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Outline
• Anderson localization basics (Hamiltonian & disorder)

• QCD spectrum at low and high temperature

• Random Matrix Theory (RMT), level spacing

• Finite size scaling studies, multifractals at criticality

• What is the disorder in QCD? (*)

• Dirac low-modes: analysis of background gauge fields

• Perspective and future works

Universality and the QCD Anderson Transition, Giordano et al., PRL 112, 102002 (2014)
An Ising-Anderson model of localisation in high-temperature QCD, Giordano et al., JHEP 1504 (2015) 112 
Anderson transition and multifractals in the spectrum of the Dirac operator of Quantum Chromodynamics at high temperature, Ujfalusi et al., 
1507.02162v1 [cond-mat.dis-nn]
An Anderson-like model of the QCD chiral transition, Giordano et al. JHEP 1606 (2016) 007
…
(*) Anderson Localization in high temperature QCD: background configuration properties and Dirac eigenmodes, GC and S. Hashimoto, JHEP 
1606(2016) 056



Anderson Localization

Metal-insulator transition (MIT)

P.W. Anderson, paper March 1958 

Absence of diffusion in certain random lattices

Phys. Rev. 109 (5): 14921505

Spatial localization of the states of a system 
due to multiple quantum interference caused 
by disorder

Nobel prize 1977



Anderson Localization (AL)
Tight binding model Hamiltonian, non interacting electrons

• Random noise 𝜖𝑖 (Uniform, Gaussian, Lorentz) (also hopping term)
• Second order quantum phase transition at Ec

• MIT occurs in 3D due to the scaling theory of
localization, in 1 & 2D all electronic states are localized for
any amount of disorder

• Interactions complicate the description (Coulomb potential)



AL, experiments

Anderson localization of light
Mordechai Segev, Yaron Silberberg , Demetrios N. Christodoulides
Nature Photonics 7, 197–204 (2013)

Three-Dimensional 
Anderson Localization 
of Ultracold Matter
S. S. Kondov, W. R. McGehee, 
J. J. Zirbel, B. DeMarco*
Science 7 October 2011: Vol. 
334 no. 6052 pp. 66-68

Cavity Quantum Electrodynamics 
with Anderson-Localized Modes
Luca Sapienza, Henri Thyrrestrup, Søren
Stobbe, Pedro David Garcia, Stephan Smolka, 
Peter Lodahl
Science (2010) 327, 1352-1355

Electromagnetic, sound waves
Ultracold atoms



AL, Random Schrödinger operator

• 𝑉(𝑥) random potential, disorder
• Analogous to the Anderson tight-binding model
• Exponential spectral localisation above a critical disorder



AL, Random Schrödinger operator

• Above a critical energy Ec , mobility edge → delocalisation
• (Second order) quantum phase transition at Ec

Two regions
• Localised states: Poisson distributed (classical dynamics)
• Delocalised states: Random Matrix Theory (chaotic dynamics) 

Bohigas, Giannoni, Schmit conjecture 1984



QCD spectral density

Chiral condensate vs low modes spectral density

Banks-Casher relation:

Non zero chiral condensate at low temperature

QCD Dirac operator



QCD spectral density

Banks-Casher relation

𝑇 < 𝑇𝑐

𝑇 ≅ 𝑇𝑐

𝑇 > 𝑇𝑐

Cossu et al., PRD87 (2013) 11, 114514



Participation ratio

𝑃𝑅 ~ fraction of 
volume occupied by 
the mode

Generalized momenta:

Courtesy of Giordano, Kovács, Pittler



Random matrix theory (RMT)

Anderson model and random matrix theory

Wigner-Dyson classes: Unitary (GUE), Orthogonal (GOE), Symplectic (GSE)

Chiral classes (chGxE) can be defined too, same bulk statistical properties

QCD: Low temperature chRMT description successful (e.g. Verbaarschot, Wittig, Damgaard, 
Nishigaki, …)

High T?

chRMT description not valid anymore
Microscopic spectral 

density
𝜖-regime 



Level spacing statistics

Unfolded level spacing distribution (ULSD), P(s)

Level spacing, normalized by the local average spacing

Poisson GUE (Wigner surmise)

No free parameters!



Level spacing statistics

• ULSD

• One parameter family 
of curves? (Nishigaki)

Courtesy of Giordano, Kovács, Pittler



Finite size scaling

Poisson

RMT

Courtesy of Giordano, Kovács, Pittler



Finite size scaling

I is RG invariant
µ irrelevant direction

Best fit:
ν = 1.43(6) 
Giordano et al. 2014

ν = 1.43(4) 
Unitary 3D Anderson model
(Slevin, Ohtsuki 1999)



Kovacs, Pittler
(2012)

More and more localized modes by increasing temperature

Localized modes

Delocalized modes

Mobility edge



Shape analysis

If one family of 
curves describes the 
transition, 
correlation of 
different statistics 
for different 
parameter sets will 
coalesce



Multifractals at criticality

localized critical delocalized

QCD data, T ~ 2.6Tc , staggered fermions (Ujfalusi et al.)



Multifractals at criticality

Multifractals: fluctuations at all length scales

Scaling of wave function norm in a neighborhood of a point x, size ℓ
• Smooth  ~ℓ𝑑

• Fractal ~ℓ𝛼

• Multifractal ~ℓ𝛼(𝑥) , 𝛼(𝑥) local dimension

Multifractals are characterized by families of fractal exponents

Multifractal exponents of 3D unitary Anderson model and QCD at high 
temperature agree (Ujfalusi et al.)



Understanding localisation in QCD

• Unitary Anderson Model: 3D, diagonal noise, V(x)

• QCD: 4D, off-diagonal noise (parallel transport)

Why the same universality class?

Polyakov line provides effective 3D diagonal (spatial) noise

Bruckmann et al. (2011), Giordano et al. (2015-2016)



Understanding localisation in QCD

Change of basis of staggered operator to temporal momentum basis

• Polyakov line phases 𝜙𝑎 𝑥 explicitly provide diagonal noise

• Spatial hopping → Fourier transform of spatial links wrt time
• mix temporal momentum components

Above 𝑇𝑐, 𝑃𝐿 gets ordered ~ 1, effective gap in spectrum (lowest Matsubara 
frequency) 

Fluctuations (𝑃𝐿 ≠ 1) provide “trap” for eigenmodes by allowing smaller 
eigenvalues  

Bruckmann et al. (2011), Giordano et al. (2015-2016)



Understanding localisation in QCD

• Ordering of PL induces correlation across time-slices
• reduced mixing of temporal momentum components

• Strong mixing of t-mom components → 4D system

• Reduced mixing of t-mom components → NT 3D systems

• Decoupling seems important for localisation (Giordano et al. 2016)
• Quenched toy model: Polyakov loop as Ising spins

• retain only temporal couplings for spatial links

• Model: PL ordering suppresses 𝜒SB by opening a “gap” in the spectrum

• Reduced mixing of t-mom (larger coupling of temporal slices)  necessary 
condition for suppression of spectral density



QCD with chiral fermions

• Chiral fermions, domain-wall (GC and Hashimoto)

• Main question: what is the source of disorder?

• Let’s investigate the gauge field background configurations

• Gauge invariant observables:
• Polyakov loop

• Local action

• Local topology 

• Chiral properties (left- and right-handed projections)

• Main conclusion:
• Disorder → monopole-instantons (dyons)



T < Tc

T > Tc

Anti-periodic BC
Periodic BC

Level spacing distribution



Investigating the disorder

Chirality Norm

Low-mode



Investigating the disorder

Chirality Norm

High-mode



Investigating the disorder – Polyakov loop

Chirality Polyakov-loop

Low-mode



Correlations with the Polyakov loop

Below the phase transition Above the phase transition

Low modes High modes
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Correlations with the Polyakov loop

Anti-periodic BC Periodic BC

Now change the boundary conditions (BC) of the Dirac operator for the 
measurements
SAME background configurations on both panels



Action and topology

Self-dual fields



Action and topology



Interpretation in terms of topological fluctuations

Class of solutions of the YM equation of motion in a non trivial 
Polyakov loop background (Van Baal et al.): monopole-instantons

 Self dual solutions, charged in each Cartan subgroup 

 SU(N) N-1 species of BPS monopoles, 1 Kaluza-Klein (KK) from 
the compact dimension

 Finite temperature calorons are composite objects
 N-1 BPS + 1 KK, electrically and magnetically neutral



Interpretation in terms of topological fluctuations

 Supported action: 

 Topological charge fractional in general

 KK monopoles at high T:
 Large action support (“heavy”), suppressed

 Polyakov loop at their centre = -1/3

 Boundary condition dependence of zero modes localisation Garcia-Perez et al.

 Low temperature all monopoles have the same action on average
 No change of the spectrum with the boundary conditions below Tc

The properties measured on the lattice agree with the characteristics of 
molecules (pairs) of Kaluza-Klein monopole-instantons in SU(N)



Overlap of left-right eigenmode projections

Conjecture: localisation triggers chiral symmetry restoration.

Overlap monotonic with the eigenvalue Overlap increases for more localized states



Conclusions
We measured the properties of gauge invariant observables in 

correlation with each one of the Dirac low eigenmodes

Boundary condition dependence of the localisation mechanism

Properties agree with the characteristics of KK monopole-instantons 
pairs in SU(N)

Conjectured mechanism relating restoration of chiral symmetry at high 
temperature to localisation
Increased localisation → larger overlap → larger eigenvalues → chiral 

condensate suppressed

Polyakov loop transition → localisation → chiral transition

Compatible results with staggered fermions analysis model
Polyakov loop transition → localisation and chiral transition



Outlook

• Non perturbative effective potential for localisation

• Study interactions

• QCD with external magnetic field
• Inverse catalysis (i.e. reduced chiral condensate with B around Tc)

Some ideas

• Fermions in different representations (different phase 
diagram)

• Imaginary chemical potential

Science (2010) 327, 1352-1355
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