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1. Introduction	
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Recent progress of complex Langevin 
method(CLM) enables us to study systems of 

complex action,  e.g  QCD at finite density  
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[Aarts, Seiler, Stamatescu (‘10), Seiler, Sexty, Stamatescu (’13), Sexty (’13), 
Fodor, Katz, Sexty, Torok (’15),  ...]	



Crucial question: 
 

How do we distinguish whether results in 
CLM are correct or wrong  ? 	
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Revisiting the argument for justification 
of CLM leads us to  

 
a new criterion of correctness 

= probability of drift terms 
 
 

[KN, Nishimura, Shimasaki, 1606.07627, Shimasaki talk in Lat’16] 
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New criterion - probability of drift terms	
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ü legitimate 
-  obtained from theoretical argument  

ü clear 
-  signal is qualitative 	

ü cheap      
-  no additional calculation required 



Outline of this talk	
•  Framework: condition for probability of drift 

•  Demonstration of effectiveness of the new criterion in a 
solvable system 
–  2d SU(2) Yang-Mills 
–  [see 1606.07627 , Shimasaki talk in Lat’16 for applications to one-

variable models and RMT] 

•  Applications of the criterion to finite density QCD  
–  we study QCD at finite density using CLM and 

determine the reliable range of chemical potential 
using the new criterion.  
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Complex Langevin method	

•  Langevin equation with finite stepsize 

•  Expectation value of an observable O 
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Gaussian	white	noise	

drift term	



ε-evolution with finite stepsize	

•  ε-evolution (for holomorhpic observable) 

 
•  The probability distribution should fall-off faster than any 

power law at large drift  
•  If the integrals converge for any n, we can take  ε->0 limit 

(sufficiently smaller than the convergence radius)  
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:	...	:	=	ordering	operator	
(put	deriva<ve		right)	

KN, Nishimura, Shimasaki, 1606.07627      



finite time(τ)-evolution	

•  Repeating ε-time evolution nu-times  

•  ε->0 limit   
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•  the probability should fall off faster than any power of drift at 
large v 

•  the relation to the original path-integral is shown in terms of 
induction [see sec 2.3 in 1606.07627]	

KN, Nishimura, Shimasaki, 1606.07627      



2. Applications to Gauge theories 
~ framework	

2016/8/2	 11	



CLM for gauge theory with S ∊ C	

•  Complex Langevin method  

-  complexify link variables 

-  action and observables 

-  Langevin equation for link variables 
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Gaussian	white	noise(we	
consider	only	real	noise)	

t :	Langevin	<me	

generators:	
e.g.	Gell-Mann		
matrices	for	SU(3)	

drift terms	



Gauge cooling to stabilize CL simulations	

•  complexified gauge transformation after each Langevin step  

•  chose gn so that it suppresses a norm 
–  unitarity norm (we concentrate on u. norm in this work) 

–  Justification of the complex Langevin method with the 
gauge cooling procedure [KN, Nishimura, Shimasaki, 1508.02377] 
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H.c.	is	taken	aKer	complexifica<on	

[Seiler,	Sexty,	Stamatescu	(’12)]	



The probability of the drift terms 

•  We introduce the probability of drift terms p(u) 
 
 

 where  
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If the probability p(u;t) falls off exponentially or faster, then 
the equality holds between the Langevin time average of an 
observable and its physical expectation value. 

Just	driK	terms	
No	addi<onal	cost	!		



3. Application to 2d SU(2) YM 
theory	
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2d SU(2) Yang-Mills theory	

•  Framework  

 
–  exactly solvable using character expansion  

–  sign problem for complex β 
–  CLM works for small Im[β], while it fails for large Im[β] 

[Makino et al.(‘15)] 
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Plaquette	
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Plaquette	

•  θ ≲ 0.6 : agreement with exact result 
•  θ ≳ 0.6 : deviation from exact result 

                                 [Makino et al (‘15)] 
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Unitarity norm	

•  CLM can fail even if the unitarity norm is under control  
                                                      [Makino et al (‘15)] 
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Probability of  
drift terms	
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•  θ = 0.2, 0.4 : CLM successful : p(u) falls off exponentially 
or faster 

•  θ ≳ 0.6        : CLM fails           : power law  	
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Correctness of the results can be distinguished by 
the probability of drift terms. 
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4. Applications to QCD at 
finite density	
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Setup	

•  We consider finite density QCD at low T with light quarks 
–  lattice size: 43x8   
–  Nf=4 staggered fermion with m a=0.05 (we keep mass 

small to see singular drift problem) 
•  Langevin setup 

–  Langevin time: t = 10~20 with fixed ε = 10-4  

–  gauge cooling: 10~20 times  
–  we use bilinear noise method with Kogut-Sinclair type 

improvement [Sinclair’s talk  Lat’15] 

•  Results are preliminary:  t=20 may not be sufficient to confirm 
the tail part of the probability of the drift terms.  
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Quark number & chiral condensate (CLM vs PQ)	

•  Results in CLM agree with those in PQ, but deviation found at  
µ=0.5. 

•  Are the results reliable ?  
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Unitarity norm 	

•  Unitarity norm is almost under control for all the cases. 
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Dirac Eigenvalues (ev(D+m))	
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Dirac Eigenvalues (near the origin)	
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It is difficult to judge correctness of the 
results from the unitarity norm and Dirac 
evs.	



•  µ≦0.3 : fall-off exponentially or faster  => reliable  
•  µ = 0.5 : fall-off exponentially  => reliable 
•  0.7 ≦ µ : power law             	
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Probability of drift terms	
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Data in semi-log plot	
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Probability of drift:  
(L) gauge part, (R) fermion part	

•  µ = 0.7, 0.9 => singular drift problem 
•  µ = 1.3        => excursion problem  
•  From the criterion, we can identify the origin of problems 
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Conclusion	
•  We proposed a new criterion of correctness of results in CLM　

by revisiting the argument for justification.  
–  The criterion works well for 2d SU(2) (and also cRMT 

[Shimasaki’talk]). 

•  We study QCD at low T with light quakrs using CLM, we 
determine the reliable range of chemical potential.  
–  singular drift problem occurs at intermediate values of µ.  

•  [work in progress]   
–  application of new norms with Dirac operators to avoid the 

singular drift problem.	
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Conclusion	
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ü The probability of the drift terms is a 
reliable criterion of correctness 

ü It is a legitimate, cheap and clear 
way of judging correctness.  



Remark : large drift and spikes in norms	

•  Large drift is correlated with spikes of unitarity norm.  
•  If the unitarity norm has spilkes frequently, results may be wrong.  

=> The probability of drift tell you if the result is reliable ! 
•  Langevin time should be sufficiently larger than the auto-correlation 

of norms to use the criterion.  
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stochastic process with ε 	

•  probability at t+ε	
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ε-evolution (suppl.)	

•  Taking into accout the Gaussian factor as a part of observable  
 

 
•  ε-expansion (for holomorphic O(z)) 
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Back up for 2d SU(2)	
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Probability of drift –semi-log plot	
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•  Our criterion: CLM is correct for the fall off exponentially or 
faster.  

•  It is possible that the CLM is correct even if it has power law.  
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intermediate 
value of θ	



Back up slide 
data at µ=0.5	
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Distribution	

•  The new criterion suggests the data at µ = 0.5 is reliable. 	
–  At µ=0.5: the probability falls off faster than power law.  
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Tail part of the distribution	
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Data at µ = 0.5 in semi-log plot	

•  The data in semi-log plot seems to fit with linear  
•  The probability falls off exponentially.  
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Data at µ = 0.7 and 0.9 in semi-log plot	

•  The data in semi-log plot seems to fall off slower than linear.  
•  The probability falls off slower than exponentially.  
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Data at µ = 1.3 in semi-log plot	

•  The data in semi-log plot seems to fall off slower than linear.  
•  The probability falls off slower than exponentially.  
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Ttherm dep-Data at µ = 0.5 in semi-log-plot	

•  Data for µ = 0.5 with ttherm = 4 and 6 
•  The plot implies the exponential damp.  

–  the data is reliable. 	
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Unitariry norm and anti-hermiticity	

•  We found the similarity between unitarity norm and anti-
hermiticity norm 	
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At µ=0, they are equivalent.  
Cooling for unitarity norm has an effect to reduce the anti-
hermiticity norm.  
 
Cooling for new norm may extend the applicable range 
further, work in progress. 	



Back up for 43x8	
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Anti-Hermiticity norm	

•  4^3x8	
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Back up – framework 	
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Sign problem	

•  Monte Carlo method with importance sampling  
–  powerful tool to solve path-integrals non-perturbatively  

•  Importance sampling breaks down if S is complex 
–  QCD at finite density or with theta-term 
–  Chern-Simons gauge theories 
–  Hubbard model away from half-filling 
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Z =

Z Y

k

dx

k

e

�S(x)
, (S 2 C)



(real) Langevin Method (LM)	

•  Generation of ensemble using Langevin eq. (stochastic 
quantization) 
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Ensemble is generated by the stochastic equation rather 
than importance sampling 

t:	parameter(Langevin	<me)	
η:	Gaussian	white	noise	

Z =

Z Y

k

dx

k

e

�S(x)
, (x

k

, S 2 R)

Parisi-Wu 1981	



proof of LM	
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•  According to the Fokker-Planck equation, P converges to  

•  Average of the observable converges to  

•  Average of an observable in LM is given by  

average	
in	LM	

physical		
expecta<on	value	

hO(x(⌘)(t))i⌘ =

Z
dxO(x)P (x; t)



Complex Langevin method(CLM)	

•  Stochastic quantization is available for complex action 
–  LM is free from the probability interpretation of exp(-S)  
–  however, complexification is inevitable 

•  CLM 
–  extend originally real variables to complex 

–  extend also action and observables in a holomorphic 
manner 

 
–  Langevin equation  
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x 2 R ! z = x+ iy 2 C

@z

@t
= �@S

@z
+ ⌘(t)

S(x) ! S(z) = S(x+ iy)

[Parisi(’83), Klauder(‘83)]	

(noise	term	can	be	complex.	
However,	we	prefer	to	use	real	noise	
throughout	this	talk)	



Problem of convergence	

•  In CLM, P(x;t) in equilibrium is not ensured to converge 
to correct limit 

–  CLM works well for some cases, but fails for other. 
–  there had been no criteria to distinguish if results in CLM are 

correct or not.  
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?	Z
dxdy O(x+ iy)P (x, y; t) =

Z
dxO(x)⇢(x; t)

lim
t!1

⇢(x; t) = e

�S(x)



Justification of CLM / criteria of correctness	

•  CLM is justified if some conditions are satisfied   
[Aarts, et. al. PRD81, 054508(’10), EPJC71,1756(’11)]. 

  
–  fast fall-off of the probability distribution in the imaginary direction  
–  holomorphy of action and observables 

This argument also tells what causes the failure of the CLM. 
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Z
dxdy O(x+ iy)P (x, y; t) =

Z
dxO(x)⇢(x; t)

lim
t!1

⇢(x; t) = e

�S(x)

(“Revisit the argument of justification”, KN, Nishimura, Shimasaki in 
preparation. ) 



Advantages of CLM	

•  CLM overcomes several points which are serious difficulties 
for approaches based on importance sampling 
–  CLM is possible even if the phase fluctuation is very 

large  
–  exponential increase of numerical cost does not occur 
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confinement 
phase

deconfinement 
phase

ensemble generation 
µ=0 
(or imaginary-, isospin-µ	

Taylor	expansion,		
reweigh<ng	etc	

Increasing	µ	causes		
exponen<ally	increasing	
uncertain<es	

[e.g. KN, Nakamura,  
PRD91, (2015) no9. 094507,  
PTEP2012, 01A103,  
JHEP1204(2012)092, 
PRD83(2011)114507] 



Back up for 44	
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Chiral condensate and number density	
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Unitarity norm	
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anti-hermiticity norm	
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New types of norm for singular drift problem	

•  CLM fails when such Dirac eigenvalues appear that the 
fermion drift becomes singular [Mollgaard & Splittorff, 
Greensite] 

•  We showed that the singular drift problem can be 
avoided by chosing suitable norm in RMT 
–  norms including Dirac operator 
–  e.g. anti-hermiticity norm  
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