Results on the heavy-dense QCD phase diagram using complex Langevin

Felipe Attanasio

Prifysgol Abertawe Swansea University

Results on the heavy-dense QCD phase diagram using complex Langevin

CLE: Motivation

- *Sign problem*: Inclusion of a chemical potential to an Euclidean path integral makes the action complex
- Average values for observables then rely on precise cancellations of oscillating quantities
- In QCD this is manifested in the fermion determinant

$$[\det M(U,\mu)]^* = \det M(U,-\mu^*)$$

which is complex for real chemical potential $\boldsymbol{\mu}$

• Results from Hybrid Monte-Carlo simulations become unreliable when the sign problem is severe

< □ > < 同 > < 三 > < 三 >

Complex Langevin Equation

CLE: Stochastic quantization I

In the continuum

[Damgaard and Hüffel, Physics Reports]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- \bullet Add fictitious time dimension θ to gauge fields
- Evolve them according to a Langevin equation

$$\frac{\partial A^a_\mu(x,\theta)}{\partial \theta} = -\frac{\delta S}{\delta A^a_\mu(x,\theta)} + \eta^a_\mu(x,\theta) \,,$$

where S is the QCD action and $\eta^a_\mu(x)$ are white noise fields satisfying

$$\langle \eta^a_\mu(x) \rangle = 0, \quad \langle \eta^a_\mu(x) \eta^b_\nu(y) \rangle = 2\delta^{ab} \delta_{\mu\nu} \delta(x-y),$$

• Quantum expectation values are computed as averages over the Langevin time θ after the system reaches equilibrium at $\theta = T_{therm}$

$$\langle O \rangle = \lim_{T \to \infty} \frac{1}{T - T_{therm}} \int_{T_{therm}}^{T} O(\theta) d\theta$$

CLE: Stochastic quantization II

On the lattice

[Damgaard and Hüffel, Physics Reports]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Evolve gauge links according to the Langevin equation

$$U_{x\mu}(\theta + \varepsilon) = \exp[X_{x\mu}] U_{x\mu}(\theta),$$

where

$$X_{x\mu} = i\lambda^a (-\varepsilon D^a_{x\mu} S \left[U(\theta) \right] + \sqrt{\varepsilon} \, \eta^a_{x\mu}(\theta)) \,,$$

 λ^a are the Gell-Mann matrices, ε is the stepsize, $\eta^a_{x\mu}$ are white noise fields satisfying

$$\langle \eta^a_{x\mu} \rangle = 0 \,, \quad \langle \eta^a_{x\mu} \eta^b_{y\nu} \rangle = 2 \delta^{ab} \delta_{xy} \delta_{\mu\nu} \,,$$

S is the QCD action and $D^a_{x\mu}$ is defined as

$$D^{a}_{x\mu}f(U) = \left.\frac{\partial}{\partial\alpha}f(e^{i\alpha\lambda^{a}}U_{x\mu})\right|_{\alpha=0}$$

CLE: Complexification I

Complexification

[Aarts, Stamatescu, hep-lat/0807.1597]

< □ > < 同 > < 三 > < 三 >

- Allow gauge fields to be complex, i.e., $\mathbb{R}
 i A^a_\mu(x) \to A^a_\mu(x) \in \mathbb{C}$
- On the lattice this means $SU(3) \ni U_{x\mu} \to U_{x\mu} \in SL(3,\mathbb{C})$
- Use $U^{-1}_{x\mu}$ instead of $U^{\dagger}_{x\mu}$ as
 - it keeps the action holomorphic;
 - they coincide on SU(3) but on SL(3, C) it is U⁻¹ that represents the backwards-pointing link.
- That means the plaquette is now

$$U_{x,\mu\nu} = U_{x\mu}U_{x+\mu,\nu}U_{x+\nu,\mu}^{-1}U_{x,\nu}^{-1},$$

and the Wilson action reads

$$S[U] = -\frac{\beta}{3} \sum_{x} \sum_{\mu < \nu} \operatorname{Tr} \left[\frac{1}{2} \left(U_{x,\mu\nu} + U_{x,\mu\nu}^{-1} \right) - \mathbb{1} \right]$$

Complex Langevin Equation

CLE: Complexification II – Gauge cooling

Gauge cooling

[Seiler, Sexty, Stamatescu, hep-lat/1211.3709]

(日)

- The SL(3, C) group is a non-compact manifold, which means the gauge links can get arbitrarily far from SU(3)
- During simulations monitor the distance from the unitary manifold with

$$d = \frac{1}{N_s^3 N_\tau} \sum_{x,\mu} \operatorname{Tr} \left[U_{x\mu} U_{x\mu}^{\dagger} - \mathbb{1} \right]^2 \ge 0$$

• Use gauge transformations to keep the system as close as possible to SU(3), i.e., minimise the imaginary part of $A^a_\mu(x)$

$$U_{x\mu} \to \Lambda_x U_{x\mu} \Lambda_{x+\mu}^{-1}, \quad \Lambda_x = \exp\left[-\varepsilon \alpha \lambda^a f_x^a\right]$$

where

$$f_x^a = 2\mathbf{Tr} \left[\lambda^a \left(U_{x\mu} U_{x\mu}^{\dagger} - U_{x-\mu,\mu}^{\dagger} U_{x-\mu,\mu} \right) \right]$$

• The parameter α and the number of cooling steps are chosen adaptively based on the distance d.

Heavy-dense QCD

Heavy-dense approximation

[Aarts, Stamatescu, hep-lat/0807.1597]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Heavy quarks \rightarrow spatial part of fermion determinant does not contribute, but temporal part is exact ($\kappa \rightarrow 0$):

$$\det M(U,\mu) \approx \det_{x,c,s} \left[1 - \kappa \left(e^{\mu} \Gamma_{+4} U_4(x) T_4 + e^{-\mu} \Gamma_{-4} U^{-1}(x) T_{-4} \right) \right]$$

=
$$\det_{x,c} \left(1 - 2\kappa e^{\mu} U_4(x) T_4 \right)^2 \det_{x,c} \left(1 - 2\kappa e^{-\mu} U_4^{-1}(x) T_{-4} \right)^2$$

=
$$\prod_{\vec{x}} \left\{ \det_c \left[1 + (2\kappa e^{\mu})^{N_{\tau}} \mathcal{P}_{\vec{x}} \right]^2 \det_c \left[1 + (2\kappa e^{-\mu})^{N_{\tau}} \mathcal{P}_{\vec{x}}^{-1} \right]^2 \right\}$$

where $T_{\pm 4}$ are lattice translations in the temporal direction, $\Gamma_{\pm 4}=\mathbf{1}\pm\gamma_4$ and

$$\mathcal{P}_{\vec{x}} = \prod_{\tau} U_4(\vec{x}, \tau)$$

is the Polyakov loop

Heavy-dense QCD

Heavy-dense approximation

[Aarts, Stamatescu, hep-lat/0807.1597]

< 日 > < 同 > < 三 > < 三 > 、

• Heavy quarks \rightarrow spatial part of fermion determinant does not contribute, but temporal part is exact ($\kappa \rightarrow 0$):

$$\det M(U,\mu) = \prod_{\vec{x}} \left\{ \det \left[1 + (2\kappa e^{\mu})^{N_{\tau}} \mathcal{P}_{\vec{x}} \right]^2 \det \left[1 + \left(2\kappa e^{-\mu} \right)^{N_{\tau}} \mathcal{P}_{\vec{x}}^{-1} \right]^2 \right\}$$

Polyakov loop

$$\mathcal{P}_{\vec{x}} = \prod_{\tau} U_4(\vec{x},\tau)$$

- Exhibits the sign problem: $[\det M(U,\mu)]^* = \det M(U,-\mu^*)$
- $\mu = \mu_c^* \equiv -\ln(2\kappa)$ marks the transition to higher densities at zero temperature $(N_\tau \to \infty)$

Simulation setup and observables

Simulation setup

- Gauge coupling $\beta=5.8$
 - Lattice spacing (approximate) $a\sim 0.15~{
 m fm}$
- Hopping parameter $\kappa=0.04$
 - Critical chemical potential $\mu_c^0=2.53$
- Lattice volumes $V=6^3,8^3,10^3$
- Number of flavours $N_f = 2$
- Temporal extents/temperatures

N_{τ}	28	24	20	16	14	12	10
$T \; [MeV]$	48	56	67	84	96	112	134
N_{τ}	8	7	6	5	4	3	2
$T \; [MeV]$	168	192	224	268	336	447	671

Results

HDQCD

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simulation setup and observables

Observables

• "Real part" of the Polyakov loop

$$P^{s} = \frac{1}{2} \left(\langle P \rangle + \langle P^{-1} \rangle \right) \,,$$

where

$$\langle P \rangle = \frac{1}{V} \sum_{\vec{x}} \langle P_{\vec{x}} \rangle , \qquad P_{\vec{x}} = \frac{1}{3} \operatorname{Tr} \mathcal{P}_{\vec{x}}$$
$$\langle P^{-1} \rangle = \frac{1}{V} \sum_{\vec{x}} \langle P_{\vec{x}}^{-1} \rangle , \qquad P_{\vec{x}}^{-1} = \frac{1}{3} \operatorname{Tr} \mathcal{P}_{\vec{x}}^{-1}$$

• Quark density

$$\langle n \rangle = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu}$$

イロト イヨト イヨト イヨト

э

HDQCD at $V = 10^3$, $\beta = 5.8$ and $\kappa = 0.04$

Average Polyakov loop (left) and quark density (right) as functions of temperature and chemical potential.

Regions of confinement ($\langle \mathcal{P} \rangle = 0$) and deconfinement are visible and also the smoothening of the transition to higher densities.

Binder cumulant for the Polyakov loop at $V=10^3$

Binder cumulant: $B = 1 - \frac{\langle O^4 \rangle}{3 \langle O^2 \rangle^2}$ Confinement is indicated by B = 0 while B = 2/3 means deconfinement

Left: Binder cumulant of the Polyakov loop as function of μ and T. Right: Two dimensional projection of the Binder cumulant. Red colours indicated a value compatible with 0, while yellow corresponds to 2/3.

Phase boundary at $V = 10^3$

With $x = (\mu/\mu_c^0)^2$.

- Fit B takes into account $T_c(\mu_c^0) = 0$
- Fit C has an additional term $0 < \alpha < 1$ to reproduce non-analytic behaviour at x = 1 from the Clausis-Clapeyron relation $(\partial T_c(\mu)/\partial \mu \to \infty \text{ at } \mu = \mu_c^0)$

A D N A B N A B N A B N

Phase boundary at $V = 10^3$

- The coefficients from fits A and B are compatible, showing that $T_c(\mu_c^0) = 0$ emerges naturally from our data
- Our lowest temperature is still away from T=0 and the non-analytical behaviour cannot be captured by α

< ロ > < 同 > < 回 > < 回 >

Phase boundary using fit B

Comparison of different orders for fit B at $V = 10^3$.

15 / 23

3.1

Phase boundary using fit B

Volume dependence of the phase boundary with second order polyanomials.

• • • • • • • • • • • •

16 / 23

Instabilities I

A large unitarity norm leads to distributions that do not reflect the original theory.

Left: Real part of the Polyakov loop and unitarity norms as functions of the Langevin time.

Right: Histogram of the Polyakov loop in the regions before and after the norm has increased.

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- E - N

Instabilities II

Exploring other possibilities

Increasing β from 5.8 to 6.2 pushed the instabilities further in Langevin time.

Felipe Attanasio

Results on the heavy-dense QCD phase diagram using complex Langevin

Instabilities II

Exploring other possibilities

New technique: Dynamic stabilisation.

< (17) > <

19 / 23

A glimpse of dynamic stabilisation

From Ben Jäger's poster

• Dynamic stabilisation: Addition of new term to the drift to keep the system as close as possible to SU(3), i.e., minimise the imaginary part of $A^a_{\mu}(x)$

Results HDOCD

$$M_x^a = b_x^a \left(\sum_c b_x^c b_x^c\right)^3, \quad b_x^a = \operatorname{Tr}\left[\lambda^a \sum_{\nu} U_{x\nu} U_{x\nu}^{\dagger}\right].$$

• M^a_x is irrelevant in the continuum limit and, to leading order, only depends on the imaginary parts of the gauge fields

$$M_x^a \sim a^7 \left(\overline{B}_y^c \overline{B}_y^c\right)^3 \overline{B}_x^a, \quad \overline{B}_x^a = \sum_{\nu} B_{x,\nu}^a.$$

• The new drift, with α_{DS} being a control coefficient, reads

$$X_{x\nu} = i\lambda^a \left(-\epsilon D^a_{x,\nu} S - \epsilon \alpha_{DS} M^a_x + \sqrt{\epsilon} \eta^a_{x,\nu} \right) \,.$$

< ロ > < 同 > < 回 > < 回 >

A glimpse of dynamic stabilisation applied to full QCD

Results

HDQCD

From Ben Jäger's poster

Chiral condensate as function of μ (see Ben Jäger's poster).

A glimpse of dynamic stabilisation applied to full QCD

Results

HDQCD

From Ben Jäger's poster

Chiral condensate susceptibility as function of μ (see Ben Jäger's poster).

Summary and Outlook

Summary

- Complex Langevin simulations allow the study of theories that exhibit the sign problem
- CLE + Gauge Cooling was successfully used to map the HDQCD phase diagram for real chemical potentials
- Instabilities can limit the amount of statistics available

Outlook

 Map the vicinity of the phase boundary of QCD with fully dynamical quarks using the dynamic stabilisation technique (as shown on Ben Jäger's poster)

< ロ > < 同 > < 回 > < 回 > < 回 > <