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It was shown that operators of flowed fields have no UV divergences nor 
short-dist. singularities at t > 0.
GF provides us with a new physical (i.e. non-perturbative) renormalization 
scheme, which is directly calculable on the lattice in the a → 0 limit.
This opened many possibilities to drastically simplify lattice evaluation of 
physical observables.

QCD Thermodynamics with Gradient Flow

Gradient flow Lüscher(2009–), Narayanan-Neuberger(2006)

Lüscher-Weisz(2011) 

Imaginary evolution of the system into a fictitious "time" t  preserving gauge sym. etc.:
                  (ex) pure gauge theory original gauge field

We may view the flowed field Bµ as a smeared Aµ over a 
physical range of √(8t).

Our project:  Application of GF to thermodyn. of (2+1)-flavor QCD
EMT by GF :                                  H. Suzuki (2013),  Makino-Suzuki (2014)
Chiral condensate by GF :           Hieda-Suzuki (2016)

  =>   Talk by Taniguchi  (Aug. 1)

Topological charge / susceptibility by GF :   this talk



Gauge vs. Fermion Definitions for Topological Susceptibility

Gauge definition

Fermion definition
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Equivalence shown with GW quarks on the lattice.
Large discrepancy found with non-chiral quarks.
  E.g.  Petreczky et al.(1606.03145): factor ≈24 different χ at Nt=12 with HISQ.

Lüscher(’10), Consonni-Engel-Giusti(’15)

Bochicchio et al.('84), Giusti-Rossi-Testa('04)  



Note on the fermion definition
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Integrated Ward-Takahashi identities
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Simulation Parameters
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WHOT-QCD, Phys.Rev.D85, 094508 (2012)

Nf=2+1 QCD,  Iwasaki gauge + NP-clover  //  fine lattice,  physical s & heavy ud
CP-PACS+JLQCD's T = 0 config.  (ß = 2.05, 283x56, a ≈ 0.07fm, mPS/mV ≈ 0.63)  
available on ILDG/JLDG
T > 0 by fixed-scale approach, WHOT-QCD config.(323xNt,  Nt = 4, 6, 8, 10, 12, 14, 16)
gauge measurements at every config.
quark measurements every 10/5 config's (T=/>0), using a noisy estimator method.
continuum extrapolation   =>  next step study

Tpc = 190 MeV assumed

To avoid oversmearing. wrapping around 
the lattice,
      √(8t/a2) ≤ min(Ns/2, Nt/2)
i.e.,  t/a2 ≤ t1/2 = [min(Ns/2, Nt/2)]2 /√8



Gauge and Quark Flows
Lüscher,  JHEP 1008, 071 ('10); 1304, 123 ('13)

Gauge flow:  standard Wilson flow original gauge field at t = 0

Quark flow:  as suggested by Lüscher original quark field at t = 0

only gauge fields involved

We adopt the simplest one suggested by Lüscher.

Quark field renormalizattion
�R(t, x) = Z��0(t, x)

No more renormalization needed for any composite op's. VEV(T = 0)

Makino-Suzuki ('14)



GAUGE 
DEFINITION
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Use GF just as cooling.  Extract info at large t.



GF as Cooling
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283x56

t1/2 = 24.5

GF works well as 
a cooling.



GF as Cooling T/Tc = 0.92 323x16

t1/2 = 8
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GF as Cooling T/Tc = 1.47 323x10

t1/2 = 3.125

Non-integer Q's Accumulate to integer Q's
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GF as Cooling T/Tc = 1.83 323x8

t1/2 = 2

Starting to freeze to Q = 0.
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GF-Cooled Topological Susceptibility (Gauge-Definition)
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We have stopped GF at t = t1/2,  but we may go further as cooling.

Not well-cooled 
yet!



Results: Gauge definition

consistent with DIGA 
prediction (−８)

GF up to t1/2 insufficient,  giving upper bounds.
Freezing to Q=0 at T/Tc > 2.
Small-Nt error severe for Nt≤8 (from EMT experience).
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FERMION 
DEFINITION

Use GF as a renormalization scheme.
Extract info in the t → 0 limit.
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Observables related to a symmetry which is violated on lattice:
      O = chiral cond. / EMT / quark scalar densities / P0 / ...

1) Define P0 by a chiral W-T identity in a continuum scheme.
2) Relate it with a lattice operator through finite observable at t > 0 in the a → 0 limit.
    By the GF evolution, however, unwanted operators can mix at t > 0.
3) Remove unwanted contributions by t → 0.
    Matching with conventional re. scheme can be calculated by PT near the t → 0 limit.

Suzuki's Strategy

Evaluate                                   by GF following the H. Suzuki's strategy:
P
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GF provides us with a physical (i.e. non-perturbative) renormalization scheme, 
which is directly calculable on the lattice in the a → 0 limit, and also with other 
continuum regularizations, such as the dimensional regularization, too.

=> Use the finite quantities to relate lattice and continuum regularizations.



Fermion Definition by Suzuki's Strategy Hieda-Suzuki, arXiv:1606.04193

P0 in MS scheme at µ=1/√(8t) by GF

Physics extracted by 
t → 0 extrapolation. Matching with MS scheme.

Quark field renormalization.

On lattice with small but finite a:
We encounter additional mixings like

Ideally, we remove such singularity by taking a → 0 before t → 0.

We instead exchange the order of a → 0 and t → 0 extrapolations,  
by removing such singularity by hand.

Note:  lattice artifacts of our NP-clover are O(a2).



Our Data

T/Tc=0, Nt=56

using ud quark sector

T/Tc=0.92, Nt=16 T/Tc=1.05, Nt=14

T/Tc=1.22, Nt=12 T/Tc=1.47, Nt=10 T/Tc=1.83, Nt=8

0×100
1×10-5
2×10-5
3×10-5
4×10-5
5×10-5

 0  0.5  1  1.5  2
χ T

t/a2

ud quark

0×100
1×10-5
2×10-5
3×10-5
4×10-5
5×10-5

 0  0.5  1  1.5  2

χ T

t/a2

ud quark

0×100
1×10-5
2×10-5
3×10-5
4×10-5
5×10-5

 0  0.5  1  1.5  2

χ T

t/a2

ud quark

0×100
1×10-5
2×10-5
3×10-5
4×10-5
5×10-5

 0  0.5  1  1.5  2

χ T

t/a2

ud quark

0×100
1×10-5
2×10-5
3×10-5
4×10-5
5×10-5

 0  0.5  1  1.5  2

r T

t/a2

ud quark

0×100
1×10-5
2×10-5
3×10-5
4×10-5
5×10-5

 0  0.5  1  1.5  2

χ T

t/a2

ud quark

O
�
t2
�

O

✓
a2

t

◆

We see clear linear windows avoiding singular terms as well as higher order terms 
within the meaning full range of below t1/2.



(154(8)MeV)4

(156(22)MeV)4
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Results: Gauge vs fermion definition
(GeV)4

Small-Nt error severe for Nt≤8 (from EMT)
Freezing to Q=0 at T/Tc > 2.

Both definitions agrees well at T/Tc < 1.5.
Both exponents consistent with a DIGA prediction of –8.



➤ We apply gradient flow ideas to investigate thermodynamics of (2+1)-flavor 
QCD.   As the first test, we choose heavy ud quarks with physical s quark, on a 
fine lattice (a ≈ 0.07fm, mPS/mV ≈ 0.63), and adopt the fixed-scale approach.

➤ EMT / EoS / chiral cond.  results presented by Y. Taniguchi on Monday.

➤ Topol. suscept. by gauge definition:  GF as a cooling (t: large)

➤ Topol. suscept. by fermion definition:  GF as a renormalization scheme (t → 0)

➤ Completely different two estimations beautifully agree with each other,

➤      and reproduce T-dep. predicted by DIGA.

➤ But, note that our mπ ~ 400 MeV and finite a.

➤ Further study needed to complete the cont. extrapolation,

➤       and at lighter mud.

SUMMARY
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