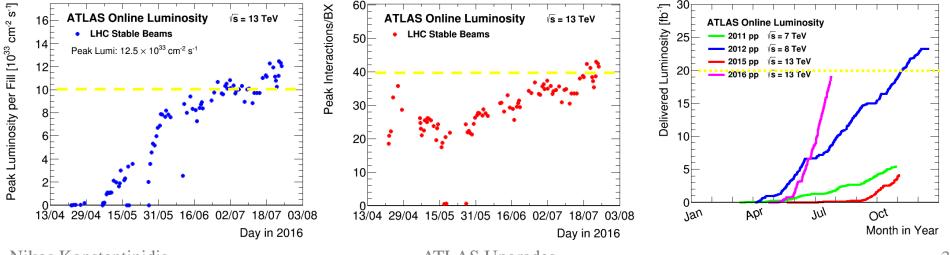


ATLAS upgrades

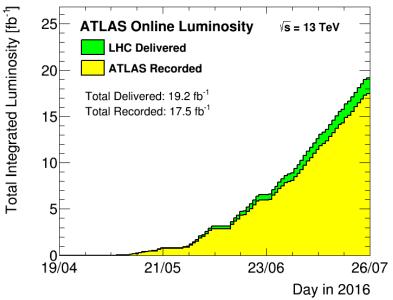
Nikos Konstantinidis (UCL) for ATLAS UK

PPAP Community Meeting 2016



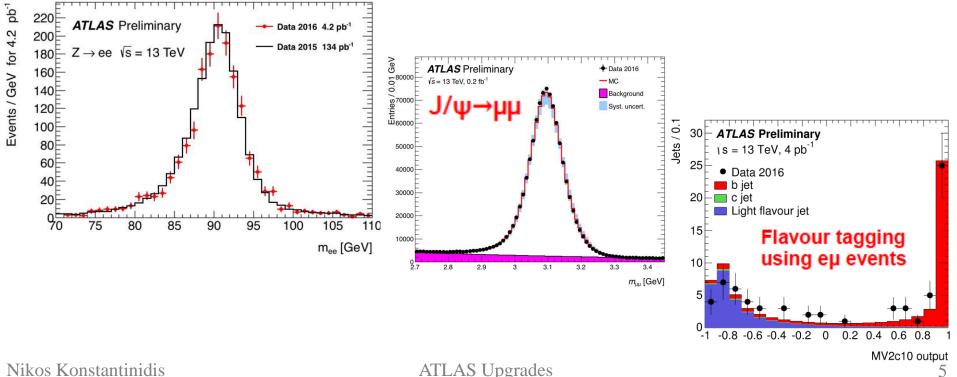
- Current status of the LHC and ATLAS
- Highlights of 13TeV results
- Towards HL-LHC: timelines, challenges, prospects
- Overview of Phase-1 and Phase-2 ATLAS upgrade
- Highlights of UK contributions

LHC in 2016 – Brilliant performance!


- 2016 re-start very efficient!
 - Stable & robust running at 13TeV with 25ns bunch crossing
- Already running above design luminosity reached 1.25x10³⁴cm⁻²s⁻¹
 - Record peak lumi, record fill length, record integrated lumi in one fill
 - Consistently delivering ~0.4-0.5fb⁻¹ per day
 - Set to surpass 2016 target of 25fb⁻¹ by quite a bit more!

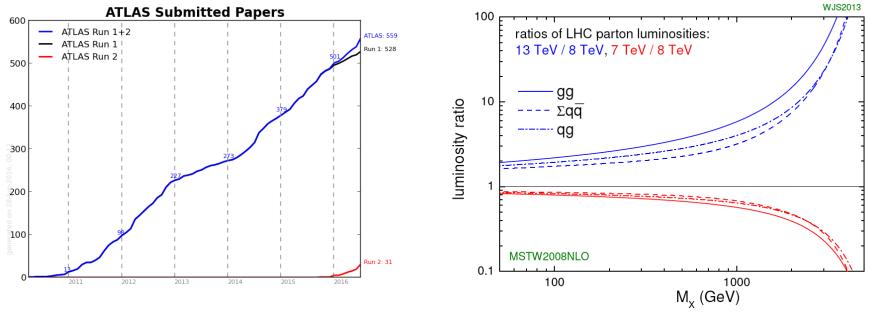
ATLAS in 2016 – Stable operation

- All detector systems operational close to 100%
- Level-1 rate approaching 100kHz (from 75kHz in Run-1)
- Data taking efficiency >90%
 - Thanks to huge efforts from detector, trigger, data processing experts to maintain and improve it!
 Subdetector
 Number of Channels
 Approximate Operational Fractional Fra

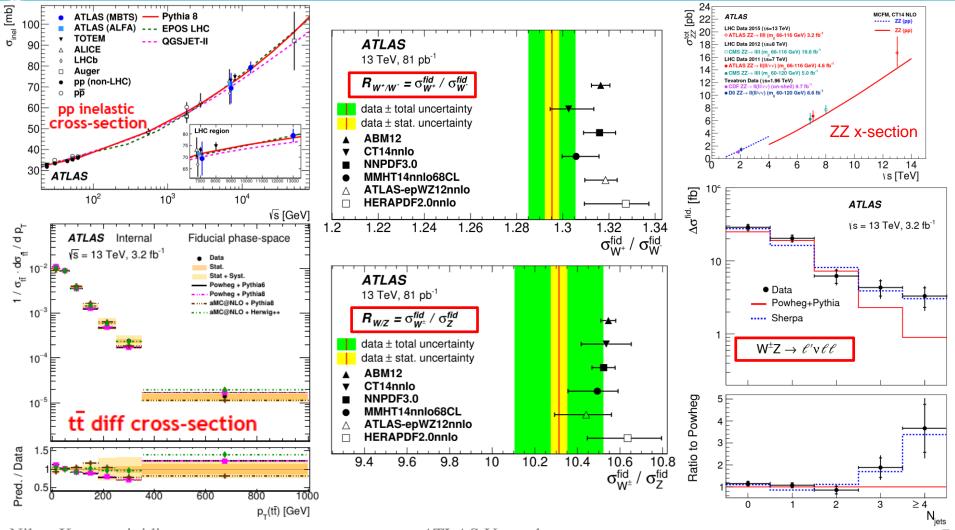

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	92 M	98.2%
SCT Silicon Strips	6.3 M	98.7%
TRT Transition Radiation Tracker	350 k	97.2%
LAr EM Calorimeter	170 k	100%
Tile calorimeter	5200	100%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.7%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	383 k	99.8%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	357 k	99.7%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Chambers	383 k	96.6%
TGC Endcap Muon Chambers	320 k	99.6%
ALFA	10 k	99.9 %
AFP	188 k	98.8 %

Nikos Konstantinidis

ATLAS Upgrades


ATLAS in 2016 – Data Quality

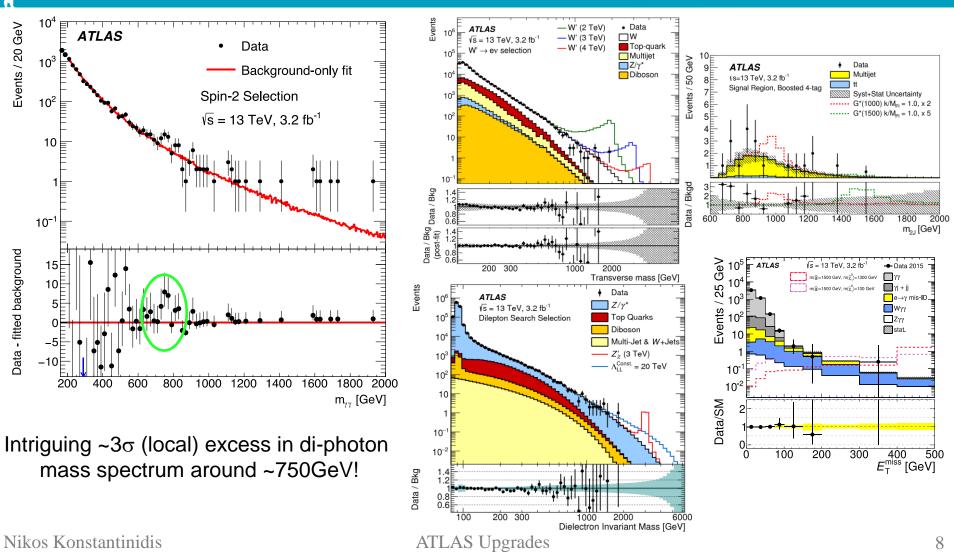
- Recording data of excellent quality
 - Fast work from detector & combined performance groups to understand & optimize object reconstruction in 2016 data



- More than 30 papers published with the 2015 data
- First glimpse at the new energy frontier!
 - First measurements testing the Standard Model at 13TeV
 - Some searches for BSM signals already more sensitive than Run-1

ATLAS Upgrades

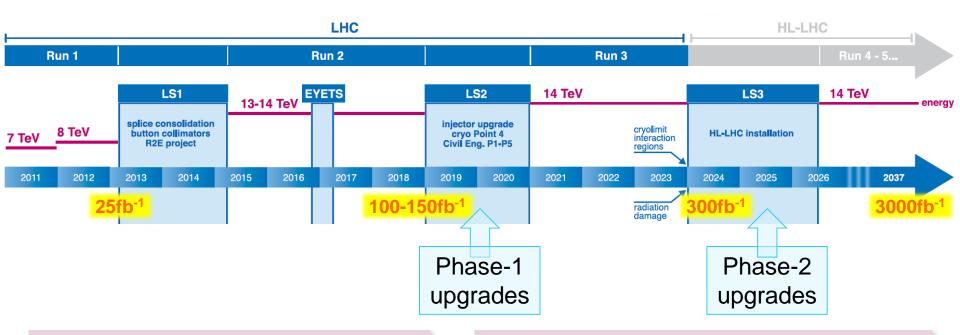
13TeV results – Measurements



Nikos Konstantinidis

ATLAS Upgrades

13 TeV results – Searches


Ø

UK involvement in ATLAS & upgrades

- ATLAS-UK: 14 universities + STFC/RAL
 - ~300 authors: ~10% of ATLAS collaboration
 - ~70 academics: ~1/3 of UK PP community
- Much bigger role in ATLAS
 - ~20% of senior management including:
 - Spokesperson (Charlton), InDet Project leader (Robinson), ITk Project Leader (McMahon)
 - Current or incoming leads in Physics (Tovey), Run Coord. (Cerri, Oh), Data Prep. (Laycock, Frost)
 - ~20% of coordinators in Physics and combined performance groups
 - Several other senior roles in recent past
 - e.g. Upgrade Coordinator, Trigger Coordinator, PubCom Chair, Physics Coordinator...
- Major UK roles in ATLAS construction: Silicon Strip detector (SCT), L1Calo Trigger, High Level Triggers (HLT) & DAQ, Software & Computing
 - Delivered timely and within budget!
 - Continues to lead the M&O efforts in these projects
- Taking forward this expertise and leadership to Phase-1 & Phase-2 upgrades

Timelines towards HL-LHC

<u>Run 3</u>

- Peak lumi up to ~3x10³⁴cm⁻²s⁻¹
- Peak <pile-up>~80
- ~100fb⁻¹/year → ~300fb⁻¹ by LS3
- ==> Upgrades mainly to cope with higher L1 trigger rates

HL-LHC

- Peak lumi up to ~7.5x10³⁴cm⁻²s⁻¹
 Peak <pile-up>~200
 ~300fb⁻¹/year → ~3000fb⁻¹ in 10 years
- ==> Upgrades to cope with occupancies, radiation levels, trigger rates etc...

ATLAS Upgrades – Overview

Phase-1(for Run 3)

- Muon New Small Wheels (NSW) (for improved L1Muon Trigger)
- ECAL trigger electronics (for finer granularity inputs to L1Calo)
- TDAQ upgrades
 L1Calo Trigger electronics
 - L1Muon Trigger electronics
 - L1 Topological Trigger hardware
 - FTK (hardware track finder at start of HLT)
 - HLT software and Readout System (ROS)

Software & Computing

Forward detector system

UK construction project funded to Q1/2019

Phase-2 (for HL-LHC)

New all-Si tracker (ITk): Pixels + Strips

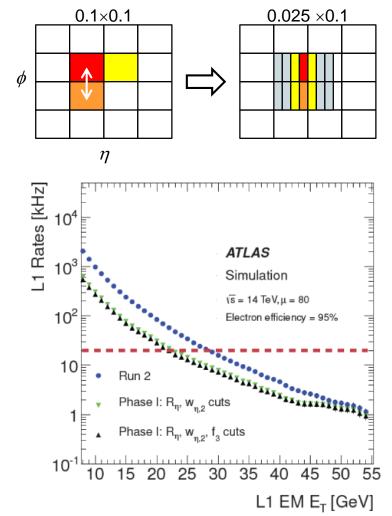
Calorimeters

- New electronics
- New forward Calorimeter (sFCAL)
- High granularity timing detector

Muon system

- New electronics
- Inner Barrel layer (better trigger coverage)
- Muon tagger 2.7<|η<|4.0

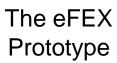
TDAQ


- Major overhaul to cope with higher trigger rates and higher detector readout bandwidth
 - L1Calo upgrade
 - New Level-1 Track Trigger
 - FTK++
 - Event Filter (HLT) & DAQ upgrades

Seftware & Computing

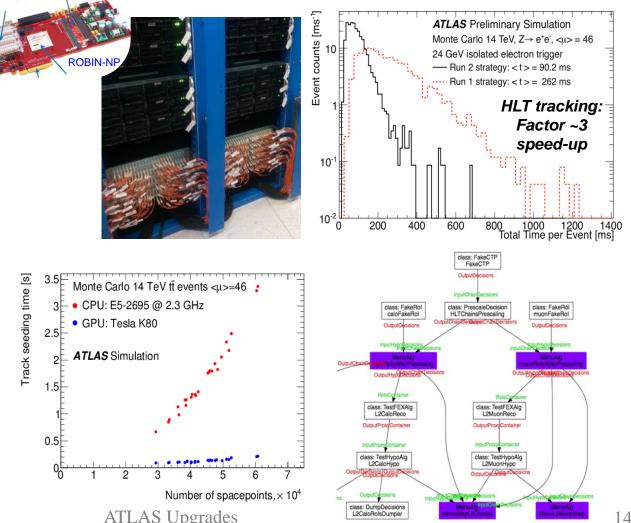
UK R&D (ITk & L1Track) funded to Q1/2018

Phase-1 highlights – L1Calo upgrade


- LAr Calo upgrade will provide finer granularity data to L1 Calo
- Run-3 L1Calo will achieve (for >~95% signal efficiency):
 - Reduced L1_EM rate by factor ~3; or
 - 7 GeV lower E_T threshold
- UK developing electron feature extractor (eFEX) and associated readout driver (ROD)

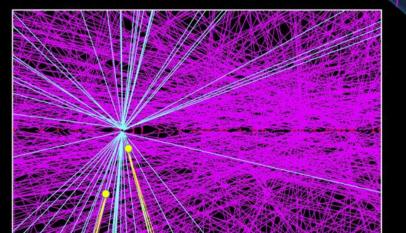
L1Calo UK – Status

- eFEX module
 - Challenging PCB design
 - 424 signal pairs @ 11.2 Gb/s
 - Data sharing between FPGAs requires tracks ≤ 30 cm with complex topology
 - First prototype received Feb'16
 - Tested successfully with prototype LAr electronics
 - 99% 11.2 Gb/s tracks with BER < 10⁻¹⁴
 - Technology, design & method validated
 - Full characterisation continues
 - Multi-Gb/s links, power, cooling, FPGA utilisation...
- ROD
 - Mezzanine to sit on Hub module
 - Prototype received Dec' 15
 - All 48 data outputs & 24/72 inputs tested @ 10 Gb/s with BER $< 10^{-14}$
 - Hardware to test remainder in development
 - System tests scheduled for Oct'16



ROD Prototype under Test

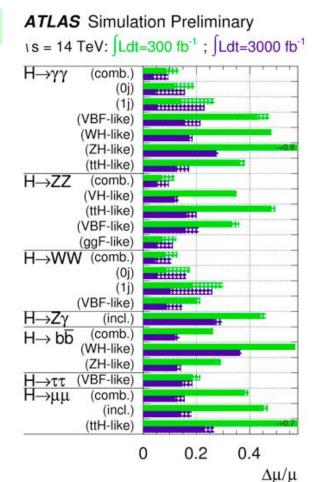
Phase-1 highlights – DAQ & HLT Upgrades


- Readout system upgraded during LS1
- HLT tracking software redesigned resulting in factor ~3 speed up
- GPU demonstrator shows promising speed-up in parts of HLT tracking code
- AthenaMT (MultiThread) common HLT/offline framework: HLT prototype and code migration advancing

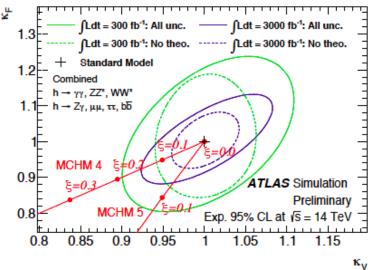
The HL-LHC challenge in a picture

HL-LHC tt event in ATLAS ITK at <µ>=200

Prospects with 3000fb⁻¹ at HL-LHC


- Detailed study of Higgs properties and EWSB mechanism
 - Higgs couplings measured down to the few % level
 - Higgs pair-production and self-coupling measurement
 - Vector Boson Scattering cross-section at ~1TeV
- Full exploration of TeV scale and deep into multi-TeV scale
 - Both through direct searches (Dark Matter, SUSY, ...) & precision SM measurements
 - Sensitivity to rare/low cross section BSM processes
- If discovery with 300fb⁻¹, full investigation with 3000fb⁻¹
 - Measure precisely properties of newly discovered states
 - Pin down the parameters of the underlying theory

Higgs prospects at HL-LHC


HL-LHC: a Higgs factory!

	Higgs bosons at √s=14TeV
HL-LHC, 3000fb ⁻¹	170M
VBF (all decays)	13M
ttH (all decays)	1.8M
Η->Ζγ	230k
Η->μμ	37k
HH (all)	121k

- m_H=~125GeV is blessing!
- Most production & decay modes accessible!
- Relative couplings:
 - Phase-1: 10-80%
 - Phase-2: 5-30%

Combined fit of fermionic (κ_F) vs. bosonic (κ_V) couplings:

Precision vital for BSM searches in the Higgs sector!

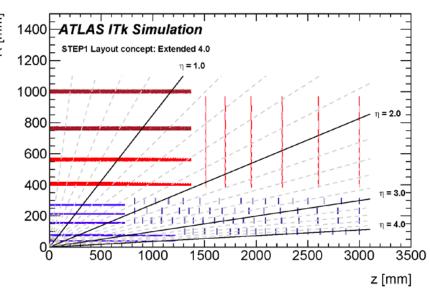
Nikos Konstantinidis

ATLAS Upgrades

17

Highlights of prospects with 3000fb⁻¹

ATL-PHYS-PUB-2013-003, 2014-007

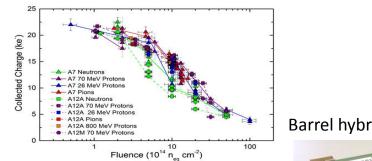

ATLAS Mass reach for Exotic signatures							
ATLAS @14 TeV Z' → ee SSM 95% CL limit			Dark matter M* 5σ discovery				
300 fb ⁻¹	6.5 TeV	4.3 TeV	2.2 TeV				
3000 fb ⁻¹	7.8 TeV	6.7 TeV	2.6 TeV				

ATL-PHYS-PUB-2014-010 , 2013-011, 2015-032

ATLAS Mass reach for SUSY particles							
ATLAS projection	gluino mass	squark mass	stop mass	sbottom mass	χ ₁ + mass WZ mode	χ ₁ + mass WH mode	
300 fb ⁻¹	2.0 TeV	2.6 TeV	1.0 TeV	1.1 TeV	560 GeV	None	
3000 fb ⁻¹	2.4 TeV	3.1 TeV	1.2 TeV	1.3 TeV	820 GeV	650 GeV	

Phase-2 highlights – ITk

- All-Si tracker (Pixels + Strips) with coverage $\frac{1}{2}$
 - Essential for Vector Boson Fusion/Scattering ____ measurements, for missing E_T resolution etc...
- Layout to be finalised by Dec'16
 - TDRs: Strips Dec'16, Pixels Dec'17
- The UK has been leading the R&D in many critical areas
 - Sensor & hybrid design
 - Testing of ASICs
 - Irradiation tests
 - Fabrication & test of modules
 - Design & test of bus tapes
 - Mechanical design for support & services
 - Readout & system tests
 - simulation & performance studies



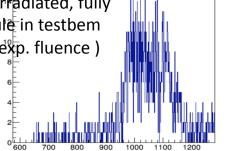
UK proposes to build:

- Half of barrel Strip layers
- One Pixel endcap

(including all services & support structures)

ITk Strips R&D highlights

Irradiation tests of p-in-n Si detctors

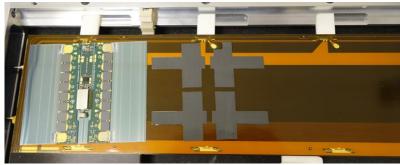

Stave being assembled. Carbon fibre honeycomb.

Barrel hybrid with ABC130 chips

ABC 2 Raw Hitmap X-Projection Functionality of irradiated, fully assembled module in testbem (~7e14 neq/cm² exp. fluence)

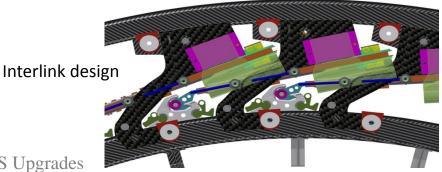
hitXmap_ABC_2

1949 1040

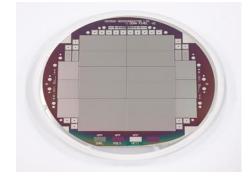

104.4

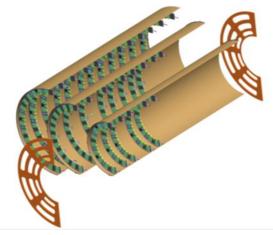
20

Entries


Mear RMS

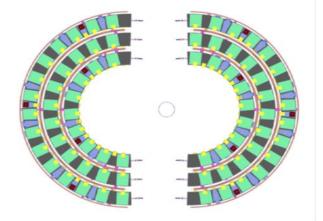
Thermo-mechanical module mounting on a stave


Nikos Konstantinidis

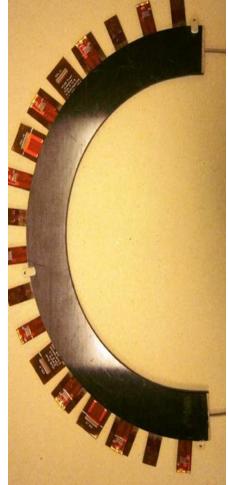

ATLAS Upgrades

ITk Pixels R&D highlights

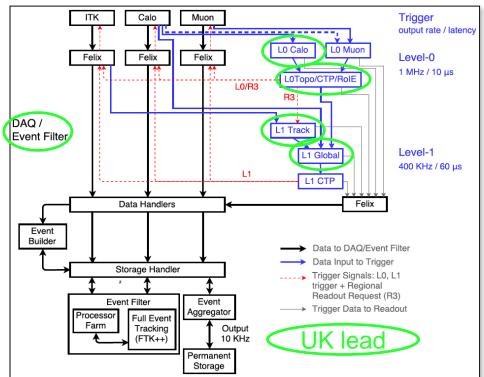
silicon wafer with 6 quad modules manufactured n the UK (Micron)



CAD drawings of the mechanical design for the pixel endcap disks


Prototype of a quad pixel module

Nikos Konstantinidis


ATLAS Upgrades

mechanical prototype of a carbon fibre half ring

Phase-2 highlights – TDAQ architecture

- HL-LHC Physics programme (Higgs etc) needs same trigger thresholds as in Run-1
- UK-proposed two-level scheme, L0/L1
 - Phase-1 L1 becomes Phase-2 L0: brings rate down to ~1MHz (<~10μs)
 - L1 Track Trigger (regional hardware tracking) reduces rate to ~0.4MHz (<~60µs)
- Initial Design Review in Apr'16 considered also a single-level architecture (full readout at 1MHz)
 - Trade-off between flexibility and simplicity
- Decision on architecture by Oct'16
 - TDAQ Phase-2 TDR by Dec'17
- UK well positioned to continue its leadership role in both scenarios
 - L0Calo, RoI Engine, L1Global, L1Track
 - EF Tracking, EF Core Software, Trigger Menus and Signatures, DAQ

HL-LHC project - International Context

- October 2015: Following a scoping exercise for the Phase-2 upgrades of ATLAS and CMS, the LHCC recommended a funding level between the reference and middle scoping scenarios
 - Endorsed by the RRB
 - ATLAS and CMS given green light to proceed to TDRs
 - For ATLAS: hardware cost of 275-235 MCHF
- June 2016: CERN Council approved HL-LHC accelerator project
- ATLAS Phase-2 TDRs to LHCC between Q4/16 and Q4/17
- ATLAS-UK Phase-2 construction bid to PPRP by mid-2017
 For construction project in 2018-2024

Summary

- Impressive performance of LHC in 2016 at 13TeV!!!
 - ATLAS collecting high quality data already >15fb⁻¹ on disk (cf ~ $3fb^{-1}$ in 2015)
 - Big shot at new physics in energy frontier many preliminary results at ICHEP
 - Major discovery potential in coming years!
- UK leadership in ATLAS construction, operations, physics exploitation and upgrades
- ATLAS Phase-I Upgrades: vital to cope at luminosities up to $3x10^{34}$ cm⁻²s⁻¹
- HL-LHC: a broad and exciting programme at the energy frontier
 - ATLAS has a well defined upgrades programme to maintain and optimise the detector performance at the extreme conditions of HL-LHC
 - The UK has a leading role in this programme and, following a successful R&D period, now moving towards Phase-2 construction