Scale invariance of QED $_{3}$

Nikhil Karthik* and Rajamani Narayanan

Department of Physics
Florida International University, Miami
(1512.02993 and 1606.04109)

XQCD 2016, Plymouth UK
(1) Motivation and Method
(2) Parity-invariant Lattice Formulations
(3) Results
(4) Outlook and Conclusions

Table of Contents

(1) Motivation and Method
(2) Parity-invariant Lattice Formulations
(3) Results

4 Outlook and Conclusions

Non-compact parity-invariant QED_{3} on ℓ^{3} Euclidean torus

$$
L=\sum_{i=1}^{N_{f}}\left\{\bar{u}_{i} C_{\mathrm{reg}} u_{i}-\bar{d}_{i} C_{\mathrm{reg}}^{\dagger} d_{i}\right\}+\frac{1}{4 g^{2}}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}
$$

- $u, d \rightarrow$ 2-component fermion field.
- Massless regulated Dirac operator: $\quad C_{\text {reg }}$
- $g^{2} \quad \rightarrow \quad$ Coupling constant of dimension [mass] ${ }^{1}$ Scale setting: $\quad g^{2}=1 \leftrightarrow$ specify ℓ.
- $\mathrm{U}\left(2 N_{f}\right)$ flavor symmetry in the continuum limit since $C=-C^{\dagger}$.
- $N_{f} \rightarrow \infty$ has an IR fixed point. What is the effect of finite N_{f} corrections? Spontaneously break $\mathrm{U}\left(2 N_{f}\right) \longrightarrow \mathrm{U}\left(N_{f}\right) \times \mathrm{U}\left(N_{f}\right)$?

Transition from massive to conformal phase plausible

Tell-tale signs for bilinear condensate Σ

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking \Rightarrow Chiral lagrangian at finite $\ell \Rightarrow$ Random matrix theory for low eigenvalues $\left(z=\Sigma \lambda \ell^{3}\right)$

- Finite-size scaling of low-lying eigenvalues of the Dirac operator:
- IPR: eigenvectors Ψ_{λ} of the Dirac operator are completely delocalized
- Ergodic behaviour of number-variance $\Sigma_{2}(n)$, the variance in the number of eigenvalues n below a value λ.

Tell-tale signs for bilinear condensate Σ

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking \Rightarrow Chiral lagrangian at finite $\ell \Rightarrow$ Random matrix theory for low eigenvalues $\left(z=\Sigma \lambda \ell^{3}\right)$

- Finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$
\lambda \ell \sim \frac{1}{\ell^{2}} .
$$

- IPR: eigenvectors Ψ_{λ} of the Dirac operator are completely delocalized
- Ergodic behaviour of number-variance $\Sigma_{2}(n)$, the variance in the number of eigenvalues n below a value λ.

Tell-tale signs for bilinear condensate Σ

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking \Rightarrow Chiral lagrangian at finite $\ell \Rightarrow$ Random matrix theory for low eigenvalues $\left(z=\Sigma \lambda \ell^{3}\right)$

- Finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$
\lambda \ell \sim \frac{1}{\ell^{2}} .
$$

- IPR: eigenvectors Ψ_{λ} of the Dirac operator are completely delocalized

$$
\left.\left.I_{2} \equiv \int\langle | \psi(x)\right|^{4}\right\rangle d^{3} x \sim \frac{1}{\ell^{3}}
$$

- Ergodic behaviour of number-variance $\Sigma_{2}(n)$, the variance in the number of eigenvalues n below a value λ.

Tell-tale signs for bilinear condensate Σ

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking \Rightarrow Chiral lagrangian at finite $\ell \Rightarrow$ Random matrix theory for low eigenvalues $\left(z=\Sigma \lambda \ell^{3}\right)$

- Finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$
\lambda \ell \sim \frac{1}{\ell^{2}} .
$$

- IPR: eigenvectors Ψ_{λ} of the Dirac operator are completely delocalized

$$
\left.\left.I_{2} \equiv \int\langle | \psi(x)\right|^{4}\right\rangle d^{3} x \sim \frac{1}{\ell^{3}}
$$

- Ergodic behaviour of number-variance $\Sigma_{2}(n)$, the variance in the number of eigenvalues n below a value λ.

$$
\Sigma_{2}(n) \sim \log (n)
$$

... Instead if QED_{3} is scale-invariant

- Gauge-invariant zero spatial-momentum scalar and vector correlators

$$
G_{\Sigma}(t) \sim \frac{1}{t^{2-2 \gamma_{m}}} \quad \text { and } \quad G_{V}(t) \sim \frac{1}{t^{2-2 \gamma_{V}}}
$$

- Mass-anomalous dimensions from finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$
\lambda \ell \sim \frac{1}{\ell^{1+\gamma_{m}}} ; \quad \gamma_{m}<1
$$

- True at least in the Anderson type criticality: Eigenvectors Ψ_{λ} of the Dirac operator are delocalized in a "fractal-way"

$$
\mathrm{IPR} \sim \frac{1}{\ell^{3-\eta}}
$$

- Critical behavior of number-variance $\Sigma_{2}(n)$

$$
\Sigma_{2}(n) \sim \frac{\eta}{6} n
$$

Table of Contents

(1) Motivation and Method

(2) Parity-invariant Lattice Formulations

Parity-invariant Wilson-Dirac fermions

Regularize at the level of two-component fermions (as opposed to the equivalent four component fermions):

$$
L=\bar{u} C_{w} u-\bar{v} C_{w}^{\dagger} v ; \quad C_{w}=C_{n}+B-m
$$

Corresponding 4-component Hermitian Wilson-Dirac operator:

$$
H_{w}=\left[\begin{array}{cc}
0 & C_{w}(m) \\
C_{w}^{\dagger}(m) & 0
\end{array}\right] \longrightarrow \text { eigenvalues } \lambda .
$$

$\mathrm{m} \rightarrow$ tune mass to zero as Wilson fermion has additive renormalization.

Advantage: All even flavors $2 N_{f}$ can be simulated without involving square-rooting.

Parity-invariant overlap fermions

Start from multi-particle Hamiltonians $\mathcal{H}_{ \pm}=-a^{\dagger} H_{ \pm} a$ where $H_{+}=H_{w} ; \quad H_{-}=\gamma_{5}$.

With one choice of phase, the gauge-invariant overlap has an explicit formula in 3d:

$$
\langle+\mid-\rangle=\operatorname{det}\left(\frac{1+V}{2}\right) ; \quad V=\frac{1}{\sqrt{C_{w} C_{w}^{\dagger}}} C_{w} .
$$

Parity-invariant fermion determinant: $\{\langle+\mid-\rangle\}_{u}\{\langle-\mid+\rangle\}_{v}$.
Propagator with the full $U\left(2 N_{f}\right)$ symmetry:

$$
\left[\begin{array}{cc}
0 & \frac{1-V}{1+V} \\
\frac{1-V}{1+V} & 0
\end{array}\right] \rightarrow \text { eigenvalues } \frac{1}{i \lambda} .
$$

Continuum limit at fixed ℓ

- L^{3} periodic lattice with physical volume ℓ^{3}.
- Non-compact gauge-action: $S_{g}=\frac{L}{\ell} \sum_{n} \sum_{\mu \neq \nu}\left(\Delta_{\mu} \theta_{\nu}(n)-\Delta_{\nu} \theta_{\mu}(n)\right)^{2}$
- Continuum limit at fixed ℓ by taking $L \rightarrow \infty$.
- $L=12,14,16,20,24$ at different $4<\ell<250$.
- HYP smeared θ in Dirac operator.
- Dynamical fermion simulation using standard HMC with both massless Wilson and overlap fermions.

Continuum limit at fixed ℓ

$\lambda_{j} \quad \rightarrow$ eigenvalues of Hermitian Dirac operator

Table of Contents

(1) Motivation and Method

(2) Parity-invariant Lattice Formulations
(3) Results

4) Outlook and Conclusions

If bilinear condensate: $\lambda \ell \sim \ell^{-2}$

$$
\lambda \ell \sim \ell^{-p} F(1 / \ell) \longrightarrow \quad \text { approximate by }[1 / 1] \text { Padé }
$$

If bilinear condensate: $\lambda \ell \sim \ell^{-2}$
Likelihood of different values of p as $\ell \rightarrow \infty$

Expectation when condensate: $p=2 \longrightarrow$ seems to be ruled out. Conversely, mass anomalous dimension $\gamma_{m}=p=1.0(2)$

Agreement between Wilson and overlap fermion formulations

On lattice, Wilson fermions break $\mathrm{U}\left(2 N_{f}\right) \rightarrow \mathrm{U}\left(N_{f}\right) \times \mathrm{U}\left(N_{f}\right)$. Overlap has exact $\mathrm{U}\left(2 N_{f}\right)$. The agreement shows continuum limits are under control.

Anomalous dimension decreases with N_{f}

$\gamma_{m} \approx 1 / N_{f}$

Anomalous dimension decreases with N_{f}

A result by Gusynin et al. last week, upto $\mathcal{O}\left(1 / N_{f}^{2}\right)$:

N_{f}	γ_{m} (our work)	$\gamma_{m}\left(1 / N_{f}\right.$ expansion)
1	$1.0(2)$	
2	$0.63(15)$	condensate $\left(\Sigma \approx 10^{-12}\right)$
3	$0.37(5)$	0.37
4	$0.28(5)$	0.28

- Agreement between our lattice method and $1 / N_{f}$-calculation when we both agree on $N_{f}>N_{\text {crit }}$.
- Based on our first principle calculation, we can only speculate that higher order $1 / N_{f}$-corrections are important to decide on the existence of condensate.

Fractal behavior of Inverse Participation Ratio (IPR)

Condensate: $I_{2} \sim \ell^{-3} ; \quad$ Critical: $I_{2} \sim \ell^{-3+\eta}$

$\eta=0.38(1) \quad$ (Critical! $)$

Number variance shifts away from RMT towards criticality

(Altshuler et al. '88) Critical relation: $\Sigma_{2} \sim \frac{\eta}{6} n \quad \longrightarrow \quad \eta$ from IPR

Further evidence for scale-invariance: Absence of mass-gap

Scalar: $\bar{u} u(t)-\bar{v} v(t)$

Further evidence for scale-invariance: Absence of mass-gap

Vector: $\bar{u} \sigma_{i} u(t)-\bar{v} \sigma_{i} v(t)$

Long-distance behavior of correlators

Lattice spacing effects are small \rightarrow put together data from different ℓ on same L^{3} lattice to fill-up "gaps"

Long-distance behavior of vector correlator

Vector correlator by putting together data from different ℓ on 24^{3} lattice.

Long-distance behavior of scalar correlator

Scalar correlator by putting together data from different ℓ on 24^{3} lattice.

Long-distance behavior of scalar correlator

Scalar correlator by putting together data from different ℓ on 24^{3} lattice.

Long-distance behavior of scalar correlator

Flow of scale-dependent exponent $\gamma_{m}(t)$ from short-distance (Asymptotic freedom $\Rightarrow \gamma_{m}=0$) to long distance (non-trivial IR fixed point) where $\gamma_{m} \approx 0.8$.

Table of Contents

(1) Motivation and Method

(2) Parity-invariant Lattice Formulations
(3) Results
(4) Outlook and Conclusions

Exploring the $\left(N_{f}, N_{c}\right)$ plane as a possibility

Agreement with Non-chiral random matrix model in large- $N_{c} \Rightarrow$ condensate. $\Sigma / \sigma=0.10(1)$.

Conclusions

- Even for $N_{f}=1$, the low-lying eigenvalues of the Dirac operator do not scale as $\ell^{-3} \Rightarrow$ No bilinear condensate.
- Converse: $\lambda \sim \ell^{1+\gamma_{m}}$ for a scale-invariant theory $\Rightarrow \quad \gamma_{m} \approx 1$ for $N_{f}=1$ (upper bound for CFTs).
- Inverse Participation Ratio does not scale as ℓ^{-3}.
- The number variance $\Sigma_{2}(n)$ does not agree with the ergodic random matrix theory behavior. Instead, the behavior is critical.
- No mass scale in the long-distance behavior of scalar and vector correlators.
- We also established the presence of condensate using the same methods in the large- N_{c} theory. Exploring the (N_{f}, N_{c})-plane for a line of transition from scale-invariant to broken phase seems to the interesting next step.

