

DUNE: Status and Plans

Mark Thomson On behalf of DUNE-UK

PPAP Meeting, 26th July 2016

Overview

- A lot has happened since the last PPAP meeting...
 - The Deep Underground Neutrino Experiment formed
 - It will be the flagship project of Fermilab
 - Very strong support from US DOE, CERN, ...
 - DUNE is now very much on the real axis
 - Anticipate DOE construction funding this Fall
 - ➡ Construction start in US FY17

1. Introduction: LBNF/DUNE

- LBNF/DUNE will consist of
 - An intense 1.2 MW upgradeable v beam fired from Fermilab
 - A massive (70,000 t) deep underground LAr detector in South Dakota and a large Near Detector at Fermilab
 - A large international collaboration

UNIVERSITY OF CAMBRIDGE

International from day one

- US-hosted but truly international
- Model for international partnerships:
 - LBNF/DUNE developed as an international partnership
 - Governance model follows closely that of the LHC:
 - Facility: LHC ↔ LBNF
 - Experiment: ATLAS/CMS ↔ DUNE
- International Funding Model:
 - LBNF: US-hosted project with international contributions (aim: ~75% US, ~25% international = non US)
 - DUNE: an international science collaboration (aim: ~25% US, ~75% international)

2. DUNE Collaboration

The DUNE Collaboration

Paraphrasing the P5 report (2014)

- Called for formation of "LBNF":
 - as an international collaboration
 - ambitious scientific goals:
 - Discovery of Leptonic CP-violation
 - Proton decay
 - Supernova burst neutrinos

Resulted in the formation of the DUNE collaboration with strong representation from:

- LBNE (mostly US)
- LBNO (mostly EU)
- Other interested institutes

The DUNE Collaboration

As of 0500 today

888 Collaborators

Armenia, Brazil, Bulgaria, Canada, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands, Peru, Poland, Romania, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, **UK**, Ukraine, USA from

156 Institutes

DUNE has broad international support and is growing ~80 new collaborators so far this calendar year

As of 0500 today

from

110 Collaborators

13 UK Institutes

Bristol, Cambridge, Durham, Imperial, Lancaster, Liverpool, Manchester, Oxford, Sheffield, STFC-RAL, Warwick, UCL

+ will soon join: STFC-DL & Birmingham + Edinburgh (?)

As of 0500 today

from

110 Collaborators

13 UK Institutes

Bristol, Cambridge, Durham, Imperial, Lancaster, Liverpool, Manchester, Oxford, Sheffield, STFC-RAL, Sussex, Warwick, UCL

+ will soon join: STFC-DL, Birmingham & Edinburgh

- Strong UK Leadership within DUNE:
 - Co-spokesperson (M. Thomson)
 - Co-coordinator of protoDUNE-SP @ CERN (C. Touramanis)
 - Chair of Speakers Committee (S. Soldner-Rembold)
 - Head of Beam Optimization Group (A. Weber)
 - Coordinator of DUNE DAQ group (G. Barr)
 - + a significant number of WG convenership roles

3. The DUNE Science Program

Unprecedented precision utilizing a massive Liquid Argon TPC

DUNE Primary Science Program

Focus on fundamental open questions in particle physics and astroparticle physics:

1) Neutrino Oscillation Physics

- Precision Oscillation Physics:
 - e.g. parameter measurement, θ_{23} octant, testing the 3-flavor paradigm
- 2) Nucleon Decay
 - e.g. targeting SUSY-favored modes, $p \rightarrow K^+ \overline{\nu}$
- 3) Supernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to v_e

DUNE Primary Science Program

to be main discoveries Focus on fundamental open questions in particl physics and astroparticle physics:

- **1) Neutrino Oscillation Physics**
 - **Discover CP Violation** in the
 - leptonic sector
 - Mass Hierarchy
 - Precision Oscill
 - e.g. par
 - ing SUSY-favored modes, $p \rightarrow K^+ \overline{v}$
- Jupernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to v_{e}

 $\Rightarrow \Delta m_{12}^2$

 Δm_{32}^2

3.1 DUNE Oscillation Strategy

Measure neutrino spectra at 1300 km in a wide-band beam

- Determine MH and θ_{23} octant, probe CPV, test 3-flavor paradigm and search for BSM effects (e.g. NSI) in a single experiment
 - Long baseline gives:
 - Matter effects are large ~ 40%
 - Wide-band beam:
 - Measure v_e appearance and v_{μ} disappearance over range of energies
 - MH & CPV effects are separable

E ~ 1-10 GeV

MH and CPV Sensitivities

- **★** Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ
 - Beam spectrum, ...

Beyond discovery: measurement of δ

★ CPV "coverage" is just one way of looking at sensitivity...

\star DUNE will measure δ_{CP}

UNIVERSITY OF CAMBRIDGE

Oscillation Über-Summary

- Nail the Mass Hierarchy
 - 5σ in 2 5 years
- 75 % coverage for 3σ CPV discovery
 - although it could take time
- If "lucky", CPV reach 3σ (5σ) in 3-4 (6-7) years
- Wide-band beam provides test of 3-flavour paradigm
 Sensitivity to BSvM effects, e.g. NSI, steriles, ...
- On-axis: potential to tune beam spectrum
 - Study 2nd oscillation maximum
 - Study tau appearance (?)

3.2 Proton Decay

Proton decay is expected in most new physics models

- But lifetime is very long, experimentally $\tau > \sim 10^{33}$ years
- Relative strength of LAr (c.f. water) is for "heavy" particles in final state
 - For example, look for kaons from SUSY-inspired GUT p-decay

modes such as $p \to K^+ \overline{\nu}$

UNIVERSITY OF CAMBRIDGE

3.2 Proton Decay

Proton decay is expected in most new physics models

- But lifetime is very long, experimentally $\tau > \sim 10^{33}$ years
- Relative strength of LAr (c.f. water) is for "heavy" particles in final state
 - For example, look for kaons from SUSY-inspired GUT p-decay

modes such as $p \to K^+ \overline{\nu}$

very low backgrounds Decay Mode Water Cherenkov Liquid Argon TPC Efficiency Background Efficiency Background $p
ightarrow K^+ \overline{
u}$ 19% 97% 4 $p \rightarrow K^0 \mu^+$ 47% 10% 8 < 2 $p
ightarrow K^+ \mu^- \pi^+$ 97% 1 $n
ightarrow K^+ e^-$ 10% 96% 3 < 22 $n
ightarrow e^+ \pi^-$ 19% 44% 0.8 1 Mt.vr

Clean signature

3.3 Supernova vs

A core collapse supernova produces an incredibly intense burst of neutrinos

- Measure energies and times of neutrinos from galactic supernova bursts
 - In argon (uniquely) the largest sensitivity is to $\nu_{\rm e}$

Physics Highlights include:

- Possibility to "see" neutron star formation stage
- Even the potential to see black hole formation...

4. LBNF – a MW-scale facility

DUNE

LBNF and PIP-II

★LBNF: the world's most intense multi-GeV v beam

- 1.2 MW from day one
 - NuMI (MINOS) <400 kW
 - NuMI (NOVA) ~700 kW
 - Builds on strong FNAL track record
- upgradable to 2.4 MW

***** 1.2 MW Requires PIP-II

- major (\$0.5B) upgrade of FNAL accelerator infrastructure
- Replace existing 400 MeV LINAC with 800 MeV SC LINAC

LBNF/DUNE – Fermilab in 2026

LBNF/DUNE – Fermilab in 2025

5. DUNE Far Detector

Underground at SURF...

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850 level (~ 1 mile underground)

DUNE Far Detector

- Four chambers hosting four independent 10-kt FD modules
 - Gives flexibility for staging & evolution of LAr-TPC technology design
 - Assume four identical cryostats: 15.1 (W) x 14.0 (H) x 62 (L) m³
 - Assume the four 10-kt modules will be similar but not identical
 - Strategy allows for developments in LAr-TPC technology

- Civil engineering is well understood (at near final design)
 - Tendering process for excavation contracts before end of year

First 17-kt detector

Modular implementation of Single-Phase LAr-TPC

- Active volume: 12m x 14m x 58m
- 150 Anode Plane Assemblies
 - 6m high x 2.3m wide —
- 200 Cathode Plane Assemblies
 - Cathode @ -180 kV for 3.5m drift

View 1: Event display (run 14456, event 8044)

S/N≈100

Second & subsequent far detector modules

- Not assumed to be exactly the same, could be:
 - Evolution of single-phase design
 - Dual-phase readout potential benefits

Single-phase APA/CPA LAr-TPC:

- Design is well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (ran in early 2016)

tests of basic design -

Single-phase APA/CPA LAr-TPC:

- Design is well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (ran in early 2016) tests of basic design
- MicroBooNE (operational since 2015)

Single-phase APA/CPA LAr-TPC:

- Design is well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (ran in early 2016) tests of basic design
 - MicroBooNE (operational since 2015) -
 - SBND (aiming for operation in 2018)

Single-phase APA/CPA LAr-TPC:

- Design is well advanced evolution from ICARUS
- Supported by strong development program at Fermilab
 - 35-t prototype (ran in early 2016)

tests of basic design

- MicroBooNE (operational since 2015)
- SBND (aiming for operation in 2018)
- "Full-scale prototype" with ProtoDUNE at the CERN Neutrino Platform
- Engineering prototype
 - 6 full-sized drift cells c.f. 150 in the far det.
- Approved experiment at CERN
- Aiming for operation in 2018

🕼 CAMBRIDGE

CERN Neutrino Platform

CERN support of international neutrino programme

- Major infrastructure investment for DUNE:
 - New building: EHN1 extension in the North area
 - Two tertiary charged-particle beam lines
 - Two large (8x8x8m³) cryostats & cryogenic systems

Beneficial occupancy later this year

CERN Neutrino Platform

CERN support of international neutrino programme

- Major infrastructure investment for DUNE:
 - New building: EHN1 extension in the North area
 - Two tertiary charged-particle beam lines
 - Two large (8x8x8m³) cryostats & cryogenic systems

6. DUNE in the UK

DUNE-UK Aims & Status AIMS:

- Play a leading role in far detector construction:
 - One of four production sites for the LAr-TPC wire planes (APAs)
 - Major contribution to Far Detector DAQ system
- Leading role in LAr-TPC reconstruction/DUNE physics

DUNE-UK Aims & Status <u>STFC Funding:</u>

• Existing DUNE-UK grant (Oct 2014 – Sep 2017):

- Focuses on these long-term aims
- Supplemental grant (July 2016 Mar 2018):
 - Major UK role in ProtoDUNE-SP construction (APAs & DAQ)

DUNE-UK Activities

• WP1: Physics

- Physics and detector design/optimisation studies

WP2: LAr-TPC Reconstruction

- Leading development of LAr-TPC automated reconstruction
 - Strong connection to UK MicroBooNE activities

• WP3: DAQ

- Leading design/architecture work for Far Detector
- Leading role in ProtoDUNE DAQ
- WP4: 35-t prototype at Fermilab (now complete)
 - Hands on experience with LAr-TPC data
- WP5: LAr-TPC construction (capacity building)
 - Hardware for SBND detector (APAs & Cathode planes)
 - Major contribution to ProtoDUNE-SP (3 of the 6 APAs)

5: LAr-TPC construction (capacity building)

- Hardware for SBND detector (APAs & Cathode planes)
- Major contribution to ProtoDUNE-SP (3 of the 6 APAs)

Beyond DUNE: UK and LBNF

Also UK interest and expertise in the facility:

- High-power targets (UK is world leading)

- Optimization of the neutrino beam line

- Design of the target hall
- Potential for UK investment in PIP-II e.g. SRF

7. Schedule

Schedule/Milestones

★ Schedule based on realistic funding profile

- Current DOE planning line
- Planned CERN contributions
- Anticipated other international contributions

★ Key milestones (stakes in the ground):

- 2017: start of underground excavation at SURF
- 2018: operation of two large-scale prototypes at CERN
- **2021:** start of installation of first 10-kt far detector module
- 2024: start of commissioning/operation of 20-kt
- 2026: start of beam operation (1.2 MW)

★ A lot of activity now and in coming years...

8. Political Context

DUNE

Political Context – many firsts

★ LBNF/DUNE will be:

- The first U.S. hosted expt. run as an international collaboration
 - Organization follows the LHC model

★ A game-changer for CERN and the US:

- Historic agreement between U.S. and CERN
- US contributes to LHC upgrade (high-field magnets)
- CERN contributes to infrastructure/cryo at SURF
 - this is a big deal...

★ The US is serious and committed:

- LBNF/DUNE is the future flagship of Fermilab & the US. domestic program – there is no plan B
- Very strong support from FNAL & the DOE
- CD3a in December requests funding for construction starting in FY17 (approval expected on September timescale)
- Both houses of congress included "start of construction" language in FY17 president's budget request

Political Context – many firsts

★ LBNF/DUNE will be:

- The first U.S. hosted expt. run as an international collaboration
 - Organization follows the LHC model

★ A game-changer for CERN and the US

- Historic agreement between U.S. and
- d) US contributes to LHC upgrade
- CERN contributes to infrastructure *161
 - this is a big deal

★ The US is serio

sare flagship of Fermilab & the US. domestic LBNF/D the sig no plan B proc

apport from FNAL & the DOE

December – requests funding for construction starting in (approval expected on September timescale)

mitted:

Both houses of congress included "start of construction" language in FY17 president's budget request...

ositive

SURF

9. Summary

Summary

★ These are exciting times

The first 20 ft of "excavation" at the DUNE site at SURF

★ We are on the verge of launching the next new largescale particle physics project...

Questions?

Backup Slides

Parameter Resolutions

$\delta_{\text{CP}}\, \pmb{\&}\, \theta$ $_{\text{23}}$

• As a function of exposure

UNIVERSITY OF CAMBRIDGE

MH Sensitivity

- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ
 - Beam spectrum, ...

MH Sensitivity

- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ

UNIVERSITY OF CAMBRIDGE

Di

MH and CPV Sensitivities

- **★** Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ
 - Beam spectrum, ...

MH and CPV Sensitivities

- **★** Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ

UNIVERSITY OF CAMBRIDGE

Beyond discovery: measurement of δ

★ CPV "coverage" is just one way of looking at sensitivity...

\star DUNE will measure δ_{CP}

UNIVERSITY OF CAMBRIDGE

$\frac{\mathsf{PDK}}{\mathsf{p} \to \mathsf{K} \mathsf{v}}$

• DUNE for various staging assumptions

11. Opportunities on DUNE

Opportunities in DUNE

DUNE is moving rapidly

- Excavation starts in 2017
- ProtoDUNE @ CERN in 2018
- Far Detector construction in 2019
- Far Detector installation in 2021

DUNE: the next large global Particle Physics project

- Actively seeking new collaborators
 - many synergies with collider experiments
- Immediate Focus in Europe will be ProtoDUNE @ CERN
- Many Opportunities:
 - Hardware: e.g. photon detection system (scintillator + SiPMs)
 - DAQ/Computing: continuous readout = high-data rates
 - Software: LAr-TPC reconstruction

Beam Optimization

Beam Optimization

Following LBNO approach, genetic algorithm used to optimize horn design – increase neutrino flux at lower energies

Reconstruction

LAr-TPC Reconstruction

Real progress in last year – driven by 35-t & MicroBooNE

• Full DUNE simulation/reconstruction now in reach

UNIVERSITY OF CAMBRIDGE

Schedule

Schedule

Calculating Sensitivities

Determining Physics Sensitivities

For Conceptual Design Report

- Full detector simulation/reconstruction not available
 - See later in talk for plans
- For Far Detector response
 - Use parameterized single-particle response based on achieved/expected performance (with ICARUS and elsewhere)

Systematic constraints from Near Detector + ...

- Based on current understanding of cross section/hadro-production uncertainties
- + Expected constraints from near detector
 - in part, evaluated using fast Monte Carlo

Evaluating DUNE Sensitivities I

Many inputs calculation (implemented in GLoBeS):

- Reference Beam Flux
 - 80 GeV protons
 - 204m x 4m He-filled decay pipe
 - 1.07 MW
 - NuMI-style two horn system
- Optimized Beam Flux
 - Horn system optimized for lower energies
- Expected Detector Performance
 - Based on previous experience (ICARUS, ArgoNEUT, ...)

- Cross sections
 - GENIE 2.8.4
 - CC & NC
 - all (anti)neutrino flavors

Exclusive v-nucleon cross sections

Evaluating DUNE Sensitivities II

- Assumed* Particle response/thresholds
 - Parameterized detector response for individual final-state particles

Particle Type	Threshold (KE)	Energy/momentum Resolution	Angular Resolution
μ^{\pm}	30 MeV	Contained: from track length Exiting: 30 %	1 °
π^{\pm}	100 MeV	MIP-like: from track length Contained π -like track: 5% Showering/Exiting: 30 %	1 °
e±/γ	30 MeV	2% ⊕ 15 %/√(E/GeV)	1 °
р	50 MeV	p < 400 MeV: 10 % p > 400 MeV: 5% ⊕ 30%/√(E/GeV)	5°
n	50 MeV	440%/√(E/GeV)	5°
other	50 MeV	5% ⊕ 30%/√(E/GeV)	5°

*current assumptions to be addressed by FD Task Force

Evaluating DUNE Sensitivities III

Efficiencies & Energy Reconstruction

- Generate neutrino interactions using GENIE
- Fast MC smears response at generated final-state particle level
 - "Reconstructed" neutrino energy
 - kNN-based MV technique used for v_e "event selection", parameterized as efficiencies
- Used as inputs to GLoBES

UNIVERSITY OF CAMBRIDGE

Evaluating DUNE Sensitivities IV

Systematic Uncertainties

- Anticipated uncertainties based on MINOS/T2K experience
- Supported by preliminary fast simulation studies of ND

Source	MINOS	T2K	DUNE
Elux ofter NI/E extremelation			
Flux after N/F extrapolation	0.3 %	3.2 %	Ζ %
Interaction Model	2.7 %	5.3 %	~2%
Energy Scale (v_{μ})	3.5 %	Inc. above	(2 %)
Energy Scale (v _e)	2.7 %	2 %	2 %
Fiducial Volume	2.4 %	1 %	1 %
Total	5.7 %	6.8 %	3.6 %

• DUNE goal for v_e appearance < 4 %

- For sensitivities used: $5 \% \oplus 2 \%$
 - where 5 % is correlated with v_{μ} & 2 % is uncorrelated v_{e} only

DUNE-UK Activities

• WP1: Physics

- Physics and detector design/optimisation studies

WP2: LAr-TPC Reconstruction

- Leading development of LAr-TPC automated reconstruction
 - Strong connection to UK MicroBooNE activities

• WP3: DAQ

- Leading design/architecture work for Far Detector
- Leading role in ProtoDUNE DAQ
- WP4: 35-t prototype at Fermilab (now complete)
 - Hands on experience with LAr-TPC data
- WP5: LAr-TPC construction (capacity building)
 - Hardware for SBND detector (APAs & Cathode planes)
 - Major contribution to ProtoDUNE-SP (3 of the 6 APAs)

5: LAr-TPC construction (capacity building)

- Hardware for SBND detector (APAs & Cathode planes)
- Major contribution to ProtoDUNE-SP (3 of the 6 APAs)

Beyond DUNE: UK and LBNF

Also UK interest and expertise in the facility:

- High-power targets (UK is world leading)

- Optimization of the neutrino beam line

- Design of the target hall
- Potential for UK investment in PIP-II e.g. SRF

7. Schedule

Schedule/Milestones

★ Schedule based on realistic funding profile

- Current DOE planning line
- Planned CERN contributions
- Anticipated other international contributions
- **★ Key milestones** (stakes in the ground):
 - 2017: start of underground excavation at SURF
 - 2018: operation of two large-scale prototypes at CERN
 - **2021:** start of installation of first 10-kt far detector module
 - 2024: start of commissioning/operation of 20-kt
 - 2026: start of beam operation (1.2 MW)

★ A lot of activity now and in coming years...

8. Political Context

DUNE

Political Context – many firsts

★ LBNF/DUNE will be:

- The first U.S. hosted expt. run as an international collaboration
 - Organization follows the LHC model

★ A game-changer for CERN and the US:

- Historic agreement between U.S. and CERN
- US contributes to LHC upgrade (high-field magnets)
- CERN contributes to infrastructure/cryo at SURF
 - this is a big deal...

★ The US is serious and committed:

- LBNF/DUNE is the future flagship of Fermilab & the US. domestic program – there is no plan B
- Very strong support from FNAL & the DOE
- CD3a in December requests funding for construction starting in FY17 (approval expected on September timescale)
- Both houses of congress included "start of construction" language in FY17 president's budget request

Political Context – many firsts

★ LBNF/DUNE will be:

- The first U.S. hosted expt. run as an international collaboration
 - Organization follows the LHC model

★ A game-changer for CERN and the US

- Historic agreement between U.S. and
- US contributes to LHC upgrade
- CERN contributes to infrastructure *161
 - this is a big deal

★ The US is serio

sare flagship of Fermilab & the US. domestic LBNF/D the sig no plan B proc

apport from FNAL & the DOE

December – requests funding for construction starting in (approval expected on September timescale)

mitted:

Both houses of congress included "start of construction" language in FY17 president's budget request...

ositive

SURF

9. Summary

Summary

★ These are exciting times

The first 20 ft of "excavation" at the DUNE site at SURF

★ We are on the verge of launching the next new largescale particle physics project...

Questions?

Backup Slides

Parameter Resolutions

$\delta_{\text{CP}}\, \pmb{\&}\, \theta_{\,\,\text{23}}$

• As a function of exposure

MH Sensitivity

- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ
 - Beam spectrum, ...

MH Sensitivity

- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ

UNIVERSITY OF CAMBRIDGE

Di

MH and CPV Sensitivities

- **★** Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ
 - Beam spectrum, ...

MH and CPV Sensitivities

- **★** Sensitivities depend on multiple factors:

UNIVERSITY OF CAMBRIDGE

Beyond discovery: measurement of δ

★ CPV "coverage" is just one way of looking at sensitivity...

\star DUNE will measure δ_{CP}

$\frac{\mathsf{PDK}}{\mathsf{p} \to \mathsf{K} \mathsf{v}}$

• DUNE for various staging assumptions

11. Opportunities on DUNE

Opportunities in DUNE

DUNE is moving rapidly

- Excavation starts in 2017
- ProtoDUNE @ CERN in 2018
- Far Detector construction in 2019
- Far Detector installation in 2021

DUNE: the next large global Particle Physics project

- Actively seeking new collaborators
 - many synergies with collider experiments
- Immediate Focus in Europe will be ProtoDUNE @ CERN
- Many Opportunities:
 - Hardware: e.g. photon detection system (scintillator + SiPMs)
 - DAQ/Computing: continuous readout = high-data rates
 - Software: LAr-TPC reconstruction

Beam Optimization

Beam Optimization

Following LBNO approach, genetic algorithm used to optimize horn design – increase neutrino flux at lower energies

UNIVERSITY OF CAMBRIDGE

Reconstruction

LAr-TPC Reconstruction

Real progress in last year – driven by 35-t & MicroBooNE

• Full DUNE simulation/reconstruction now in reach

UNIVERSITY OF CAMBRIDGE

97

Schedule

Schedule

Calculating Sensitivities

Determining Physics Sensitivities

For Conceptual Design Report

- Full detector simulation/reconstruction not available
 - See later in talk for plans
- For Far Detector response
 - Use parameterized single-particle response based on achieved/expected performance (with ICARUS and elsewhere)

Systematic constraints from Near Detector + ...

- Based on current understanding of cross section/hadro-production uncertainties
- + Expected constraints from near detector
 - in part, evaluated using fast Monte Carlo

101

Evaluating DUNE Sensitivities I

Many inputs calculation (implemented in GLoBeS):

- Reference Beam Flux
 - 80 GeV protons
 - 204m x 4m He-filled decay pipe
 - 1.07 MW
 - NuMI-style two horn system
- Optimized Beam Flux
 - Horn system optimized for lower energies
- Expected Detector Performance
 - Based on previous experience (ICARUS, ArgoNEUT, ...)

- Cross sections
 - GENIE 2.8.4
 - CC & NC
 - all (anti)neutrino flavors

Exclusive v-nucleon cross sections

UNIVERSITY OF CAMBRIDGE

Evaluating DUNE Sensitivities II

- Assumed* Particle response/thresholds
 - Parameterized detector response for individual final-state particles

Particle Type	Threshold (KE)	Energy/momentum Resolution	Angular Resolution
μ^{\pm}	30 MeV	Contained: from track length Exiting: 30 %	1 °
π^{\pm}	100 MeV	MIP-like: from track length Contained π -like track: 5% Showering/Exiting: 30 %	1 °
e±/γ	30 MeV	2% ⊕ 15 %/√(E/GeV)	1 °
р	50 MeV	p < 400 MeV: 10 % p > 400 MeV: 5% ⊕ 30%/√(E/GeV)	5°
n	50 MeV	440%/√(E/GeV)	5°
other	50 MeV	5% ⊕ 30%/√(E/GeV)	5°

*current assumptions to be addressed by FD Task Force

Evaluating DUNE Sensitivities III

Efficiencies & Energy Reconstruction

- Generate neutrino interactions using GENIE
- Fast MC smears response at generated final-state particle level
 - "Reconstructed" neutrino energy
 - kNN-based MV technique used for v_e "event selection", parameterized as efficiencies
- Used as inputs to GLoBES

UNIVERSITY OF CAMBRIDGE

Evaluating DUNE Sensitivities IV

Systematic Uncertainties

- Anticipated uncertainties based on MINOS/T2K experience
- Supported by preliminary fast simulation studies of ND

Source	MINOS	T2K	DUNE
Elux ofter NI/E extremelation			
Flux after N/F extrapolation	0.3 %	3.2 %	Ζ %
Interaction Model	2.7 %	5.3 %	~2%
Energy Scale (v_{μ})	3.5 %	Inc. above	(2 %)
Energy Scale (v _e)	2.7 %	2 %	2 %
Fiducial Volume	2.4 %	1 %	1 %
Total	5.7 %	6.8 %	3.6 %

• DUNE goal for v_e appearance < 4 %

- For sensitivities used: $5 \% \oplus 2 \%$
 - where 5 % is correlated with v_{μ} & 2 % is uncorrelated v_{e} only

