

NA62 status and prospects

Evgueni Goudzovski (University of Birmingham, eg@hep.ph.bham.ac.uk) on behalf of the NA62UK collaboration

Outline:

- 1) Physics at kaon experiments: $K \rightarrow \pi v \overline{v}$ decays and beyond
- 2) NA62 status, performance, UK involvement.
- 3) Prospects for CERN kaon experiments beyond 2018.
- 4) Overview of the recent results.
- 5) Summary

PPAP community meeting Birmingham • 26 July 2016

Rare kaon decays: $K \rightarrow \pi v \overline{v}$

SM: box and penguin diagrams

Ultra-rare decays with the highest CKM suppression: $A \sim (m_t/m_w)^2 |V_{ts}^*V_{td}| \sim \lambda^5$

- ✤ Hadronic matrix element related to a measured quantity (K⁺→ $\pi^0 e^+ v$).
- SM precision surpasses any other FCNC process involving quarks.
- ★ Measurement of $|V_{td}|$ complementary to those from B-B mixing or B⁰→ργ.

E. Goudzovski / Birmingham, 26 July 2016

SM branching ratios Buras et al., JHEP 1511 (2015) 033

Mode	$BR_{SM} \times 10^{11}$
K ⁺ → π^+ ν $\overline{\nu}$ (γ)	9.11±0.72
$K_L \rightarrow \pi^0 v \overline{v}$	3.00±0.31

The uncertainties are largely parametric (CKM)

Theoretically clean, almost unexplored, sensitive to new physics.

$K \rightarrow \pi v \overline{v}$: experiment vs theory

NA62 aim: collect O(100) SM $K^+ \rightarrow \pi^+ v \overline{v}$ decays with <20% background in 3 years of data taking using a novel decay-in-flight technique.

<u>Signature</u>: high momentum K⁺ (75GeV/c) → low momentum π^+ (15–35 GeV/c).

<u>Advantages:</u> max detected K⁺ decays/proton (p_K/p₀≈0.2); efficient photon veto (>40 GeV missing energy)

Un-separated beam (6% kaons) \rightarrow higher rates, additional background sources.

E. Goudzovski / Birmingham, 26 July 2016

Broader programme (1)

Neutrino oscillations discovery (1998)

Neutrino source

Neutrino detector

First non-SM phenomenon:

1) Lepton Flavour Violation;
 2) non-zero neutrino mass.

New physics scenarios involving LFV:

✓ Neutrino is a Majorana fermion (identical to antineutrino)

✓ Heavy (possibly sterile) neutrino states

✓ **Supersymmetry** with R-parity violation or RH neutrinos

Astrophysical consequences:

✓ Dark matter, nucleosynthesis, Supernova evolution, ...

* Search for forbidden states with lepton pair (ee, $\mu\mu$, μ e):

 $egin{aligned} & K^+
ightarrow \pi^+ \mu^+ e^- \ & K^+
ightarrow \pi^+ \mu^- e^+ \ & K^+
ightarrow \pi^- \mu^+ e^+ \ & K^+
ightarrow \pi^- e^+ e^+ \ & K^+
ightarrow \pi^- \mu^+ \mu^+ \end{aligned}$

 $egin{aligned} & K^+
ightarrow \mu^-
u e^+ e^+ \ & K^+
ightarrow e^-
u \mu^+ \mu^+ \ & K^+
ightarrow \pi^+ \pi^0, \ \pi^0
ightarrow \mu^+ e^- \ & K^+
ightarrow \pi^+ \pi^0, \ \pi^0
ightarrow \mu^- e^+ \end{aligned}$

E. Goudzovski / Birmingham, 26 July 2016

Broader programme (2)

NA62 status and UK involvement

CERN NA48/NA62 experiments

The NA62 experiment

- ↔ Expected single event sensitivities (SES): ~10⁻¹² (~10⁻¹¹) for K[±] (π^0) decays.
- ★ Kinematic rejection factors (limited by beam pileup and tails of MCS): 5×10^3 for K⁺→ $\pi^+\pi^0$, 1.5×10^4 for K→ $\mu^+\nu$.
- ♦ Hermetic photon veto: ~10⁸ suppression of $\pi^0 \rightarrow \gamma\gamma$.
- ✤ Particle ID (RICH+LKr+MUV): ~10⁷ muon suppression.

NA62 status

Minimum bias (~1% intensity) and $K_{\pi\nu\nu}$ test runs taken in 2015. Most systems commissioned and meet the design requirements.

Running at 20% intensity now, planning ~50% intensity later in 2016 (max intensity is currently limited by SPS capabilities)

Expect to reach a few SM $K_{\pi\nu\nu}$ events sensitivity by the end of 2016

KTAG operation in 2015

The first NA62 detector to be commissioned; performance exceeds specifications

NA62: UK contributions

Hardware and trigger:

- full responsibility for the KTAG subdetector;
- full responsibility for the Run Control system;
- development and operation of L0 muon+hodoscope+RICH trigger;
- development and operation of the high-level software trigger;
- GRID infrastructure, software, data processing, DCS system.

Leadership in the physics exploitation:

- ✤ Flagship analysis: K⁺→π⁺νν ;
- Detector performance & rare decay studies with 2015+2016 data.
- Analyses of "old" NA48/NA62 data.

Major leadership roles:

- Physics coordination; *
- Software coordination;
- ✤ Run coordinators: 4 out of 15 (in 2016); ★
- Editorial Board membership: 3 out of 10;
- Conference Committee chair.

- 2007 data analysis coordination;
- high-level trigger coordination;

Run 2 and Run 3 programme

♦ NA62 Run 2 (2015–2018) is focused on $K^+ \rightarrow \pi^+ \nu \nu$.

- $\checkmark\,$ Trigger bandwidth for other physics is limited.
- ✓ Several measurements at nominal SES~10⁻¹²: K⁺→ π^+ A', π^0 → $\nu\nu$.
- ✓ A few measurements do not require extreme SES: $K^+ \rightarrow \ell^+ \nu_H$, ...
- ✓ In general, limited sensitivities to rare/forbidden decays (SES~10⁻¹⁰ to ~10⁻¹¹, similar to NA48/2 and BNL-E865).
- $\checkmark\,$ A proof of principle for the broad rare/forbidden decay programme.
- NA62 Run 3 (2021-2024) programme is under discussion. [will be presented at "Physics Beyond Colliders" workshop, CERN, Sep 2016]
 - ✓ Existing apparatus, different trigger logic: no capital investment.
 - ✓ Rare/forbidden K⁺ and π^0 decays at SES~10⁻¹²: K⁺ physics: K⁺→ $\pi^+\ell^+\ell^-$, K⁺→ $\pi^+\gamma\ell^+\ell^-$, K⁺→ $\ell^+\nu\gamma$, K⁺→ $\pi^+\gamma\gamma$, ... π^0 physics: π^0 → e^+e^- , π^0 → $e^+e^-e^+e^-$, π^0 → 3γ , π^0 → 4γ , ... Searches for LFV/LNV: K⁺→ $\pi^-\ell^+\ell^+$, K⁺→ $\pi^+\mu e$, π^0 → μe , ...
 - ✓ Possibly K_L rare decays (SES~10⁻¹¹), including $K_L \rightarrow \pi^0 \ell^+ \ell^-$ [CPV].
 - Dump mode: hidden sector searches (long-lived HNL, DP, ALP).

Beyond 2024

- ♦ Need to measure both $BR(K^+ \rightarrow \pi^+ \nu \nu)$ vs $BR(K_L \rightarrow \pi^0 \nu \nu)$: affected differently by NP.
- In the next few years, we expect:
 - ✓ NA62 @ CERN to measure **BR**(K⁺→ $\pi^+\nu\nu$) to **10%**;
 - ✓ KOTO @ J-PARC to observe a few $K_L \rightarrow \pi^0 v v$ events.
- ★ A new, possibly multi-purpose, K_L experiment at CERN focussed on K_L→ π^0 νν, with SES~0.5×10⁻¹² is under consideration for Run 4 (2026–2029).

KLEVER @ CERN:

- ✤ 30 GeV protons (300 kW); <p_{KL}>=2 GeV/c;
- Proposal: SES=8×10⁻¹² (~4 SM evts) with S/B=1.4 in three years.
- ✤ Short (100h) run in 2013: SES=1.3×10⁻⁸;
- Observed 1 event, expected 0.36; [CKM2014]
- Collected ×20 more data in 2015;
- Intention (no proposal): upgrade to 100 SM evts. E. Goudzovski / Birmingham, 26 July 2016

- ✤ 400 GeV protons; <p_{KL}>~100 GeV/c: complementary approach to KOTO.
- ♦ 60 SM events in 5 years with $S/B \approx 1$.
- Protons required: 5×10¹⁹ (NA62×10): target area & transfer line upgrade.
- Re-use NA62 infrastructure and parts of detector (LKr calorimeter; muon system).

Recent & upcoming results: 2003-2007 data samples

UK groups have been consistently responsible for >50% of the physics output of the "old" CERN kaon experiments

Recent results:

- Search for lepton number violation and resonances in K[±]→πµµ decays
 [Birmingham & Liverpool]
- **\diamond** Search for dark photon production: $\pi^0 \rightarrow \gamma A'$ [Birmingham]
- * π^0 transition form factor measurement [Birmingham & Bratislava]
- Searches for heavy neutral leptons: $K^+ \rightarrow \ell^+ \nu$ [Birmingham]

$K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$: lepton number violation

E. Goudzovski / Birmingham, 26 July 2016

[Factor 13 improvement; final result; paper in preparation]

π^0 form factor (2007 data)

E. Goudzovski / Birmingham, 26 July 2016

HNL searches

2007 data: background-limited; sensitive above 300 MeV/c² unlike BNL E949 (decay at rest) **2015 data:** a wider programme including $K^+ \rightarrow \ell^+ \nu_H$, $K^+ \rightarrow \ell^+ \nu \nu \nu$ and $K^+ \rightarrow \ell^+ \nu A'$. \checkmark The K⁺ flux of 2007 matched in one week; \checkmark ~10 times lower background; wider m_N range. Limits on $|U_{\mu4}|^2$ from $K^{\pm} \rightarrow \mu^{\pm} \nu$ (production searches) NA62-R expected sensitivity 10^{-5} **KEK (1982)** 10^{-6} NA62-R_⊮ single event sensitivity 10^{-7} SES, NA62 minimum 10^{-8} bias data 2015 E949 (2015 10^{-9}

0.30

0.35

m₄ [GeV]

0.40

0.20

0.25

Summary

UK participation in NA62 from 2011:

- ✓ Capital funding and manpower for detector construction and operation from ERC Advanced and Royal Society Grants.
- $\checkmark\,$ Soon after, STFC contribution with M&O costs.
- \checkmark KTAG detector delivered on time and exceeds specifications.
- \checkmark Now in exploitation mode: supported by STFC Particle Grant.
- Extremely good value for STFC investment (M&O, 1 postdoc, 2 Rutherford fellows, travel, some academic time).
- ✓ Strong UK leadership in physics analysis: both NA62 and "old" data. Recently, UK-led best limits on K[±]→ $\pi^{\mp}\mu^{\pm}\mu^{\pm}$, π^{0} → γ A', HNL; π^{0} TFF.

* NA62 run 2015–2018:

- $\checkmark\,$ Running at 20% intensity now, and going to 50% soon.
- \checkmark Expect a few SM K_{*nvv*} events sensitivity by the end of 2016.
- ✓ Focused on the $K_{\pi\nu\nu}$ measurement (SES~10⁻¹²).

✤ NA62 run 2021–2024:

- ✓ An extensive $K^+/K_L/\pi^0$ rare decay and beam dump programme with existing detector is being developed.
- $\checkmark~$ A new $\rm K_{L}$ experiment afterwards is under consideration.

E. Goudzovski / Birmingham, 26 July 2016

BBN allowed band

1.6

1.8

 m_N , GeV/c²

See-saw

12

1.4

10-5

10-6

10-8

10⁻⁹

10⁻¹⁰

10-11

Spadaro, PANIC2014

E. Goudzovski / Birmingham, 26 July 2016

Improvements over the world data are possible also for dark photon and axion production on Be target.

Proof-of-principle: the 2016 data.

NA62 & SHiP design parameters

Primary beam for both NA62 and SHiP: 400 GeV/c SPS protons

	NA62 (running experiment)	SHiP (proposal)
Years of operation	3	5
POT per SPS spill	3×10 ¹²	4×10 ¹³
POT total	5×10 ¹⁸	2×10 ²⁰
Decay volume (m ³)	260 m ³	1780 m ³
Decay volume distance to target	104–183 m	64–124 m
Decay volume pressure (bar)	10 ⁻⁹ bar	10 ⁻⁶ bar
Halo muon rate in spectrometer	6 MHz	few kHz
Straw chamber area	0.06m <r<1.05m< td=""><td>$R_1 = 5m, R_2 = 10m$</td></r<1.05m<>	$R_1 = 5m, R_2 = 10m$

... but a crucial aspect is the background rejection capability!

LFV in K[±] and π^0 decays

	TIT -+ 0007 CT	Dana anti-	Deferrer
Mode	OL at $90%$ OL	Experiment	Reierence
$K^+ ightarrow \pi^+ \mu^+ e^-$	$1.3 imes10^{-11}$	BNL E777/E865	PRD 72 (2005) 012005
$K^+ o \pi^+ \mu^- e^+$	$5.2 imes10^{-10}$		
$K^+ o \pi^- \mu^+ e^+$	$5.0 imes10^{-10}$)	- BNL E865*	PRL 85 (2000) 2877
$K^+ \rightarrow \pi^- e^+ e^+$	$6.4 imes10^{-10}$]		
$(K^{\pm}) \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$	$1.1 imes10^{-9}$ (CERN NA48/2	PLB 697 (2011) 107
$\widetilde{K^+} \rightarrow \mu^- \nu e^+ e^+$	$2.0 imes10^{-8}$	Geneva-Saclay	PL 62B (1976) 485
$K^+ ightarrow e^- u \mu^+ \mu^+$	$\operatorname{no}\mathrm{data}$		
$\pi^0 o \mu^+ e^-$	$3.6 imes10^{-10}$	FNAL KTeV	PRL 100 (2008) 131803
$\pi^0 o \mu^- e^+$	$3.6 imes10^{-10}$		

* CERN NA48/2 sensitivities for these three modes are similar to those of BNL E865

Expected NA62 single event sensitivities: $\sim 10^{-12}$ for K[±] decays, $\sim 10^{-11}$ for π^0 decays.

✤ NA62 is capable of improving on all these decay modes.

Sensitivity will depend on the trigger selectivity.

Search for $K^{\pm} \rightarrow \mu^{\pm} N$, $N \rightarrow \pi^{\pm} \mu^{\mp}$

- Interpretation in terms of production and decay of either Majorana neutrino (N) or LN conserving heavy neutrino.
- * A scan in the parameter space: m_N and τ_N .
- ★ Limits of ~10⁻¹⁰ (~10⁻⁹) set for τ_N <100 ps for LNV (LNC) case.

E. Goudzovski / Birmingham, 26 July 2016

Assumed X mass, MeV/c²