Scale invariance of QED₃

Nikhil Karthik* and Rajamani Narayanan

Department of Physics Florida International University, Miami

(1512.02993 and 1606.04109)

XQCD 2016, Plymouth UK

NSF grant no: 1205396 and 1515446

Motivation and Method

- Parity-invariant Lattice Formulations
- Results

Outlook and Conclusions

Table of Contents

- Motivation and Method
- Parity-invariant Lattice Formulations
- Results
- Outlook and Conclusions

Non-compact parity-invariant QED₃ on ℓ^3 Euclidean torus

$$L = \sum_{i=1}^{N_f} \left\{ \overline{u}_i C_{\text{reg}} u_i - \overline{d}_i C_{\text{reg}}^{\dagger} d_i \right\} + \frac{1}{4g^2} \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right)^2$$

- $u, d \rightarrow$ 2-component fermion field.
- Massless regulated Dirac operator:
- $g^2 \rightarrow \text{Coupling constant of dimension [mass]}^1$ Scale setting: $g^2 = 1 \leftrightarrow \text{specify } \ell$.
- U(2 N_f) flavor symmetry in the continuum limit since $C = -C^{\dagger}$.
- $N_f \to \infty$ has an IR fixed point. What is the effect of finite N_f corrections? Spontaneously break $U(2N_f) \longrightarrow U(N_f) \times U(N_f)$?

Nikhil Karthik (FIU) QED3 August 1, 2016 3 / 20

Transition from massive to conformal phase plausible

 Σ as $m \to 0$ (Hands et al) 1 ϵ -expansion (Pietro et al) Running coupling (Raviv et al) Gap eqn (Appelquist et al)

QED3

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking \Rightarrow Chiral lagrangian at finite $\ell \Rightarrow$ Random matrix theory for low eigenvalues $(z = \Sigma \lambda \ell^3)$

• Finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$\lambda \ell \sim \frac{1}{\ell^2}$$

• IPR: eigenvectors Ψ_{λ} of the Dirac operator are completely delocalized $\vec{\ }$

$$I_2 \equiv \int \left\langle |\psi(x)|^4 \right
angle d^3 x \sim rac{1}{\ell^3}$$

• Ergodic behaviour of number-variance $\Sigma_2(n)$, the variance in the number of eigenvalues n below a value λ .

$$\Sigma_2(n) \sim \log(n)$$

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking \Rightarrow Chiral lagrangian at finite $\ell \Rightarrow$ Random matrix theory for low eigenvalues $(z = \Sigma \lambda \ell^3)$

Finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$\lambda\ell\sim\frac{1}{\ell^2}.$$

ullet IPR: eigenvectors Ψ_λ of the Dirac operator are completely delocalized

$$I_2 \equiv \int \langle |\psi(x)|^4 \rangle d^3 x \sim \frac{1}{\ell^3}$$

• Ergodic behaviour of number-variance $\Sigma_2(n)$, the variance in the number of eigenvalues n below a value λ .

$$\Sigma_2(n) \sim \log(n)$$

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking \Rightarrow Chiral lagrangian at finite $\ell \Rightarrow$ Random matrix theory for low eigenvalues $(z = \Sigma \lambda \ell^3)$

Finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$\lambda\ell\sim\frac{1}{\ell^2}.$$

• IPR: eigenvectors Ψ_{λ} of the Dirac operator are completely delocalized \Rightarrow

$$I_2 \equiv \int \langle |\psi(x)|^4 \rangle d^3 x \sim \frac{1}{\ell^3}$$

• Ergodic behaviour of number-variance $\Sigma_2(n)$, the variance in the number of eigenvalues n below a value λ .

$$\Sigma_2(n) \sim \log(n)$$

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking \Rightarrow Chiral lagrangian at finite $\ell \Rightarrow$ Random matrix theory for low eigenvalues $(z = \Sigma \lambda \ell^3)$

Finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$\lambda\ell\sim\frac{1}{\ell^2}.$$

• IPR: eigenvectors Ψ_{λ} of the Dirac operator are completely delocalized \Rightarrow

$$I_2 \equiv \int \langle |\psi(x)|^4 \rangle d^3 x \sim \frac{1}{\ell^3}$$

• Ergodic behaviour of number-variance $\Sigma_2(n)$, the variance in the number of eigenvalues n below a value λ .

$$\Sigma_2(n) \sim \log(n)$$

... Instead if QED₃ is scale-invariant

Gauge-invariant zero spatial-momentum scalar and vector correlators

$$G_{\Sigma}(t) \sim rac{1}{t^{2-2\gamma_m}} \qquad ext{and} \qquad G_V(t) \sim rac{1}{t^{2-2\gamma_V}}$$

 Mass-anomalous dimensions from finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$\lambda \ell \sim \frac{1}{\ell^{1+\gamma_m}}; \qquad \gamma_m < 1.$$

ullet True at least in the Anderson type criticality: Eigenvectors Ψ_λ of the Dirac operator are delocalized in a "fractal-way"

$$\mathsf{IPR} \sim \frac{1}{\ell^{3-\eta}}.$$

• Critical behavior of number-variance $\Sigma_2(n)$

$$\Sigma_2(n) \sim \frac{\eta}{6} n.$$

Table of Contents

- Motivation and Method
- Parity-invariant Lattice Formulations
- Results
- 4 Outlook and Conclusions

Parity-invariant Wilson-Dirac fermions

Regularize at the level of two-component fermions (as opposed to the equivalent four component fermions):

$$L = \overline{u}C_w u - \overline{v}C_w^{\dagger}v;$$
 $C_w = C_n + B - m$

Corresponding 4-component Hermitian Wilson-Dirac operator:

$$H_w = \begin{bmatrix} 0 & C_w(m) \\ C_w^{\dagger}(m) & 0 \end{bmatrix} \longrightarrow \text{eigenvalues } \lambda.$$

 $m \rightarrow tune mass to zero as Wilson fermion has additive renormalization.$

Advantage: All even flavors $2N_f$ can be simulated without involving square-rooting.

Parity-invariant overlap fermions

Start from multi-particle Hamiltonians $\mathcal{H}_{\pm}=-a^{\dagger}H_{\pm}a$ where $H_{+}=H_{w}; \qquad H_{-}=\gamma_{5}.$

With one choice of phase, the gauge-invariant overlap has an explicit formula in 3d:

$$\langle +|-\rangle = \det\left(\frac{1+V}{2}\right); \quad V = \frac{1}{\sqrt{C_w C_w^{\dagger}}} C_w.$$

Parity-invariant fermion determinant: $\{\langle +|-\rangle\}_{\mu} \{\langle -|+\rangle\}_{\nu}$.

Propagator with the full $U(2N_f)$ symmetry:

$$\left[\begin{array}{cc} 0 & \frac{1-V}{1+V} \\ \frac{1-V}{1+V} & 0 \end{array}\right] \rightarrow \mathsf{eigenvalues} \frac{1}{i\lambda}.$$

Continuum limit at fixed ℓ

- L^3 periodic lattice with physical volume ℓ^3 .
- Non-compact gauge-action: $S_g = rac{L}{\ell} \sum_n \sum_{\mu
 eq
 u} \left(\Delta_\mu \theta_
 u(n) \Delta_
 u \theta_\mu(n)
 ight)^2$
- Continuum limit at fixed ℓ by taking $L \to \infty$.
- L = 12,14,16,20,24 at different $4 < \ell < 250$.
- HYP smeared θ in Dirac operator.
- Dynamical fermion simulation using standard HMC with both massless Wilson and overlap fermions.

Continuum limit at fixed ℓ

$\lambda_i \longrightarrow \text{eigenvalues of Hermitian Dirac operator}$

Table of Contents

- Motivation and Method
- Parity-invariant Lattice Formulations
- Results
- 4 Outlook and Conclusions

Nikhil Karthik (FIU) QED3 August 1, 2016 10 / 20

If bilinear condensate: $\lambda \ell \sim \ell^{-2}$

 $\lambda \ell \sim \ell^{-p} F(1/\ell) \longrightarrow \quad \text{approximate by } [1/1] \; \mathsf{Pad\'e}$

If bilinear condensate: $\lambda \ell \sim \ell^{-2}$

Likelihood of different values of p as $\ell \to \infty$

Expectation when condensate: p=2 — seems to be ruled out. Conversely, mass anomalous dimension $\gamma_m=p=1.0(2)$

Agreement between Wilson and overlap fermion formulations

On lattice, Wilson fermions break $U(2N_f) \rightarrow U(N_f) \times U(N_f)$. Overlap has exact $U(2N_f)$. The agreement shows continuum limits are under control.

Anomalous dimension decreases with N_f

Anomalous dimension decreases with N_f

A result by Gusynin *et al.* last week, upto $\mathcal{O}(1/N_f^2)$:

N_f	γ_m (our work)	$\gamma_m (1/N_f \text{ expansion})$
1	1.0(2)	
2	0.63(15)	condensate $(\Sigma pprox 10^{-12})$
3	0.37(5)	0.37
4	0.28(5)	0.28

- Agreement between our lattice method and $1/N_f$ -calculation when we both agree on $N_f > N_{\rm crit}$.
- Based on our first principle calculation, we can only speculate that higher order $1/N_f$ -corrections are important to decide on the existence of condensate.

Fractal behavior of Inverse Participation Ratio (IPR)

Condensate: $I_2 \sim \ell^{-3}$; Critical: $I_2 \sim \ell^{-3+\eta}$

$$\eta = 0.38(1)$$
 (Critical!)

Number variance shifts away from RMT towards criticality

(Altshuler *et al.* '88) Critical relation: $\Sigma_2 \sim \frac{\eta}{6} n \longrightarrow \eta$ from IPR

Further evidence for scale-invariance: Absence of mass-gap

Scalar: $\overline{u}u(t) - \overline{v}v(t)$

Nikhil Karthik (FIU)

Further evidence for scale-invariance: Absence of mass-gap

Vector: $\overline{u}\sigma_i u(t) - \overline{v}\sigma_i v(t)$

Nikhil Karthik (FIU)

Long-distance behavior of correlators

Lattice spacing effects are small \rightarrow put together data from different ℓ on same L^3 lattice to fill-up "gaps"

Long-distance behavior of vector correlator

Vector correlator by putting together data from different ℓ on 24³ lattice.

Long-distance behavior of scalar correlator

Scalar correlator by putting together data from different ℓ on 24³ lattice.

Long-distance behavior of scalar correlator

Scalar correlator by putting together data from different ℓ on 24³ lattice.

Long-distance behavior of scalar correlator

Flow of scale-dependent exponent $\gamma_m(t)$ from short-distance (Asymptotic freedom $\Rightarrow \gamma_m = 0$) to long distance (non-trivial IR fixed point) where $\gamma_m \approx 0.8$.

Nikhil Karthik (FIU) QED3 August 1, 2016 18 / 20

Table of Contents

- Motivation and Method
- 2 Parity-invariant Lattice Formulations
- Results
- Outlook and Conclusions

Exploring the (N_f, N_c) plane as a possibility

Agreement with Non-chiral random matrix model in large- $N_c \Rightarrow$ condensate. $\Sigma/\sigma = 0.10(1)$.

Conclusions

- Even for $N_f = 1$, the low-lying eigenvalues of the Dirac operator do not scale as $\ell^{-3} \Rightarrow No$ bilinear condensate.
- Converse: $\lambda \sim \ell^{1+\gamma_m}$ for a scale-invariant theory $\Rightarrow \quad \gamma_m \approx 1$ for $N_f = 1$ (upper bound for CFTs).
- Inverse Participation Ratio does not scale as ℓ^{-3} .
- The number variance $\Sigma_2(n)$ does not agree with the ergodic random matrix theory behavior. Instead, the behavior is critical.
- No mass scale in the long-distance behavior of scalar and vector correlators.
- We also established the presence of condensate using the same methods in the large- N_c theory. Exploring the (N_f, N_c) -plane for a line of transition from scale-invariant to broken phase seems to the interesting next step.