Study of the phase diagram of dense two-color QCD with $N_f = 2$ within lattice simulation

V.V. Braguta^{1,2,3}, E.-M. Ilgenfritz⁴, A.Yu. Kotov², A.V. Molochkov³, <u>A.A. Nikolaev^{2,3}</u>

¹IHEP, Protvino, Russia

²ITEP, Moscow, Russia

³FEFU, Vladivostok, Russia

⁴JINR, Dubna, Russia

XQCD 2016

03.08.2016

- Introduction
- Two-color QCD formulation
- Results at small chemical potential
- Results at large chemical potential
- Conclusions

QCD phase diagram

Tentative phase diagram of QC_2D

Chemical Potential

J.B. Kogut, D. Toublan, D.K. Sinclair, Nucl. Phys. B642 (2002) 181-209

Case of QC₂D is special: • $det \left[M(\mu_q) \right] = det \left[(\tau_2 C \gamma_5)^{-1} M(\mu_q) (\tau_2 C \gamma_5) \right] =$ $= det \left[M(\mu_q^*) \right]^*$, where $C = \gamma_2 \gamma_4$ • In LQC₂D with fundamental quarks $det \left[M(\mu_q) \right]$ is positive definite at real μ_q [see S. Hands, I. Montvay, S. Morrison, M. Oevers, L. Scorzato, and J. Skullerud, Eur. Phys. J. **C17**, 285 (2000)]

At real μ_q $det \left[M(\mu_q) \right]$ is real, $det \left[M^{\dagger}(\mu_q) M(\mu_q) \right] > 0$ at $m_q \neq 0$.

Diquark source

In QC_2D there is a possibility to add diquark source to the action to study spontaneous breakdown of $U(1)_V$:

$$S_{F} = \sum_{x,y} \left[\overline{\chi}_{x} \mathcal{M}(\mu_{q})_{xy} \chi_{y} + \frac{\lambda}{2} \delta_{xy} \left(\chi^{T} \tau_{2} \chi + \overline{\chi} \tau_{2} \overline{\chi}^{T} \right) \right],$$

which modifies partition function as follows:

$$Z = \int DU det \Big[M^{\dagger}(\mu_q) M(\mu_q) + \lambda^2 \Big]^{rac{1}{2}} e^{-S_{\mathcal{G}}[U]}$$

instead of

$$Z = \int DU \det M(\mu_q) e^{-S_G[U]}$$
.

 $\langle qq
angle$ is colorless, gauge invariant and thus may be measured.

Chiral perturbation theory

- J. B. Kogut, M. A. Stephanov and D. Toublan, Phys. Lett. B 464 (1999) 183
- K. Splittorff, D. T. Son and M. A. Stephanov, Phys. Rev. D 64 (2001) 016003
- J. B. Kogut, M. A. Stephanov, D. Toublan, J. J. M. Verbaarschot and A. Zhitnitsky, Nucl. Phys. B 582 (2000) 477
- K. Splittorff, D. Toublan and J. J. M. Verbaarschot, Nucl. Phys. **B 620** (2002) 290
- T. Kanazawa, T. Wettig and N. Yamamoto, JHEP 0908 (2009) 003

Predictions of ChPT ($\lambda \rightarrow 0$)

Picture from J. B. Kogut, M. A. Stephanov, D. Toublan, J. J. M. Verbaarschot and A. Zhitnitsky, Nucl. Phys. **B 582** (2000) 477

Nambu-Jona-Lasinio model

- C. Ratti and W. Weise, Phys. Rev. D 70 (2004) 054013
- T. Brauner, K. Fukushima and Y. Hidaka, Phys. Rev. D 80 (2009) 074035 [Erratum Phys. Rev. D 81 (2010) 119904]
- L. He, Phys. Rev. D 82 (2010) 096003

Random matrix theory

- B. Vanderheyden and A. D. Jackson, Phys. Rev. D 64 (2001) 074016
- T. Kanazawa, T. Wettig and N. Yamamoto, Phys. Rev. D 81 (2010) 081701
- T. Kanazawa, T. Wettig and N. Yamamoto, JHEP 1112 (2011) 007

Previous and ongoing lattice studies of QC_2D at $\mu_q \neq 0$

$N_f = 8$, staggered fermions without rooting

S. Hands, J. B. Kogut, M. P. Lombardo, S. E. Morrison, Nucl. Phys. **B 558**, 327–346 (1999)

$N_f = 4$, staggered fermions with rooting

J. B. Kogut, D. Toublan, and D. K. Sinclair, Phys.Lett. **B514**, 77–87 (2001); Nucl. Phys. **B 642**, 181–209 (2002)

$N_f = 2$, Wilson fermions

S. Cotter, P. Giudice, S. Hands, and J. I. Skullerud, Phys. Rev. D 87, 034507 (2013) T. Makingma et al. Phys. Rev. D 03, 014505 (2016)

T. Makiyama *et al.*, Phys. Rev. **D 93**, 014505 (2016)

$N_f = 1$, adjoint fermions

S. Hands, I. Montvay, S. Morrison, M. Oevers, L. Scorzato, and J. Skullerud, Eur. Phys. J. **C17**, 285 (2000)

Ongoing studies with $N_f = 2$

- V.V. Braguta, E.-M. Ilgenfritz, A.Yu. Kotov, A.V. Molochkov, A.A. Nikolaev (this talk, see also hep-lat/1605.04090)
- L. Holicki, J. Wilhelm, D. Smith, B. Wellegehausen, and L. von Smekal (talk by Lukas Holicki on Lattice 2016)
- T. Boz, P. Giudice, S. Hands, and J.-I. Skullerud (poster by Pietro Giudice on xQCD 2016)
- J. Rantaharju, V. Drach, C. Pica, and F. Sannino (talk by Jarno Rantaharju on xQCD 2016, Wed.)
- Jong-Wan Lee *et al.* (talk by Jong-Wan Lee on xQCD 2016, Wed.)

Action and lattice set-up

We consider $N_f = 2$ of staggered fermions with rooting:

$$Z = \int DU det \left[M^{\dagger}(\mu_q) M(\mu_q) + \lambda^2
ight]^{rac{1}{4}} e^{-\mathcal{S}_{\mathcal{G}}[U]} \, ,$$

where $S_G[U]$ is the unimproved Wilson gauge action and

$$M_{xy}(\mu_q) = m_q a \delta_{xy} + \frac{1}{2} \sum_{\mu=1}^4 \eta_\mu(x) \Big[U_{x,\mu} \delta_{x+\hat{\mu},y} e^{\mu_q a \delta_{\mu,4}} - U_{x-\hat{\mu},\mu}^{\dagger} \delta_{x-\hat{\mu},y} e^{-\mu_q a \delta_{\mu,4}} \Big]$$

Simulation parameters

 $16^3 \times 32$ lattice (zero-temperature scan), $\beta = 2.15$, am = 0.005a = 0.112(1) fm, $M_{\pi} = 378(4)$ MeV; $M_{\pi}L_s \approx 3.5$, $L_s \approx 1.8$ fm Diquark source: $\lambda = 0.001$, 0.00075 and 0.0005

β -function: fit by the two-loop formula

Good fit for two-loop formula with $N_f = 2$

Small chemical potential region

Diquark condensate ($\lambda \rightarrow 0$ extrapolation)

• Reasonable agreement with ChPT: $\langle qq
angle / \langle \bar{q}q
angle_0 = \sqrt{1 - \mu_c^4/\mu^4}$

- Phase transition at $\mu_c=215(10)\,{
 m MeV}\simeq m_\pi/2$
- Bose Einstein condensate (BEC) phase $\mu \in$ (200; 350) MeV

Diquark condensate: critical index

- Fit $\langle qq
 angle = A + B \lambda^{1/3}$ with $\chi^2_{dof} \simeq 1$
- $\langle qq
 angle_{\lambda=0} = -0.0021(12)$ at $a\mu = 0.12 \, (\mu = 211 \, {
 m MeV})$

Chiral condensate ($\lambda \rightarrow 0$ extrapolation)

- Good fit $\langle \bar{q}q \rangle = A/\mu^{\alpha}$ with $\alpha = 0.78(2)$, $\chi^2_{dof} = 0.3$
- LO ChPT predicts $\langle ar{q}q
 angle / \langle ar{q}q
 angle_0 = \mu_c^2/\mu^2$
- Similar slower decrease with α = 1...1.3 was observed in Nucl. Phys. B 642, 181 (2002) and PRD 87, 034507 (2013)

Chiral and diquark condensates

Check of the LO ChPT prediction $\langle \bar{q}q \rangle^2 + \langle qq \rangle^2 = const$

Baryon density $(\lambda \rightarrow 0)$

- Good agreement with ChPT: $n_B \sim \mu \mu_c^4/\mu^3$
- Phase transition at $\mu_c=207(7)\,{
 m MeV}\simeq m_\pi/2$

• Deviation from ChPT prediction starts at $n_B \sim 1 \; {
m fm}^{-3}$

Large chemical potential region

Phase diagram for $N_c ightarrow \infty$

- Hadronic phase at $\mu < M_N/N_c~(p \sim O(1))$
- Dilute baryon gas at $\mu > M_N/N_c$, width $\delta \mu \sim \Lambda_{QCD}/N_c^2$
- Quarkyonic phase at $\mu > \Lambda_{QCD} \ (p \sim N_c)$
 - Degrees of freedom:
 - Baryons (on the surface)
 - Quarks (inside the Fermi sphere $|k| < \mu$)
 - Chiral symmetry restoration
 - The system is in the confinement phase

L. McLerran, R.D. Pisarski, *Phases of cold, dense quarks at large* N(c), Nucl. Phys. **A 796** (2007) 83 [hep-ph/0706.2191]

Diquark condensate ($\lambda \rightarrow 0$ extrapolation)

- Bardeen–Cooper–Schrieffer (BCS) phase at $\mu >$ 500 MeV
- $\langle qq \rangle \sim \mu^2$: baryons on the Fermi-surface

Baryon density ($\lambda \rightarrow 0$ extrapolation)

- Free quarks at T = 0: $n_B^{(0)} = N_f(2s+1) \int \frac{d^3k}{(2\pi)^3} \theta(|k|-\mu) = 2\mu^3/(3\pi^2)$
- Quarks inside the Fermi sphere dominate over the surface: $\frac{4}{3}\pi\mu^3 > 4\pi\mu^2\Lambda_{QCD} \Rightarrow \mu > 3\Lambda_{QCD}$

Chiral condensate ($\lambda = 0.0005$, ma = 0.005)

Chiral condensate ($\lambda \rightarrow 0$, chiral limit $m \rightarrow 0$)

No chiral symmetry breaking at large enough μ

Gluonic observables: 8×8 Wilson loops

Polyakov loop is zero within the errorbars for all $a\mu_q$.

- For the first time all three phases have been observed in one lattice simulation: (1) hadronic phase for 0 < μ < μ^c;
 (2) "baryon onset" with a superfluid condensate due to Bose-Einstein mechanism for μ^c < μ < μ^d;
 (3) the phase with diquark condensation due to the Bardeen-Cooper-Schrieffer mechanism for μ^d < μ
- Good agreement with LO ChPT predictions for all observables except the bare chiral condensate
- Dilute baryon gas at $m_\pi/2 < \mu < m_\pi/2 + 150$ MeV
- BCS phase at $\mu >$ 500 MeV ($a\mu >$ 0.28)
- BCS phase may be similar to quarkyonic phase

Thank you for attention

$$M = 1 - \left(\sum_{cubes} \prod_{P \in \partial C} sign[TrU_P]\right) / N_{cubes}$$

Saturation for the free baryon density

 $16^3 \times 32$ lattice, ma = 0.005, $\lambda = 0.0005$, free fermions

Saturation for the diquark condensate

 $16^3 \times 32$ lattice, ma = 0.005, $\lambda = 0.0005$

Z_2 monopole density at $a\mu_q = 0$

 $N_f=2$

 $M = 1 - (\sum_{cubes} \prod_{P \in \partial C} sign[TrU_P])/N_{cubes}$ For the details see David Scheffler's PhD thesis