Imperial College London

Short BaseLine neutrino oscillation experiments

Antonin Vacheret PPAP community meeting 2016 University of Birmingham

Imperial College London

The 1 eV² region

- A reminder about the scale of the problem we had once in neutrino physics
- A large number of experiment were needed to establish a coherent picture

The 1 eV² region

- A reminder about the scale of the problem once in neutrino physics
- A large number of experiment were needed to establish a coherent picture
- The short baseline program is mainly interested is / probing further this area there

The unorthodox data sets

MiniBooNE

Phys.Rev.Lett. 110, 161801 (2013)

MiniBooNE

Gallium Anomaly

T2K near detector nue deficit

Sterile neutrino(s) ?

 muon to electron neutrino appearance

 $P_{\mu e} = 4U_{e4}^2 U_{\mu 4}^2 \sin^2(1.27\Delta m_3^2 L/E)$

electron neutrino disappearance

 $P_{ea} \approx P_{es} = 4U_{e4}^2 U_{s4}^2 \sin^2(1.27\Delta m_3^2 L/E)$

muon neutrino disappearance

 $P_{\mu\mu} \approx 4U_{\mu4}^2 U_{s4}^2 \sin^2(1.27\Delta m_3^2 L/E)$

need to cover as many channels as possible for a "definite" answer

J. Link TAUP 2015

Disappearance limit

- We have also limits on numu disappearance
- they causes issues when trying to interpret results in terms of sterile neutrinos
- need stronger limits ?

Global fits

Recent results, not SBL yet

On-going and future SBL program

- Accelerator Decay-in-flight
 - FERMILAB SBL (SBND, microBooNE, ICARUS)
 - T2K near detector

- Accelerator decay at rest
 - muDAR (JSNS²), IsoDAR, kDAR, kPIPE

- Reactor experiments
 - DANSS, NEOS
 - STEREO, SoLid
 - PROSPECT, NULat
- Radioactive neutrino sources
 - SOX, RICCOCHET

The three LArTPC SBN Programme at FNAL

The SBN Programme Physics Goal

MicroBooNE in the UK

- Biggest non-US contribution
- Many leadership roles
- Significant impact on science
- Knowledge transfer for future LArTPCs

SBND in the UK

- Biggest International contribution
- Many leadership roles (L2-manager for TPC, Conveners of Simulation & Software Group, Speaker Committee Leader)
- Significant impact on science and DUNE roadmap
- Knowledge transfer for DUNE:
 - ➡ APA construction
 - → APA wire winding
 - → HV feedthrough
 - light collection systems
 - installation and integration of TPC
 - Event Reconstruction Software

Data taking started 10/2015

 > 3 x 10²⁰ POT recorded (~1/2 data set)

Week

MicroBooNE automated reconstruction

Recent results

Michel e- spectrum

Recent progress (building construction)

SBND

Recent progress (detector construction)

Timeline to Physics for SBN Programme

P. Wilson, April 22, 2016

12

Very short baseline reactor experiment

 Upcoming experiments require percent level precision in antineutrino spectrum measurement

detector located close to reactor core

• operating on the surface

New reactor experiments

New reactor experiments

	Tech	Reactor	P [MW]	L(m)	M (tonnes)
STEREO (Fr/Ger)	LS+Gd	ILL-HFR	57	8.8-11.2	2
Neutrino-4 (Ru)	LS+Gd	SM3	100	6-12	1.5
PROSPECT (US)	LS + ⁶ Li	ORNL HFIR	85	7-18	2
SoLid (UK/B/Fr)	PVT + ⁶ LiF:ZnS	SCK • CEN BR2	45-80	5.5-11	2
DANSS (Ru)	PS + Gd	KNPP	3000	9.7-12.2	0.9
NEOS (KO)	PS + Gd	Younggwang	2800	25	~1

3D segmented composite detector

- composite /dual scintillator detector element :
 - 5 cm x 5 cm x 5 cm PVT cube segmentation to contain positron energy and localise interaction
 - Layer of LiF:ZnS(Ag) for neutron detection close to interaction

¹
⁴He
$$^{6}Li$$

 $E_{tot} = 4.78 \text{ MeV}$

- WLS fibre to collect both scintillation light in X and Y direction
- each cube voxel optically separated from each other by reflective coating
- SiPM to read out fibre signal

IBD candidate

prompt delayed Data

Deployment at BR2

Neutron ID and capture time

prompt to neutron capture time difference (AmBe source)

 Validated PID, neutron tranport simulation (MCNP & G4) and Li capture efficiency

Signal analysis

- Demonstrated power of segmentation on background rejection
- but SM1 had limited shielding and lower absolute neutron efficiency of ~ 2.5% due to high data rate

SoLid in the UK

- SoLid is a UK led experiment based on UK technology
 - $\mbox{ }$ responsible for 1/3 of total fiducial mass
 - key deliverables in electronics
 - KE in neutron detection and antineutrino monitoring
- Imperial
 - UK PI and current spokesperson
 - Module design and construction
 - Background and shielding
- Oxford
 - Analog design, test and delivery of customised electronics
 - DAQ
- Bristol
 - Digital board design and delivery
 - neutron trigger
 - integration
- UK leadership in the project was paramount to succesfull deployment of SM1 prototype and data taking and analysis (Led by Bristol student)
- H2020 funded in Dec 2015 secured phase-I program for period

data rate max 0.5 TB/day

breaking news: 1 additional module funded by French ANR !

SoLid in the UK

- SoLid is a UK led experiment based on UK technology
 - key deliverables in electronics
 - responsible for 1/3 of total fiducial mass
 - KE in neutron detection and antineutrino monitoring
- Imperial
 - UK PI and current spokesperson
 - Module design and construction
 - Background and shielding
- Oxford
 - Analog design, test and delivery of customised electronics
 - DAQ
- Bristol
 - Digital board design and delivery
 - neutron trigger
 - integration
- UK leadership in the project was paramount to succesfull deployment of SM1 prototype and data taking and analysis (Led by Bristol student)
- ERC funding Dec 2015 secured phase-I program for period

Timeline for reactor/source experiments

Summary

- Short baseline program well covered in the UK for a definite answer on existance of 1 eV sterile neutrino by 2020-2021
 - a few projects with specific timeline and physics reach
 - very good opportunity for younger generation to gain responsibilities at international stage
 - UK driving many areas of the SBN program at FERMILAB
 - largest non-US collaboration with active role in LAr reconstruction and analysis of microBooNE
 - microBooNE only LAr detector online with very encouraging first results
 - **SBND** adds wide physics program and R&D inline with DUNE
 - goal to adress MiniBooNE excess and LSND anomaly
- UK also leading very short baseline reactor experiment
 - SoLid to start running early next year with first strong limit expected after 150 days of reactor
 - develop new technology for applications in radiation detection, non-proliferation, material engineering etc...
- First results only a few years away !

Other projects JSNS²

Other projects ISODAR

 do these projects represent an opportunity for developping future PP technology as well as offering the platform to increase UK researcher diversity of profiles and initiatives ? Back up

What was MiniBooNE's sensitivity*?

*The *actual* experimental sensitivity achieved (not from the proposal)

http://www-boone.fnal.gov/for_physicists/data_release/nue_nuebar_2012/

courtesy of T. Miceli

MicroBooNE

- Address the MiniBooNE low-energy excess
 - Look for excess
 - Identify signal (γ or e⁻?)
- Oscillation physics study (appearance/ disappearance)
- Cross-section measurements
- Astroparticle and Exotic physics

SBND Physics

- Crucial to identify the source of potential excess in MicroBooNE
- + Essential to understand beam contamination (ν_e , $\nu_{\overline{e}}$)
- Cross-sections measurements

Process		No Events/ Stat		
11000000		Events	ton	Uncert.
	v., Events (By Final State Topology)			
CC Inclusive	νμ Deenie (Dy I mai Diale Topology)	5.212.690	46.542	0.04%
CC 0 <i>π</i>	$\nu_{\mu}N \rightarrow \mu + Np$	3.551.830	31,713	0.05%
	$\cdot \nu_{\mu}N \rightarrow \mu + 0p$	793,153	7,082	0.11%
	$\cdot \nu_{\mu}N \rightarrow \mu + 1p$	2,027,830	18,106	0.07%
	$\cdot \nu_{\mu}N \rightarrow \mu + 2p$	359,496	3,210	0.17%
	$\cdot \nu_{\mu}N \rightarrow \mu + \geq 3p$	371,347	3,316	0.16%
CC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + 1\pi^{\pm}$	1,161,610	10,372	0.09%
$CC \ge 2\pi^{\pm}$	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + \ge 2\pi^{\pm}$	97,929	874	0.32%
$CC \ge 1\pi^0$	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + \ge 1\pi^0$	497,963	4,446	0.14%
NC Inclusive		1.988.110	17,751	0.07%
NC 0 π	$\nu_{\mu}N \rightarrow \text{nucleons}$	1,371,070	12,242	0.09%
NC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \text{nucleons} + 1\pi^{\pm}$	260,924	2,330	0.20%
$NC \ge 2\pi^{\pm}$	$\nu_{\mu}N \rightarrow \text{nucleons} + \geq 2\pi^{\pm}$	31,940	285	0.56%
$NC \ge 1\pi^0$	$\nu_{\mu}N \rightarrow \text{nucleons} + \ge 1\pi^0$	358,443	3,200	0.17%
	ν_e Events			1
CC Inclusive		36798	329	0.52%
NC Inclusive		14351	128	0.83%
Total ν_{μ} and ν_{e} Events		7,251,948	64,750	20.0
			[
00.05	ν_{μ} Events (By Physical Proces	9	0.000	
CC QE	$ u_{\mu}n ightarrow \mu^{-}p$	3,122,600	27,880	
CC RES	$ u_{\mu}N ightarrow \mu^{-}\pi N$	1,450,410	12,950	
CC DIS	$ u_{\mu}N \rightarrow \mu^{-}X$	542,516	4,844	
CC Coherent	$ u_{\mu}Ar \rightarrow \mu Ar + \pi$	18,881	169	and company and

Precise measurements at reactor

~ 100 m - 1 km baseline

- underground laboratory
- large external shielding
- homogenous, well contained energy
- achieve percent level antineutrino flux measurement at PWR

$$\bar{\nu}_e + p \to e^+ + n$$

detection using IBD reaction

$$E_{vis} = E_{\bar{\nu_e}} - 0.782 \text{ MeV}$$
$$E_{vis} = T_{e^+} + 2\gamma \text{ (511 keV)}$$

Precise measurements at reactor

~ 100 m - 1 km baseline

technology

- Underground laboratory
- Large external shielding
- Well contained energy
- achieve percent level antineutrino flux measurement at PWR

~ 10 m baseline

Challenges:

- sensitivity in E and L for oscillation search
- rejection of background
- security and safety constraint on site

Highly segmented detector sufficiently compact to deploy meters away from core

Signal localisation

- Neutron capture efficiency uniform up to the edge of the detector
- Neutron capture one cube away from interaction gives directional sensitivity

Energy reconstruction

Energy response calibration

Signal analysis

Demonstrated power of segmentation on background rejection

Improvements for SoLid

Neutron capture efficiency

- Additional LiF:ZnS sheets
 - Li capture efficiency 0.55 to 0.7 +30%
 - Reduced capture time 105 to 66 us
- new screens with improved transparency

Light yield and uniformity of response

- 4 fibre read out
 - 37 PA/cube/MeV +66% increase in light yield from SM1
 - on target for 14%/sqrt(E) resolution
- 7% total variation of light yield across detector planes

Average PA/cube = 37.2