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Relativistic Nucleus-Nucleus Collisions

Animation: P. Sorensen

Produced fireball is ~10-1* meters across
and lives for ~5x10-23 seconds

Collision of two Lorentz contracted gold nuclei
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Event-by-event shape and flow fluctuations rule!
(Alver and Roland, PRC81 (2010) 054905)

o
x (fm)

e Each event has a different initial shape and density distribution, characterized by different set of
harmonic eccentricity coefficients €,,

e Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow
coefficients v,, and flow angles 1),

e At small impact parameters fluctuations (“hot spots”) dominate over geometric overlap effects
(Alver & Roland, PRC81 (2010) 054905; Qin, Petersen, Bass, Miiller, PRC82 (2010) 064903)
Definition of flow coefficients:
AN AN
dyprdprdg, " dyprdpr

oo
®) [ 1+2) v (y, prsb) cos(d, — ¥)

n=1
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https://u.osu.edu/vishnu: A product of the JET Collaboration

S priveics IEBE: e-by-e hydro on demand
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Viscous relativistic hydrodynamics (israel & Stewart 1979)

Include shear viscosity 7, neglect bulk viscosity (massless partons) and heat conduction
(uB =~ 0); solve

0, T* =0
with modified energy momentum tensor
T (x) = (e(2)+p(@))ut(2)u”(z) — gHp(@) + 7.

Y = traceless viscous pressure tensor which relaxes locally to 27 times the shear
tensor V{“4¥) on a microscopic kinetic time scale 7.

Drtv = 71}

= (7r“" = 277V<“u">) + ...
where D = v, is the time derivative in the local rest frame.

Kinetic theory relates 7 and 7., but for a strongly coupled QGP neither 7 nor this
relation are known == treat 7 and 7, as independent phenomenological parameters.

For consistency: 7.0 <1 (6 = 9*u, =local expansion rate).
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Towards a Standard Model of the Little Bang

B. Schenke: QM2012

. . . . . Schenke, Tribedy, Venugopalan,
With inclusion of sub-nucleonic quantum fluctuations  physRev.Lett 108:25231 (2012)

and pre-equilbrium dynamics of gluon fields:
— outstanding agreement between data and model

Rapid convergence on a standard model of the Little Bang!

Perfect liquidity reveals in the final state initial-state gluon field correlations
of size 1/Qg (sub-hadronic)!

Y |
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The big question

m Flow-like signatures of similar characteristics as those in AA collisions
were also seen in pA and high-multiplicity pp.

m Seen in both single-particle observables ( “radial flow") and
two-particle correlations (“anisotropic flow").

m Initial-state momentum correlations can also manifest themselves as
“anisotropic flow” in the final state, especially in small collision
systems where they may survive final-state interactions.

m What is the true origin of these flow-like signatures? How can
we separate initial-state from final-state effects, in particular in
small systems?

m What is the internal phase-space structure of a proton?
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Overview

Flow in small systems?
m Flow in small systems?
m Do small systems behave hydrodynamically?
m Collectivity in small systems
m Initial-state momentum correlations?
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Flow in small systems?

Ridge in pp, pPb and PbPb

(C) PbPb (S =276 TeV, 220 <N
PbPb
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Ridge observed in high multiplicity
pp collisions at 13 TeV !
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Flow in small systems?
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Validity of viscous hydro: Knudsen number check

nis =016
HH-1Q
- nfa=HH-HQ

T

Niemi & Denicol, arXiv:1404.7327

Kn = tmicro 8= rmicro /tmacro 02
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Predicts freeze-out at higher temperature in p+Pb than in Pb+Pb
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Long-range correlations in high-mult. pp

Flow parameter analysis
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What is needed?

Proton substructure

Long-range correlations in high-mult. pp

CMS-HIN-15-009

Flow parameter analysis
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Flow in small systems?
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No centrality dependence of elliptic flow in pp?!
Flow not just in high-multiplicity pp?!
Not flow but something else?
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Do small systems behave hydrodynamically?

Do small systems behave hydrodynamically?
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Collectivity in small systems

Collectivity in small systems!
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Whatever its origin, the “flow signal” represents a collective response
(to what?) of all particles!
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Initial-state momentum correlations?

Dusling and Venugopalan, PRD87 (2013) 054014

Associated Yield (1.0 < [GeV1 < 20) Associated Yield
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Initial-state momentum (anti-)correlations from “Glasma graphs”
qualitatively explain the multiplicity dependence and pr-dependence at
high pt of the ridge yields in pPb and high-multiplicity pp collisions
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Initial-state momentum correlations?

Initial-state momentum correlations?
Lappi, Schenke, Schlichting, Venugopalan, JHEP 2016 (arXiv:1509.03499)

s

Spatial inhomogeneity of CGC and spatial deformation of CGC regions of
homogeneity generate momentum anisotropies among the initially
produced partons, corresponding to non-zero v, for all n,

with “reasonable-looking” pt dependence.
XQCD 2016, 8/1/2016 26 / 48
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Overview

What is needed to resolve this ambiguity?
m What is needed?
m What is missing?
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What is needed?

What is needed to resolve this ambiguity?

m Initial conditions for the phase-space distribution of the produced
matter,

fmatter(xj_> OsiPL, ¢p; Yp—1s, 7'0)
which depends on the

m phase-space (Wigner) distribution of the glue inside the nucleons
bound into small nuclei:

fotue(X L, @si KL, dki yk—ns: T0)

B From fyatter We obtain the initial energy-momentum tensor

Vd of

TMV(XJ_7 Ns, 7—0) = (271')3 /dYszprupyfmatter(XJ_v Os; PLs ¢p; Yp—s: TO)
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What is needed?

What is needed to resolve this ambiguity?

m Once the initial T#”(x) is known, we can evolve it for some time
Teq—T0 With a pre-equilibrium model, match it to viscous
hydrodynamic form,

TH = eutu” — (P(e) + M) AR + 7,

run it through viscous hydrodynamics plus hadronic afterburner, and
compare its output with experiment.

m To account for event-by-event quantum fluctuations in the initial
TH(x), and for thermal noise during the evolution, the dynamical
evolution must be performed many times before taking ensemble
averages as done in experiment.
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What is missing?

What is missing in present calculations?

Present modeling uses simplified assumptions for the initial phase-space distrib’n:

m Few models account for the initial momentum structure of the medium; most
ignore it completely. = incorrect/unreliable initial conditions for M, 7#*

m While granularity of the initial spatial density distribution is accounted for at the
nucleon length scale, by Monte-Carlo sampling the nucleon positions from a
smooth Woods-Saxon probability distribution before allowing them to collide and
lose energy to create lower-rapidity secondary matter, quantum fluctuations on
sub-nucleonic length scales are poorly controlled and mostly ignored. IP-Glasma
includes sub-nucleonic gluon field fluctuations, but appears to get them wrong,
yielding spatial gluon distributions inside protons that are too compact.

m Most approaches (e.g. PHOBOS Glauber Monte Carlo) use disk-like nucleons for
computing the collision probability. More realistic collision detection using
Gaussian nucleons is implemented in GLISSANDO and iEBE-VISHNU.

m Most approaches ignore quantum fluctuations in the amount of beam energy lost
to lower rapidities in a NN collision. Without these, the measured KNO-like
multiplicity distributions in pp collisions are not reproduced, and pp collisions
produce zero €3 by symmetry. GLISSANDO and iEBE-VISHNU include pp
multiplicity fluctuations, creating non-zero triangularity in pp, even without

sub-nucleonic structure.
Ulrich Heinz (Ohio State) Fluid dynamics for pp and pA XQCD 2016, 8/1/2016 30/ 48



Proton substructure

Overview

Proton substructure: what does a proton look like in position space?
m CGC picture of the nucleon
m Modeling quark substructure of the nucleon
m Characteristics of initial entropy density distributions in pp and
light-heavy collisions
XQCD 2016, 8/1/2016 31/ 48
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Proton substructure
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CGC picture of the nucleon

“Three quarks for Muster Mark!"

y-Coordinate [fm]

Schlichting, Schenke, PLB739 (2014) 313

5 AY=0  { AY=3 AY=6

Wilson line trace: Re(tr{1-V(x,y)])/N,

x-Coordinate [fm]
3 valence quarks act as large-x color sources of the low-x gluon fields.
Spatial positions of quarks at the instant of collision fluctuate from event to event
and generate a lumpy color distribution at large x.
This lumpiness is tracked by the quarks’ gluon clouds, becoming more diffuse at
smaller x = triune lumpiness of the gluon fields inside the nucleon when viewed
through midrapidity particle production, with an intrinsic length scale ( “gluonic
radius of a quark”) that appears to grow with collision energy.
— Protons have just as much intrinsic triangularity as *He nuclei, just on a
shorter length scale. But in p+A all particle production occurs on a smaller length
scale than in *He+Al This affects mostly radial flow, though.
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Modeling quark substructure of the nucleon

Modeling quark substructure of the nucleon |

K. Welsh, J. Singer, UH, PRC, in press (arXiv:1605.09418)

m The gluon field density inside the proton is the sum of three 3-d Gaussians
of norm % and width o, (representing the gluon clouds around the valence
quarks). Default value: oz = 0.3fm (best fit of pPb mult. dist. at LHC)

m The quark positions (centers of the gluon clouds) are sampled from a 3-d
Gaussian with width o4 around the center of the nucleon, requiring their
center of mass to coincide with the nucleon center.

m The widths are constrained by aé + %0(2, = B such that the average proton
density is a normalized Gaussian

r

2
e 2B

(pp(r)) = (2nB)23

inel
with y/s-dependent width B( /s) = ON%T(F‘/E), to reproduce the measured
inelastic NN cross section.
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Modeling quark substructure of the nucleon
Modeling quark substructure of the nucleon Il

m Projecting p, along z gives the nucleon thickness function Ty(r.) in the
transverse plane.

m Folding two nucleon thickness functions yields the nucleon-nucleon overlap
function Tyn(b) at impact parameter b (which actually depends on all 6
quark positions), from which the probability for each of the two nucleons to
get wounded in the collision is computed as

Pi(rii—rij) =1 —exp[—og Tnn(rii—rij)]

where i and j are from projectile and target, respectively. The gluon-gluon
cross section ogg is determined by the normalization of Pj to the inelastic
NN cross section.

m For each wounded nucleon, all three quarks are assumed to contribute to
energy production at midrapidity, with a Gaussian density profile of width o,
and independently fluctuating (I'-distributed) normalization, with variance
adjusted to reproduce measured pp multiplicity distributions.

Ulrich Heinz (Ohio State) Fluid dynamics for pp and pA XQCD 2016, 8/1/2016 34 /48



Proton substructure
©00000

Characteristics of initial entropy density distributions in pp and light-heavy collisions

Initial entropy density in b=1.3fm pp collisions

smooth Gaussian protons:

S T B S S S S

> ] 3
xtfm) xtfm) ()

protons with fluctuating quark substructure (o, = 0.3f

For protons with quark substructure the Gaussian collision criterium appears to
favor somewhat more compact distributions of produced entropy density
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Characteristics of initial entropy density distributions in pp and light-heavy collisions

€23 vs. centrality: pp @ /s=200A GeV
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m Ellipticity and triangularity show strong sensitivity to og.

m Since v/B=0.408fm at /s =200 GeV, quark subdivision with o, = 0.4fm is
almost indistinguishable from a smooth Gaussian proton.

m Disk-like collision detection gives smallest eccentricities.
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Proton substructure
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Characteristics of initial entropy density distributions in pp and light-heavy collisions

€23 vs. centrality: p+Au @ /s=200A GeV
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Proton substructure Back to the big picture

Flow in small systems? What is needed?
000 000000e00

The big picture

00

Characteristics of initial entropy density distributions in pp and light-heavy collisions

In p+p and light+heavy “centrality” does not measure b!

¥He+AU V5 —200GeV p+A; ——2006ev | p+p Vs —200GeV

Multiplicity
Multiplicity
Multiplicity

2
b (fm)

5
b (fm)

5
b (fm)

pp multiplicity fluctuations destroy strong anticorrelation between
multiplicity and impact parameter seen in Au+Au and Pb+Pb

—> “centrality” measured by multiplicity is a misnomer in collisions
involving light projectiles
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Proton substructure
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Characteristics of initial entropy density distributions in pp and light-heavy collisions

€23 vs. centrality: *He+Au @ /s=200A GeV
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Reduced sensitivity to p-substructure and o, for larger projectiles,
except in peripheral events
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Proton substructure
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Characteristics of initial entropy density distributions in pp and light-heavy collisions
€23 Vvs. “centrality” for different collision systems

disk-like coll. detection Gaussian coll. detection quark-subdivided nucleons
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Back to the big picture

Overview

Back to the big picture
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Back to the big picture

Back to the big question: do pp and pA collisions create
droplets of flowing QGP?

m Hydrodynamics is an effective field theory that describes the
macroscopic effects of the microscopic transport dynamics

m Gerry Brown: “Some EFTs are more effective than others!”

m Israel-Stewart theory cannot handle the rapid, very anisotropic
expansion in pp and pA, and fails similarly during the earliest stages
in AA collisions

m Welcome the “more effective” anisotropic hydrodynamics
framework (Strickland, Martinez, Florkowski, Bazow, UH, et al.)

m VAHYDRO minimizes second-order viscous hydro effects by
resumming large first-order corrections at leading order

m Stay tuned!
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The big picture ow in small systems? What is needed? Proton substructure Back to the big picture

Thank You!
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Back to the big picture

pp multiplicity distribution

Same for smooth Gaussian and quark-subdivided protons, after rescaling of the
[-distribution:

2 —_
100} x° /dof = 0.90
101}
= 102}
jang
-
Z 103 |
<10 # CMS pp @ 900 GeV
& CMS pp @ 2360 GeV
10| L CMS pp @ 7000 GeV
Y UA5 pp @ 200 GeV ~a
-} - Gamma distribution 0=0.75 .
107> | — fold with Poisson dN" /dn(|n] <0.5)

0 1 2 3 4 5 6 7 8 09
N../{N..)

Ulrich Heinz (Ohio State) Fluid dynamics for pp and pA XQCD 2016, 8/1/2016 44 / 48



The big picture Flow in small systems? What is needed? Proton substructure Back to the big picture

pPb multiplicity distribution

0g = 0.3fm:
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The big picture

€23 VS.

Ulrich Heinz (Ohio State)

Flow in small systems?

What is needed?

Proton su

centrality: d+Au @ /s=200 A GeV
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€23 Vs. impact parameter for different collision systems
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Gaussian collision detection

Back to the big picture

disk-like collision detection
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Flow

The big picture

€2-€3 correlations:

in small systems?

What is needed?

p+p @ 200 GeV
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