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Complex Langevin Equation

CLE: Motivation

Sign problem: Inclusion of a chemical potential to an Euclidean path integral
makes the action complex
Average values for observables then rely on precise cancellations of oscillating
quantities
In QCD this is manifested in the fermion determinant

[detM(U, µ)]∗ = detM(U,−µ∗)

which is complex for real chemical potential µ
Results from Hybrid Monte-Carlo simulations become unreliable when the
sign problem is severe
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Complex Langevin Equation

CLE: Stochastic quantization I

In the continuum [Damgaard and Hüffel, Physics Reports]

Add fictitious time dimension θ to gauge fields
Evolve them according to a Langevin equation

∂Aaµ(x, θ)
∂θ

= − δS

δAaµ(x, θ) + ηaµ(x, θ) ,

where S is the QCD action and ηaµ(x) are white noise fields satisfying

〈ηaµ(x)〉 = 0 , 〈ηaµ(x)ηbν(y)〉 = 2δabδµνδ(x− y) ,

Quantum expectation values are computed as averages over the Langevin
time θ after the system reaches equilibrium at θ = Ttherm

〈O〉 = lim
T→∞

1
T − Ttherm

∫ T

Ttherm

O(θ)dθ
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Complex Langevin Equation

CLE: Stochastic quantization II

On the lattice [Damgaard and Hüffel, Physics Reports]

Evolve gauge links according to the Langevin equation

Uxµ(θ + ε) = exp [Xxµ]Uxµ(θ) ,

where
Xxµ = iλa(−εDa

xµS [U(θ)] +
√
ε ηaxµ(θ)) ,

λa are the Gell-Mann matrices, ε is the stepsize, ηaxµ are white noise fields
satisfying

〈ηaxµ〉 = 0 , 〈ηaxµηbyν〉 = 2δabδxyδµν ,

S is the QCD action and Da
xµ is defined as

Da
xµf(U) = ∂

∂α
f(eiαλ

a

Uxµ)
∣∣∣∣
α=0
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Complex Langevin Equation

CLE: Complexification I

Complexification [Aarts, Stamatescu, hep-lat/0807.1597]

Allow gauge fields to be complex, i.e., R 3 Aaµ(x)→ Aaµ(x) ∈ C
On the lattice this means SU(3) 3 Uxµ → Uxµ ∈ SL(3,C)
Use U−1

xµ instead of U†xµ as
it keeps the action holomorphic;
they coincide on SU(3) but on SL(3,C) it is U−1 that represents the
backwards-pointing link.

That means the plaquette is now

Ux,µν = UxµUx+µ,νU
−1
x+ν,µU

−1
x,ν ,

and the Wilson action reads

S[U ] = −β3
∑
x

∑
µ<ν

Tr
[

1
2
(
Ux,µν + U−1

x,µν

)
− 1
]
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Complex Langevin Equation

CLE: Complexification II – Gauge cooling

Gauge cooling [Seiler, Sexty, Stamatescu, hep-lat/1211.3709]

The SL(3,C) group is a non-compact manifold, which means the gauge links
can get arbitrarily far from SU(3)
During simulations monitor the distance from the unitary manifold with

d = 1
N3
sNτ

∑
x,µ

Tr
[
UxµU

†
xµ − 1

]2 ≥ 0

Use gauge transformations to keep the system as close as possible to SU(3),
i.e., minimise the imaginary part of Aaµ(x)

Uxµ → ΛxUxµΛ−1
x+µ , Λx = exp [−εαλafax ]

where
fax = 2Tr

[
λa
(
UxµU

†
xµ − U†x−µ,µUx−µ,µ

)]
The parameter α and the number of cooling steps are chosen adaptively
based on the distance d.
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Results HDQCD

Heavy-dense QCD

Heavy-dense approximation [Aarts, Stamatescu, hep-lat/0807.1597]

Heavy quarks → spatial part of fermion determinant does not contribute, but
temporal part is exact (κ→ 0):

detM(U, µ) ≈ det
x,c,s

[
1− κ

(
eµΓ+4U4(x)T4 + e−µΓ−4U

−1(x)T−4
)]

= det
x,c

(1− 2κeµU4(x)T4)2 det
x,c

(
1− 2κe−µU−1

4 (x)T−4
)2

=
∏
~x

{
det
c

[
1 + (2κeµ)Nτ P~x

]2
det
c

[
1 +

(
2κe−µ

)Nτ P−1
~x

]2
}

where T±4 are lattice translations in the temporal direction, Γ±4 = 1± γ4
and

P~x =
∏
τ

U4(~x, τ)

is the Polyakov loop
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Results HDQCD

Heavy-dense QCD

Heavy-dense approximation [Aarts, Stamatescu, hep-lat/0807.1597]

Heavy quarks → spatial part of fermion determinant does not contribute, but
temporal part is exact (κ→ 0):

detM(U, µ) =
∏
~x

{
det
[
1 + (2κeµ)Nτ P~x

]2
det
[
1 +

(
2κe−µ

)Nτ P−1
~x

]2
}

Polyakov loop
P~x =

∏
τ

U4(~x, τ)

Exhibits the sign problem: [detM(U, µ)]∗ = detM(U,−µ∗)
µ = µ∗c ≡ − ln(2κ) marks the transition to higher densities at zero
temperature (Nτ →∞)

Felipe Attanasio Results on the heavy-dense QCD phase diagram using complex Langevin 8 / 23



Results HDQCD

Simulation setup and observables

Simulation setup
Gauge coupling β = 5.8

Lattice spacing (approximate) a ∼ 0.15 fm
Hopping parameter κ = 0.04

Critical chemical potential µ0
c = 2.53

Lattice volumes V = 63, 83, 103

Number of flavours Nf = 2
Temporal extents/temperatures

Nτ 28 24 20 16 14 12 10
T [MeV] 48 56 67 84 96 112 134
Nτ 8 7 6 5 4 3 2

T [MeV] 168 192 224 268 336 447 671
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Results HDQCD

Simulation setup and observables

Observables
“Real part” of the Polyakov loop

P s = 1
2
(
〈P 〉+ 〈P−1〉

)
,

where
〈P 〉 = 1

V

∑
~x

〈P~x〉 , P~x = 1
3TrP~x

〈P−1〉 = 1
V

∑
~x

〈P−1
~x 〉 , P−1

~x = 1
3TrP−1

~x

Quark density
〈n〉 = T

V

∂ lnZ
∂µ

Felipe Attanasio Results on the heavy-dense QCD phase diagram using complex Langevin 10 / 23



Results HDQCD

HDQCD at V = 103, β = 5.8 and κ = 0.04

Average Polyakov loop (left) and quark density (right) as functions of temperature
and chemical potential.
Regions of confinement (〈P〉 = 0) and deconfinement are visible and also the
smoothening of the transition to higher densities.
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Results HDQCD

Binder cumulant for the Polyakov loop at V = 103

Binder cumulant: B = 1− 〈O4〉
3〈O2〉2

Confinement is indicated by B = 0 while B = 2/3 means deconfinement
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Left: Binder cumulant of the Polyakov loop as function of µ and T .
Right: Two dimensional projection of the Binder cumulant. Red colours indicated
a value compatible with 0, while yellow corresponds to 2/3.
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Results HDQCD

Phase boundary at V = 103
T
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]

µ /µ0
c
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Fit A: Tc =
n∑
k=0

akx
k

Fit B: Tc =
n∑
k=1

bk(1− x)k

Fit C: Tc = c0(1− x)α

+
n∑
k=1

ck(1− x)k

With x = (µ/µ0
c)2.

Fit B takes into account Tc(µ0
c) = 0

Fit C has an additional term 0 < α < 1 to reproduce non-analytic behaviour
at x = 1 from the Clausis-Clapeyron relation (∂Tc(µ)/∂µ→∞ at µ = µ0

c)

Felipe Attanasio Results on the heavy-dense QCD phase diagram using complex Langevin 13 / 23



Results HDQCD

Phase boundary at V = 103
T

[M
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]

µ /µ0
c

fit A
fit B
fit C
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Fit A: Tc =
n∑
k=0

akx
k

Fit B: Tc =
n∑
k=1

bk(1− x)k

Fit C: Tc = c0(1− x)α

+
n∑
k=1

ck(1− x)k

The coefficients from fits A and B are compatible, showing that Tc(µ0
c) = 0

emerges naturally from our data
Our lowest temperature is still away from T = 0 and the non-analytical
behaviour cannot be captured by α

Felipe Attanasio Results on the heavy-dense QCD phase diagram using complex Langevin 14 / 23



Results HDQCD

Phase boundary using fit B
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Comparison of different orders for fit B at V = 103.
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Results HDQCD

Phase boundary using fit B
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Volume dependence of the phase boundary with second order polyanomials.
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Results HDQCD

Instabilities I

A large unitarity norm leads to distributions that do not reflect the original theory.
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Left: Real part of the Polyakov loop and unitarity norms as functions of the
Langevin time.
Right: Histogram of the Polyakov loop in the regions before and after the norm
has increased.
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Results HDQCD

Instabilities II

Exploring other possibilities
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HDQCD, 103 × 4, β = 6.2, κ = 0.04, µ = 0.7

Polyakov loop

Unitarity norm

Increasing β from 5.8 to 6.2 pushed the instabilities further in Langevin time.
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Results HDQCD

Instabilities II

Exploring other possibilities
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Gauge ooling

Dyn. stab.

Reweighting

New technique: Dynamic stabilisation.
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Results HDQCD

A glimpse of dynamic stabilisation

From Ben Jäger’s poster

Dynamic stabilisation: Addition of new term to the drift to keep the system
as close as possible to SU(3), i.e., minimise the imaginary part of Aaµ(x)

Ma
x = bax

(∑
c

bcxb
c
x

)3

, bax = Tr
[
λa
∑
ν

UxνU
†
xν

]
.

Ma
x is irrelevant in the continuum limit and, to leading order, only depends

on the imaginary parts of the gauge fields

Ma
x ∼ a7

(
B
c

yB
c

y

)3
B
a

x , B
a

x =
∑
ν

Bax,ν .

The new drift, with αDS being a control coefficient, reads

Xxν = iλa
(
−εDa

x,νS − εαDSMa
x +
√
ε ηax,ν

)
.
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Results HDQCD

A glimpse of dynamic stabilisation applied to full QCD

From Ben Jäger’s poster

Full QCD: 83 × 8, β = 6.4, m = 0.05, Nf = 2
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Chiral condensate as function of µ (see Ben Jäger’s poster).
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Results HDQCD

A glimpse of dynamic stabilisation applied to full QCD

From Ben Jäger’s poster

Full QCD: 83 × 8, β = 6.4, m = 0.05, Nf = 2
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Chiral condensate susceptibility as function of µ (see Ben Jäger’s poster).
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Conclusion

Summary and Outlook

Summary
Complex Langevin simulations allow the study of theories that exhibit the
sign problem

CLE + Gauge Cooling was successfully used to map the HDQCD phase
diagram for real chemical potentials

Instabilities can limit the amount of statistics available

Outlook
Map the vicinity of the phase boundary of QCD with fully dynamical quarks
using the dynamic stabilisation technique (as shown on Ben Jäger’s poster)
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