropriate assumptions on the linear functionals
{⇣

j

}
j2N we may view the full recovery problem as the infinite

dimensional system of linear equations

0
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(4)
where we will refer to U = {u

ij

}
i ,j2N as the ”measurement

matrix”.
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Infinite Dimensional Compressed Sensing

Let ⌦ ⇢ N such that |⌦| = m < 1 be randomly chosen and let P
⌦

denote the projection onto span{e
j

}
j2⌦. Now consider the convex

(infinite-dimensional) optimization problem

inf
⌘2l1(N)

k⌘k
l

1

(N) : P
⌦

0
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(5)
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Infinite Dimensional Compressed Sensing

The solution to problem (5) cannot be computed explicitly because it is
infinite-dimensional, and thus an approximation must be computed
instead. For R 2 N, consider the optimization problem

inf
⌘2P

R

l

1

(N)
k⌘k

l

1

(N) : P
⌦

0
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Tests
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Figure : Left: the piecewise smooth test function f
1

. Right: the smooth
test function f

2
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Tests
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Figure : Left: Reconstruction error when reconstructing f
1

with
compressed sensing using UdftVdwt�1 using periodized DB6 wavelets.
Right: Reconstruction error when reconstructing f

1

with compressed
sensing using an ”infinite-dimensional” discretization. Both methods use
exactly the same samples.
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Tests
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Figure : Left: errors for the reconstructions of f
2

with compressed sensing
using UdftVdwt�1 . Righ: errors for the reconstructions of f

2

using an
”infinite-dimensional” discretization. Both methods use exactly the same
samples.
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Electron Microscopy: Finte vs. infinite dimensions

Original Original (zoom) Inf-dim. CS (zoom) Fin-dim. CS (zoom)
Err 0.6% Err 12.7%

Figure : Subsampling 6.15%. Both reconstructions are based on identical
sampling information.
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Pillars of Compressed Sensing

I Sparsity

I Incoherence

I Uniform Random Subsampling

Problem: These concepts are absent in virtually all the problems
listed above. Moreover, uniform random subsampling gives highly
suboptimal results.

Compressed sensing is currently used with great success in many of
these fields, however the current theory does not cover this.
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Uniform Random Subsampling

U = UdftV
�1

dwt.

5% subsampling Reconstruction Enlarged
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Sparsity

I The classical idea of sparsity in compressed sensing is that
there are s important coe�cients in the vector x

0

that we
want to recover.

I The location of these coe�cients is arbitrary.

24 / 53



Sparsity and the Flip Test

Let

x =

and
y = Udfx , A = P

⌦

UdfV
�1

dw ,

where P
⌦

is a projection and ⌦ ⇢ {1, . . . ,N} is subsampled with
|⌦| = m. Solve

min kzk
1

subject to Az = P
⌦

y .
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Sparsity - The Flip Test
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Figure : Wavelet coe�cients and subsampling reconstructions from 10% of Fourier coe�cients with
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Sparsity - The Flip Test

I Let
ỹ = UdfV

�1

dw z
f

I Solve
min kzk

1

subject to Az = P
⌦

ỹ

to get ẑ
f

.

I Flip the coe�cients of ẑ
f

back to get ẑ , and let x̂ = V�1

dw ẑ .

I If the ordering of the wavelet coe�cients did not matter i.e.
sparsity is the right model, then x̂ should be close to x .
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Sparsity- The Flip Test: Results

Figure : The reconstructions from the reversed coe�cients.

Conclusion: The ordering of the coe�cients did matter.

Question: Is sparsity really the right model?
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Incoherence: Analog inverse problems are coherent

Let
U
n

= UdfV
�1

dw 2 Cn⇥n

where Udf is the discrete Fourier transform and Vdw is the discrete
wavelet transform. Then

µ(U
n

) = 1

for all n and all Daubechies wavelets!
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Why?

I Physical problems are often continuous/infinite-dimensional.

30 / 53



Incoherence: Why analog inverse problems are
coherent

Note that
WOT-lim

n!1
UdfV

�1

dw = U,

where

U =

0

B@
h'

1

, 
1

i h'
2

, 
1

i · · ·
h'

1

, 
2

i h'
2

, 
2

i · · ·
...

...
. . .

1

CA,

where
{'

j

}
j2N { 

j

}
j2N

are wavelets and complex exponentials respectively. Thus, we will
always have

µ(UdfV
�1

dw ) � c .
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Analog inverse problems are asymptotically
incoherent

Fourier to DB4 Fourier to Legendre Polynomials

Figure : Plots of the absolute values of the entries of the matrix U
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Images are asymptotically sparse

Figure : Left: original image x . Right: the wavelet coe�cients of the
image.
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Resolution Dependence, 5% subsampling

Size: 256⇥ 256, Error = 10.8%

Original CS reconstruction Subsamp. map
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Resolution Dependence, 5% subsampling

Size: 512⇥ 512, Error = 6.0%

Original CS reconstruction Subsamp. map
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Resolution Dependence, 5% subsampling

Size: 1024⇥ 1024, Error = 3.6%

Original CS reconstruction Subsamp. map
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2048⇥ 2048 full sampling and 5% subsampling (DB4)

MRI Data courtesy of Andy Ellison, Boston University. Numerics
taken from: On asymptotic structure in compressed sensing, B. Roman,

B. Adcock, A. C. Hansen, arXiv:1406.4178
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Resolution enhancing in MRI

The MRI machine samples the continuous Fourier transform of the
brain.
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Test of compressed sensing in MRI

Classical MRI scanning with 512⇥ 512 full sampling (= 262144
samples) with 2048⇥ 2048 zero padding. Can you see the details?
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Test of compressed sensing in MRI

Compressed sensing with 6.25% subsampling from 2048⇥ 2048
(= 262144 samples, the same number of samples as the previous
example).
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Siemens

Siemens has implemented our experiments and verified our theory
experimentally on their scanners.

I See the Siemens report: ”Novel Sampling Strategies for
Sparse MR Image Reconstruction,” in Proceedings of the
International Society for Magnetic Resonance in Medicine.
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Siemens Conclusion:

I ”Significant di↵erences in the spatial resolution can be
observed.”

I ”The image resolution has been greatly improved.”

I ”Current results practically demonstrated that it is possible to
break the coherence barrier by increasing the spatial resolution
in MR acquisitions. This likewise implies that the full potential
of the compressed sensing is unleashed only if asymptotic
sparsity and asymptotic incoherence is achieved. Therefore,
compressed sensing might better be used to increase the
spatial resolution rather than accelerating the data acquisition
in the context of non-dynamic 3D MR imaging.”
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B.Roman, M.Graves, A.Hansen, D.Lomas, “Improved Spatial Resolution and
Targeted Sampling in MRI” — University nomination for the Rosetrees
Interdisciplinary Research Award 2016.

General Electric 1.5T MRI, Addenbrooke’s. Slice from 3D scan (whole head).



B.Roman, M.Graves, A.Hansen, D.Lomas, “Improved Spatial Resolution and
Targeted Sampling in MRI” — University nomination for the Rosetrees
Interdisciplinary Research Award 2016.

1923(1.2mm) Full, 15 min 5123(0.4mm) CS, 15 min.

General Electric 1.5T MRI, Addenbrooke’s. Slice from 3D scan (whole head).



New Pillars of Compressed Sensing

I Asymptotic Sparsity

I Asymptotic Incoherence

I Multi-level Subsampling
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Sparsity in levels

Definition

For r 2 N let M = (M
1

, . . . ,M
r

) 2 Nr with 1  M
1

< . . . < M
r

and s = (s
1

, . . . , s
r

) 2 Nr , with s
k

 M
k

�M
k�1

, k = 1, . . . , r ,
where M

0

= 0. We say that � 2 l2(N) is (s,M)-sparse if, for each
k = 1, . . . , r ,

�
k

:= supp(�) \ {M
k�1

+ 1, . . . ,M
k

},

satisfies |�
k

|  s
k

. We denote the set of (s,M)-sparse vectors by
⌃s,M.
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Images are asymptotically sparse

Figure : Left: original image x . Right: the wavelet coe�cients of the
image.
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Sparsity in levels

Definition

Let f =
P

j2N �j'j

2 H, where � = (�
j

)
j2N 2 l1(N). Let

�s,M(f ) := min
⌘2⌃s,M

k� � ⌘k
l

1

. (7)
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Multi-level sampling scheme

Definition

Let r 2 N, N = (N
1

, . . . ,N
r

) 2 Nr with 1  N
1

< . . . < N
r

,
m = (m

1

, . . . ,m
r

) 2 Nr , with m
k

 N
k

� N
k�1

, k = 1, . . . , r , and
suppose that

⌦
k

✓ {N
k�1

+ 1, . . . ,N
k

}, |⌦
k

| = m
k

, k = 1, . . . , r ,

are chosen uniformly at random, where N
0

= 0. We refer to the set

⌦ = ⌦N,m := ⌦
1

[ . . . [ ⌦
r

.

as an (N,m)-multilevel sampling scheme.
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r-level Sampling Scheme

Figure : The typical sampling pattern that will be used.
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Local coherence

Definition

Let U 2 CN⇥N . If N = (N
1

, . . . ,N
r

) 2 Nr and M = (M
1

, . . . ,M
r

) 2 Nr

with 1  N
1

< . . .N
r

and 1  M
1

< . . . < M
r

we define the (k , l)th local
coherence of U with respect to N and M by

µN,M(k , l) =
q

µ(PN

k�1

N

k

UP
M

l�1

M

l

) · µ(PN

k�1

N

k

U), k , l = 1, . . . , r ,

where N
0

= M
0

= 0.
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Analog inverse problems are asymptotically
incoherent

Fourier to DB4 Fourier to Legendre Polynomials

Figure : Plots of the absolute values of the entries of the matrix U
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The optimization problem

inf
⌘2`1(N)

k⌘k`1 subject to kP
⌦

U⌘ � yk  �. (8)
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Theoretical Results

Let U 2 CN⇥N be an isometry and � 2 CN . Suppose that ⌦ = ⌦N,m is a
multilevel sampling scheme, where N = (N

1

, . . . ,N
r

) 2 Nr and
m = (m

1

, . . . ,m
r

) 2 Nr . Let (s,M), where M = (M
1

, . . . ,M
r

) 2 Nr ,
M

1

< . . . < M
r

, and s = (s
1

, . . . , s
r

) 2 Nr , be any pair such that the following
holds: for ✏ > 0 and 1  k  r ,

1 & N
k

� N
k�1

m
k

· log(✏�1) ·
 

r

X

l=1

µN,M(k, l) · sl

!

· log (N) . (9)

Suppose that ⇠ 2 CN is a minimizer of (8) with � = �̃
p
K�1 and

K = max
1kr

{(N
k

� N
k�1

)/m
k

}. Then, with probability exceeding 1� s✏,
where s = s

1

+ . . .+ s
r

, we have that

k⇠ � �k  C ·
⇣

�̃ ·
�

1 + L ·
p
s
�

+ �s,M(f )
⌘

,

for some constant C , where �s,M(f ) is as in (7), L = 1 +

q
log

2

(6✏�1)
log

2

(4KM

p
s)

and

K = max
k=1,...,r

n

N

k

�N

k�1

m

k

o

.
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Continuous CS in Helium Atom Scattering
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Continuous CS
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