

Collisions in Non-Conformal Theories: Hydrodynamisation without Equilibration

Jorge Casalderrey-Solana

XQCD16

J. Casalderrey-Solana

Plymouth, 1 August 2016 2

XQCD16

J. Casalderrey-Solana

Plymouth, 1 August 2016 2

• Can we describes all these stages in a single framework?

Output Construction of the stages in a single framework?

Holography says: yes! (up to the last one)

Output Construction of the stages in a single framework?

- Holography says: yes! (up to the last one)
- As long as we are happy with an oversimplified "nucleus"

- Can we describes all these stages in a single framework?
 - Holography says: yes! (up to the last one)
 - As long as we are happy with an oversimplified "nucleus"
 - As long as we are happy with other strongly coupled theory

XQCD16

XQCD16

XQCD16

J. Casalderrey-Solana

Plymouth, 1 August 2016 4

Einstein Equation

Numerically solve in 5D

$$R_{MN} - \frac{1}{2} R G_{MN} + \Lambda G_{MN} = 0$$

Specify initial data: shock wave solutions

Read off the dual stress tensor using the dictionary:

$$ds^{2} = \frac{1}{z^{2}} \left\{ dz^{2} + \left(g_{\mu\nu} + z^{4}T_{\mu\nu} + \dots \right) dx^{\mu}dx^{\nu} \right\}$$

Colliding Sheets of Energy

- Shock wave collisions in GR
 - Full access to the QFT stress tensor
 - Conformal field theory dual

ζ=0

JCS, Heller, Mateos, van der Schee, 2013 Chesler & Yaffe 2011

 Onset of hydrodynamic behavior at very early times

$$t_{hydro} = 0.63 \ \frac{1}{T_{hydro}}$$

Surprisingly Hydrodynamic

• Hydrodynamics works even where it should not work

- Good description even when gradient corrections are large!
- Hydrodynamization without isotropization

Chesler & Yaffe, Wu & Romatschke, Heller, Janik & Witaszczyk, Heller, Mateos, van der Schee, Trancanelli

Similar conclusions reached in a perturbative framework

Kurkela and Zhu 15, Keegan, Kurkela, Mazeliausksa and Teaney 16

XQCD16

 Bulk viscosity effects become important to accurately describe heavy ion data

XQCD16

Extracting Transport Coefficients

Global fit to several sets of data

J. Bernhard, J.S. Moreland, S. Bass, J. Liu, U. Heinz arXiv:1605.03954

$$\left(\frac{\eta}{s}\right)_{\rm T_c} = 0.08 \pm 0.05$$

XQCD16

A Bottom-up Non-Conformal Model

Einstein gravity + Scalar

$$S = \frac{2}{\kappa_5^2} \int d^5 x \sqrt{-g} \left[\frac{1}{4} \mathcal{R} - \frac{1}{2} \left(\nabla \phi \right)^2 - V(\phi) \right]$$

Phenomenological (family of) potential(s)

$$V = -3 - \frac{3}{2}\phi^2 - \frac{1}{3}\phi^4 + \left(\frac{1}{3\phi_M^2} + \frac{1}{2\phi_M^4}\right)\phi^6 - \frac{1}{12\phi_M^4}\phi^8 \longrightarrow \text{ parameter}$$

 Dual field theory: "mimics" a deformation of N=4 SYM with a dimension 3 operator

Rich thermodynamic and transport properties

Attems, JCS, Mateos, Papadimitriou, Santos, Sopuerta, Triana, Zilhao, 16

XQCD16

Thermo and Transport

Non conformal (bottom-up) holographic model: Einstein + Scalar

Attems, JCS, Mateos, Papadimitriou, Santos, Sopuerta, Triana, Zilhao, 16

XQCD16

Non conformal Shock Collisions

Attems, JCS, Mateos, Santos, Sopuerta, Triana, Zilhao, 16

\mathbf{V}	\frown	\mathbf{C}	
	L L		O

e.o.s is satisfied whenever VeV is sufficiently close to thermal "equilibration"

XQCD16

Hydro without Equilibration

 Comparing full simulations to nonconformal hydro

Hydrodynamisation: pressure is well described by constitutive relations
0.

$$P_{L,T} - P_{L,T}^{\text{hyd}} \left| /\bar{P} < 0.1 \right|$$

"Equilibration": e.o.s is satisfied (on average)

$$\left|\bar{P} - P_{\rm eq}\right|/\bar{P} < 0.1$$

Hydro works even if e.o.s is not satisfied!

XQCD16

Hydrodynamisation vs Equilibration

• Isotropisation vs equilibration

$$P_L^{\text{hyd}} - P_T^{\text{hyd}} = \frac{3}{2}P_\eta$$
 $\bar{P}_{\text{hyd}} = P_{\text{eq}} + P_\zeta$

 Large bulk corrections responsible for deviations from equilibrium!

smaller than the maximum values achieved in the QCD transition!

0.03 0.02 ζ/s 0.02 0.01 2.5 $t_{\rm hyd} T_{\rm hyd}$ 2 0.01 1.5 $t_{\rm eq} T_{\rm hyd}$ 1. 0.5 0 0.1 0.2 0.9.0.4 0.5 0.6 07 0 $T_{\rm hvd}/\Lambda$

Conclusions

 First analysis of ultra-relativistic collision dynamics in nonconformal gauge theories.

Hydrodynamics provides an (unreasonably) good description of dynamics

- Large anisotropies
- Large deviation from equilibrium
- What controls the applicability of hydro?

Heavy lon collisions allow us to explore the different paths for the onset of hydrodynamic behavior