QCD energy momentum tensor at finite temperature using gradient flow

Yusuke Taniguchi for WHOT QCD collaboration

S.Ejiri, R.Iwami, K.Kanaya, M.Kitazawa, M.Shirogane, H.Suzuki, Y.T, T.Umeda, N.Wakabayashi

Introduction

Measure expectation values on lattice

terms in QCD Lagrangian when trace is taken $F^{a}_{\mu\rho}(x)F^{a}_{\nu\rho}(x) \quad \bar{\psi}(x)\left(\gamma_{\mu}\overleftrightarrow{D}_{\nu}+\gamma_{\nu}\overleftrightarrow{D}_{\mu}\right)\psi(x)$

 $\delta_{\mu\nu}F^a_{\rho\sigma}(x)F^a_{\rho\sigma}(x) \qquad \delta_{\mu\nu}\bar{\psi}(x)\overleftrightarrow{D}\psi(x) \qquad \delta_{\mu\nu}\bar{\psi}(x)\psi(x)$

Renormalization

Well established for E and P

terms in QCD Lagrangian

Karsch coefficients

problems

non universal (No Poincare symmetry)

• depends on: lattice action, operator additive correction for $\delta_{\mu\nu}\overline{\psi}(x)\psi(x)$

A great view point:

Gradient Flow as a renormalization scheme

Narayanan-Neuberger(2006), Lüscher(2010), Lüscher-Weisz(2011)

scale: $\sqrt{8t}$

Gauge operators with flowed field $A_{\mu}(t,x)$

does not have UV divergence

does not have contact term singularity

operators are renormalized

H.Suzuki, PTEP 2013, 083B03 (2013)

$$\{T_{\mu\nu}\}_{\rm WT}(x) = \lim_{t \to 0} \left\{ \underbrace{\tilde{\mathcal{O}}_{1\mu\nu}(t,x) - \frac{1}{4} \tilde{\mathcal{O}}_{2\mu\nu}(t,x)}_{t,x} \right\}_{\rm WT}(t,x) - \left\langle \tilde{\mathcal{O}}_{2\mu\nu}(t,x) \right\rangle_{T=0} \right\}$$

$$\mathcal{O}_{1\mu\nu}(t,x) = F^{a}_{\mu\rho} F^{a}_{\nu\rho}(t,x) \qquad \mathcal{O}_{2\mu\nu}(t,x) = \delta_{\mu\nu} F^{a}_{\rho\sigma} F^{a}_{\rho\sigma}(t,x)$$

From flowed operator to proper operator

Matching coefficients at one loop $c_1(t) = \frac{1}{\bar{g}(1/\sqrt{8t})^2} - \frac{1}{(4\pi)^2} \left(9\gamma - 18\ln 2 + \frac{19}{4}\right)$ $c_2(t) = \frac{1}{(4\pi)^2} \frac{33}{16}$

Matching coefficients are calculable perturbatively at small t region

H.Suzuki, PTEP 2013, 083B03 (2013)

$$\{T_{\mu\nu}\}_{\rm WT}(x) = \lim_{t \to 0} \left\{ \widehat{\mathcal{O}}_{1\mu\nu}(t,x) - \frac{1}{4} \widetilde{\mathcal{O}}_{2\mu\nu}(t,x) \right\} + \widehat{\mathcal{O}}_{2\mu\nu}(t,x) - \left\langle \widetilde{\mathcal{O}}_{2\mu\nu}(t,x) \right\rangle_{T=0} \right\}$$

$$\mathcal{O}_{1\mu\nu}(t,x) = F^{a}_{\mu\rho} F^{a}_{\nu\rho}(t,x) \qquad \mathcal{O}_{2\mu\nu}(t,x) = \delta_{\mu\nu} F^{a}_{\rho\sigma} F^{a}_{\rho\sigma}(t,x)$$

Three steps to calculate $T_{\mu\nu}$

1. Flow the link variable $\partial_t U_\mu(t,x) U^{\dagger}_\mu(t,x) = -g_0^2 \partial_{x,\mu} S_{\text{lat}}(U)$

2. Calculate expectation value of flowed operators

 $\mathcal{O}_{1\mu\nu}(t,x) = F^a_{\mu\rho}F^a_{\nu\rho}(t,x) \quad \mathcal{O}_{2\mu\nu}(t,x) = \delta_{\mu\nu}F^a_{\rho\sigma}F^a_{\rho\sigma}(t,x)$

appropriately defined on lattice

3. Multiply the coefficients and take t \rightarrow 0 limit

$$\left\{T_{\mu\nu}\right\}_{\mathrm{WT}}(x) = \lim_{t \to 0} \left\{ c_1(t) \left[\tilde{\mathcal{O}}_{1\mu\nu}(t,x) - \frac{1}{4} \tilde{\mathcal{O}}_{2\mu\nu}(t,x) \right] + c_2(t) \left[\tilde{\mathcal{O}}_{2\mu\nu}(t,x) - \left\langle \tilde{\mathcal{O}}_{2\mu\nu}(t,x) \right\rangle_{T=0} \right] \right\}$$

What's new?Quarks included!Flow of quark fieldLüscher, JHEP 1304, 123 (2013)
$$\partial_t \chi(t,x) = D_\mu D_\mu \chi(t,x)$$
 $\chi(t=0,x) = \psi(x)$ $\partial_t \bar{\chi}(t,x) = \bar{\chi}(t,x) D_\mu D_\mu$ $\bar{\chi}(t=0,x) = \bar{\psi}(x)$ Ilow the gauge field simultaneouslyRenormalization is needed for quark field $\chi_R(t,x) = Z_\chi \chi_0(t,x)$

No more renormalization is needed for composite op.

$$\left(\bar{\chi}(t,x)\chi(t,x)\right)_R = Z_{\chi}^2 \left(\bar{\chi}(t,x)\chi(t,x)\right)_0$$

Three steps to calculate $T_{\mu\nu}$

1. Flow the gauge and quark field

2. Calculate expectation value of flowed operators

3. Multiply the coefficients and take t \rightarrow 0 limit

$$\{T_{\mu\nu}\}_{WT}^{q}(x) = \lim_{t \to 0} \left\{ c_{3}(t) \sum_{r=u,d,s} \left(\tilde{\mathcal{O}}_{3\mu\nu}^{r}(t,x) - 2\tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) - \left\langle \tilde{\mathcal{O}}_{3\mu\nu}^{r}(t,x) - 2\tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) \right\rangle_{T=0} \right) + c_{4}(t) \sum_{r=u,d,s} \left(\tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) - \left\langle \tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) \right\rangle_{T=0} \right) + \sum_{r=u,d,s} c_{5}^{r}(t) \left(\tilde{\mathcal{O}}_{5\mu\nu}^{r}(t,x) - \left\langle \tilde{\mathcal{O}}_{5\mu\nu}^{r}(t,x) \right\rangle_{T=0} \right) \right\}$$

3. Multiply the coefficients and take t \rightarrow 0 limit

$$\begin{split} \{T_{\mu\nu}\}_{WT}^{q}(x) &= \lim_{t\to 0} \left\{ c_{3}(t) \sum_{r=u,d,s} \left(\tilde{\mathcal{O}}_{3\mu\nu}^{r}(t,x) - 2\tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) - \left\langle \tilde{\mathcal{O}}_{3\mu\nu}^{r}(t,x) - 2\tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) \right\rangle_{T=0} \right) \\ &+ c_{4}(t) \sum_{r=u,d,s} \left(\tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) - \left\langle \tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) \right\rangle_{T=0} \right) + \sum_{r=u,d,s} c_{5}^{r}(t) \left(\tilde{\mathcal{O}}_{5\mu\nu}^{r}(t,x) - \left\langle \tilde{\mathcal{O}}_{5\mu\nu}^{r}(t,x) \right\rangle_{T=0} \right) \right\} \\ \tilde{\mathcal{O}}_{3\mu\nu}^{r}(t,x) \equiv \widehat{\varphi_{r}(t)} \bar{\chi}_{r}(t,x) \left(\gamma_{\mu} \overleftarrow{D}_{\nu} + \gamma_{\nu} \overleftarrow{D}_{\mu} \right) \chi_{r}(t,x) \\ \tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) \equiv \widehat{\varphi_{r}(t)} \delta_{\mu\nu} \bar{\chi}_{r}(t,x) \overleftarrow{\mathcal{D}} \chi_{r}(t,x) \\ \tilde{\mathcal{O}}_{5\mu\nu}^{r}(t,x) \equiv \widehat{\varphi_{r}(t)} \delta_{\mu\nu} \bar{\chi}_{r}(t,x) \chi_{r}(t,x) \\ \tilde{\mathcal{O}}_{5\mu\nu}^{r}(t,x) \equiv \widehat{\varphi_{r}(t)} \delta_{\mu\nu} \bar{\chi}_{r}(t,x) \chi_{r}(t,x) \\ \text{wave function renormalization} \\ \varphi_{r}(t) \equiv \frac{-6}{(4\pi)^{2}t^{2} \left\langle \bar{\chi}_{r}(t,x) \overleftarrow{\mathcal{D}} \chi_{r}(t,x) \right\rangle_{T=0}} \\ \text{VEV sub.} 2 \left\langle \tilde{\mathcal{O}}_{3\mu\nu}^{r}(t,x) \right\rangle_{T=0} = \left\langle \tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) \right\rangle_{T=0} = \frac{-6}{(4\pi)^{2}t^{2}} \delta_{\mu\nu} \end{split}$$

3. Multiply the coefficients and take t \rightarrow 0 limit

$$\{T_{\mu\nu}\}_{WT}^{q}(x) = \lim_{t \to 0} \left\{ c_{3}(t) \sum_{r=u,d,s} \left(\tilde{\mathcal{O}}_{3\mu\nu}^{r}(t,x) - 2\tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) - \left\langle \tilde{\mathcal{O}}_{3\mu\nu}^{r}(t,x) - 2\tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) \right\rangle_{T=0} \right) + c_{4}(t) \sum_{r=u,d,s} \left(\tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) - \left\langle \tilde{\mathcal{O}}_{4\mu\nu}^{r}(t,x) \right\rangle_{T=0} \right) + \sum_{r=u,d,s} c_{5}^{r}(t) \left(\tilde{\mathcal{O}}_{5\mu\nu}^{r}(t,x) - \left\langle \tilde{\mathcal{O}}_{5\mu\nu}^{r}(t,x) \right\rangle_{T=0} \right) \right\}$$

$$c_3(t) = \frac{1}{4} \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^2}{(4\pi)^2} \left(2 + \frac{4}{3} \ln(432) \right) \right\}$$

$$c_4(t) = \frac{1}{(4\pi)^2} \bar{g} (1/\sqrt{8t})^2$$

$$c_5^r(t) = -\bar{m}_r(1/\sqrt{8t}) \left\{ 1 + \frac{\bar{g}(1/\sqrt{8t})^2}{(4\pi)^2} \left(4\gamma - 8\ln 2 + \frac{14}{3} + \frac{4}{3}\ln(432) \right) \right\}$$

Makino-Suzuki, PTEP 2014, 063B02 (2014)

Numerical setups

 m_{ϕ}

 \bigcirc On an equal quark mass line $\overline{m_
ho}$

 $t \rightarrow 0$ limit by linear extrapolation

e/T^4

 $t \rightarrow 0$ limit by linear extrapolation

Measurement of chiral condensate

1. Flow the gauge and quark field

2. Calculate VEV of flowed operators

3. Multiply the coefficients and take t \rightarrow 0 limit

$$(\overline{\psi}\psi)_{\overline{\mathrm{MS}}}(2\mathrm{GeV}) = \lim_{t \to 0} c_{S}(t) \frac{m_{\overline{\mathrm{MS}}}(1/\sqrt{8t})}{m_{\overline{\mathrm{MS}}}(2\mathrm{GeV})} \varphi(t)\overline{\chi}(t,x)\chi(t,x)$$
flowed operator

wave function renormalization

$$\varphi(t) = \frac{-0}{(4\pi)^2 t^2 \left\langle \bar{\chi}(t,x) \overleftrightarrow{\not} \chi(t,x) \right\rangle_{T=0}}$$

matching coefficient

$$c_S(t) = \left\{ 1 + \frac{\bar{g}_{\overline{\mathrm{MS}}}(1/\sqrt{8t})^2}{(4\pi)^2} \left(4\gamma - 8\ln 2 + 8 + \frac{4}{3}\ln(432) \right) \right\}$$

C

Chiral condensate

 $t \rightarrow 0$ limit by linear extrapolation

disconnected chiral susceptibility

Chiral condensate

Summary

Flow method works well for EM tensor!

- as powerful as the derivative method.
- More suitable for Wilson fermion.
- We have exciting results:

We want work with fluctuation and correlation function using the flow!

Energy and Pressure

contributions from gauge and quarks

