

LHCb & LHCb upgrade

Marco Gersabeck (The University of Manchester) on behalf of the LHCb-UK groups

PPAP Community meeting - Birmingham - 26 July 2016

60% got more interested, 38% already interested in physics

~10'000 visitors

LHCb & ALPHA @ Royal Society Summer Science Exhibition 2016

ANTIMATTER

Introduction

• News

- Tim Gershon took over from Chris Parkes as LHCb-UK spokesperson
- Chris will remain PI for the LHCb-upgrade project

Introduction

• News

- Tim Gershon took over from Chris Parkes as LHCb-UK spokesperson
- Chris will remain PI for the LHCb-upgrade project
- Flavour physics and much more
 - Precision measurements
 - New particles can enter in quantum loops
 - Looking for deviations from SM behaviour

MANCHESTER 1824 The University of Manchester Technologies Technologies

- Several SM tensions
 - ⇒ B→K*µµ angular observables, lepton-universality in B→KII
- Global analysis of $b \rightarrow sll$ observables points at
 - \rightarrow New Physics contribution to C₉ Wilson coefficient
 - $rightarrow C_9$ different for electron and muon modes
- Also observed tension in $B \rightarrow D^* \tau \nu / B \rightarrow D^* \mu \nu$ ratio
- Also checking in charm sector: $D \rightarrow e\mu$ constraining NP models
- Run 2 and upgrade
 - Higher precision measurements to achieve better significance
 - Add more electron and tau final states to challenge LU

B+D CP violation

arXiv:1605.09768

PRL 116 (2016) 191601

B+D CP violation

PRL 116 (2016) 191601

Charm CP violation constrained to sub-10⁻³ precision Will approach SM sensitivity with upgrade

> No sign for CPV in B mixing

arXiv:1605.09768

B+D CP violation

PRL 116 (2016) 191601

Charm CP violation constrained to sub-10⁻³ precision Will approach SM sensitivity with upgrade

> No sign for CPV in B mixing

- Paradigm shift in data flow
 - Online calibration, analyses with trigger candidates
 - Turbo stream
 - ➡ Gaining experience with upgrade data flows
- Production measurements confirm expected rise in cross-section
 - \Rightarrow D, J/ ψ , Z: Impact on PDFs
- New very forward scintillators (HERSCHEL) open new opportunities for central exclusive production
- SMOG gas injection allows production studies with a range of nuclei (Ne, Ar, He)
 - Constrains neutrino production in atmosphere

Run 2

- Paradigm shift in data flow
 - Online calibration, analyses with trigger candidates
 - Turbo stream
 - ➡ Gaining experience with upgrade data flows
- Production measurements confirm expected rise in cross-section
 - \Rightarrow D, J/ ψ , Z: Impact on PDFs
- New very forward scintillators (HERSCHEL) open new opportunities for central exclusive production
- SMOG gas injection allows production studies with a range of nuclei (Ne, Ar, He)
 - Constrains neutrino production in atmosphere

- Paradigm shift in data flow
 - Online calibration, analyses with trigger candidates
 - Turbo stream
 - ➡ Gaining experience with upgrade data flows
- Production measurements confirm expected rise in cross-section
 - \Rightarrow D, J/ ψ , Z: Impact on PDFs
- New very forward scintillators (HERSCHEL) open new opportunities for central exclusive production
- SMOG gas injection allows production studies with a range of nuclei (Ne, Ar, He)
 - Constrains neutrino production in atmosphere

LHCb upgrade

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024-26 2027

- With increased luminosity hadron channels would saturate
 - Limited by hardware trigger
- Upgrade to allow full detector readout at 40 MHz and increased luminosity: collect ~8fb per year

UNDER CONSTRUCTION

- Requires several new detectors (all tracking plus RICH) and new readout electronics otherwise
- Full software trigger

MANCHESTER

The University of Manchester

- Massively improved trigger efficiencies
- Offline quality reconstruction in trigger
- Major construction project
 - Vertex Locator and RICH built in UK
- Maintain/improve current level of detector performance

RICH

LHCb-PUB-2016-014 EDMS 1627005 3rd May 2016

LHCb Upgraded RICH 1 Engineering Design Review Report

- Successful RICH1 mechanics EDR
- Optical geometry fully optimised
- Successful test-beam system test
- Photon detector pre-series MaPMTs delivered
 - Production testing underway

VELO

- Prototypes of the full electronics readout chain exist
 - ASIC submitted
 - Readout firmware close to completion
- Mechanical design exists
 - Assembly and transport being commissioned
- Micro-channel cooling substrate production challenging
 - Evaluating options including alternative design

*current detector with upgrade luminosity

VELO

- Prototypes of the full electronics readout chain exist
 - ASIC submitted
 - Readout firmware close to completion
- Mechanical design exists
 - Assembly and transport being commissioned
- Micro-channel cooling substrate production challenging
 - Evaluating options including alternative design

Pablo Rodriguez Perez 1976 - 2016

*current detector with upgrade luminosity

MANCHESTER 1824 The University of Manchester Future physics impact

Eur. Phys. J. C (2013) 73:2373

Туре	Observable	LHCb 2018	Upgrade (50 fb ⁻¹)	Theory uncertainty
B_s^0 mixing	$2\beta_s(B_s^0 \to J/\psi\phi)$	0.025	0.008	~0.003
	$2\beta_s(B_s^0 \to J/\psi f_0(980))$	0.045	0.014	~0.01
	$a_{ m sl}^s$	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic penguins	$2\beta_s^{\rm eff}(B_s^0 \to \phi \phi)$	0.17	0.03	0.02
	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\overline{K}^{*0})$	0.13	0.02	< 0.02
	$2\beta^{\rm eff}(B^0 \to \phi K^0_S)$	0.30	0.05	0.02
Right-handed currents	$2\beta_s^{\rm eff}(B_s^0 \to \phi \gamma)$	0.09	0.02	<0.01
	$ au^{ m eff}(B^0_s o \phi \gamma)/ au_{B^0_s}$	5 %	1 %	0.2 %
Electroweak penguins	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.025	0.008	0.02
	$s_0 A_{\rm FB} (B^0 \rightarrow K^{*0} \mu^+ \mu^-)$	6 %	2 %	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.08	0.025	~0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)/\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	8 %	2.5 %	$\sim 10 \%$
Higgs penguins	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	~100 %	~35 %	\sim 5 %
Unitarity triangle angles	$\gamma(B\to D^{(*)}K^{(*)})$	4°	0.9°	negligible
	$\gamma(B_s^0 \to D_s K)$	11°	2.0°	negligible
	$\beta(B^0 \to J/\psi K_{\rm S}^0)$	0.6°	0.2°	negligible
Charm CP violation	A_{Γ}	0.40×10^{-3}	0.07×10^{-3}	_
	$\Delta \mathcal{A}_{CP}$	$0.65 imes 10^{-3}$	0.12×10^{-3}	_

Upgrade sensitivity impact: Factor 3 (muonic) to 6 (hadronic)

 Upgrade computing roadmap defined (LHCb-INT-2016-016)

➡ TDR in Q4 2017

- Trigger efficiency key to upgrade success
 - Benefit from Run 2 experience

MANCHESTER 1824 The University of Manchester Future physics impact

Eur. Phys. J. C (2013) 73:2373

Туре	Observable	LHCb 2018	Upgrade (50 fb ⁻¹)	Theory uncertainty
B_s^0 mixing	$2\beta_s(B_s^0 o J/\psi\phi)$	0.025	0.008	~0.003
	$2\beta_s(B_s^0 \to J/\psi f_0(980))$	0.045	0.014	~ 0.01
	$a_{\rm sl}^s$	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic penguins	$2\beta_{\rm s}^{\rm eff}(B_{\rm s}^0 \to \phi \phi) = 0.17$		0.03	0.02
	$2\beta_s^{\rm cn}(B_s^{\rm o}\to K^{*\rm o}K)$	0.13	0.02	< 0.02
	$2\beta^{\rm eff}(B^0 \to \phi K_S^0)$	0.30	0.05	0.02
Right-handed currents	$2\beta_s^{\rm eff}(B_s^0 \to \phi\gamma)$	0.09	0.02	< 0.01
	$ au^{ m eff}(B^0_s o \phi \gamma)/ au_{B^0_s}$	5 %	1 %	0.2 %
Electroweak penguins	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.025	0.008	0.02
		6 %	2 %	7 %
n	ew observable: V^2/c^4	0.08	0.025	~ 0.02
	$T(Bs \to \mu\mu) \longrightarrow K^+\mu^+\mu^-)$	8 %	2.5 %	${\sim}10~\%$
Higgs penguins	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$0.5 imes 10^{-9}$	0.15×10^{-9}	0.3×10^{-9}
$\mathcal{B}(B^0 \to \mu^+ \mu$	$\mu^-)/\mathcal{B}(B^0_s \to \mu^+\mu^-) \sim 100$	%	~35 %	\sim 5 %
Unitarity triangle angles	$\gamma(B \to D^{(*)}K^{(*)}) 4^{\circ}$	\rightarrow	0.9°	negligible negligible
	$\beta(B^0 \to J/\psi K_{\rm S}^0)$	0.6°	0.2°	negligible
Charm CP violation	A_{Γ} 0.40 × 10 ⁻³ –	0.07 ×	10⁻³ 10 ⁻³	_
	ΔA_{CP}	0.65×10^{-3}	0.12×10^{-3}	_

Upgrade sensitivity impact: Factor 3 (muonic) to 6 (hadronic)

 Upgrade computing roadmap defined (LHCb-INT-2016-016)

➡ TDR in Q4 2017

- Trigger efficiency key to upgrade success
 - Benefit from Run 2 experience

Conclusions

- LHCb Run I results have delivered a broad range of physics output beyond expectations
 - World best in all key areas
 - UK leading many headline analyses
 - Many more results at ICHEP
- Run 2 comes with major improvements
 - Trigger architecture evolving towards upgrade
- LHCb Phase-I upgrade (for LS2) has entered construction phase
 - Major UK involvement in RICH and VELO detectors

BACKUP