Resonances and scattering in QCD – progress and prospects

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

Annual Particle Theory Meeting, Durham, 19 – 21 December 2016

Hadron Spectrum Collaboration

www.symmetrymagazine.org

Exotic particles at the LHC?

breaking

April 14, 2014 CERN's LHCb experiment sees exotic particle

1

Exotic particles at the LHC?

www.symmetrymagazine.org

April 14, 2014

breaking

CERN's LHCb experiment sees exotic particle

1

Meson spectroscopy

Meson spectroscopy

Meson spectroscopy

Exotic baryons

PRL 115, 072001 (2015)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 14 AUGUST 2015

G

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \rightarrow J/\psi K^- p$ Decays

R. Aaij *et al.** (LHCb Collaboration) (Received 13 July 2015; published 12 August 2015)

Introduction

- Lattice QCD, scattering and resonances
- Some examples (focus on mesons):
 - The ρ resonance
 - Light scalar mesons
 - Charm-light mesons
- Summary

Lattice QCD Spectroscopy

Discretise spacetime in a finite volume
Compute correlation fns. numerically (Euclidean time, t → i t)

$$\langle f \rangle \sim \int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}U f e^{-\tilde{S}[\psi,\bar{\psi},U]}$$

Note: finite *a* and *L*; possibly unphysical m_{π}

Lattice QCD Spectroscopy

 Discretise spacetime in a finite volume
 Compute correlation fns. numerically (Euclidean time, t → i t)

$$\langle f \rangle \sim \int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}U f e^{-\tilde{S}[\psi,\bar{\psi},U]}$$

Note: finite *a* and *L*; possibly unphysical m_{π}

Finite-volume energy eigenstates from: $C_{ij}(t) = < 0 |\mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0)|0 >$

Lattice QCD Spectroscopy

 Discretise spacetime in a finite volume
 Compute correlation fns. numerically (Euclidean time, t → i t)

$$\langle f \rangle \sim \int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}U f e^{-\tilde{S}[\psi,\bar{\psi},U]}$$

Note: finite *a* and *L*; possibly unphysical m_{π}

Finite-volume energy eigenstates from: $C_{ij}(t) = < 0 |\mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0)|0>$ $= \sum_n \frac{e^{-E_n}t}{2 E_n} Z_i^{(n)} Z_j^{(n)*}$

Lower-lying mesons and baryons

Lower-lying mesons and baryons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Singularity structure of scattering matrix

Im E_{cm} Bound-state pole on physical sheet Re E_{cm} 2m

Don't have direct access to scattering physics

Infinite volume – continuous spectrum above threshold

Infinite volume – continuous spectrum above threshold

Finite volume – discrete spectrum

Non-interacting:
$$\vec{k}_{A,B} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

[periodic b.c.s]

Infinite volume – continuous spectrum above threshold

Finite volume – discrete spectrum

[periodic b.c.s]

Non-interacting: $\vec{k}_{A,B} = \frac{2\pi}{L}(n_x, n_y, n_z)$ Interacting: $\vec{k}_{A,B} \neq \frac{2\pi}{L}(n_x, n_y, n_z)$

c.f. 1-dim:
$$k = \frac{2\pi}{L}n + \frac{2}{L}\delta(k)$$

scattering phase shift

9

Lüscher method [NP B354, 531 (1991)] extended by many others: relate **finite-volume energy levels** {*E*_{cm}} to **infinite-volume scattering** *t*-matrix

Lüscher method [NP B354, 531 (1991)] extended by many others: relate **finite-volume energy levels** {*E*_{cm}} to **infinite-volume scattering** *t*-matrix

Elastic scattering: from E_{cm} get $t(E_{cm})$ or equivalently $\delta(E_{cm})$

Scattering *t*-matrix: $S = I + 2i\rho t$

$$\ell^{(\ell)} = rac{1}{
ho} e^{i\delta_\ell} \sin \delta_\ell$$

 $2k_{\mathsf{CM}}$

Larger set of E_{cm} by e.g. overall non-zero mom., twisted b.c.s, different vols.

[Complication: reduced symmetry of lattice volume \rightarrow mixing of partial waves]

The ρ resonance in $\pi\pi$ scattering

Experimentally ${\sf BR}(
ho o \pi\pi) \sim 100\%$

The ρ resonance in $\pi\pi$ scattering

E_{cm} / MeV P = [0,0,0]1300 $J^{P} = 1^{-} [\ell = 1]$ Reduced sym. \rightarrow 1200 other partial waves can mix in 1100 1000 – – – – $K\bar{K}$ thresh. 900 0 800 700 m_{π} = 236 MeV 600

Experimentally ${\sf BR}(
ho o \pi\pi) \sim 100\%$

Finite volume spectrum from: $C_{ij}(t) = < 0 |O_i(t)O_j^{\dagger}(0)|0 >$ Use many different operators

Wilson *et al* (HadSpec) [PR D92, 094502 (2015)] and Dudek, Edwards, CT (HadSpec) [PR D87, 034505 (2013)]

The ρ resonance: elastic $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: elastic $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: elastic $\pi\pi$ scattering

(HadSpec) [PR D87, 034505 (2013); PR D92, 094502 (2015)]

The ρ resonance: **elastic** $\pi\pi$ scattering: other calcs.

Some other recent lattice QCD calculations:

- Bali *et al* (RQCD) [PR D93, 054509 (2016)]: $m_{\pi} \approx 150$ MeV ($N_f = 2$)
- Bulava *et al* [NP B910, 842 (2016)]: $m_{\pi} \approx 240$ MeV
- Guo et al [PR D94, 034501 (2016)]: m_{π} = 315, 226 MeV (N_f = 2)

Lüscher method [NP B354, 531 (1991)] extended by many others: relate **finite-volume energy levels** {*E*_{cm}} to **infinite-volume scattering** *t*-matrix

Coupled-channel scattering:

E.g.
$$t(E_{cm}) = \begin{pmatrix} t_{\pi\pi\to\pi\pi}(E_{cm}) & t_{\pi\pi\to K\bar{K}}(E_{cm}) \\ t_{K\bar{K}\to\pi\pi}(E_{cm}) & t_{K\bar{K}\to K\bar{K}}(E_{cm}) \end{pmatrix}$$

Determinant equation for $t(E_{cm})$ at each E_{cm}

- Given $t(E_{cm})$: solns. of equ. \rightarrow finite-vol. spec. $\{E_{cm}\}$ But we need: spectrum $\rightarrow t(E_{cm})$
- Under-constrained problem (e.g. 2 channels: 3 unknowns but 1 equ.)

Lüscher method [NP B354, 531 (1991)] extended by many others: relate **finite-volume energy levels** {*E*_{cm}} to **infinite-volume scattering** *t*-matrix

Coupled-channel scattering:

E.g.
$$t(E_{cm}) = \begin{pmatrix} t_{\pi\pi\to\pi\pi}(E_{cm}) & t_{\pi\pi\to K\bar{K}}(E_{cm}) \\ t_{K\bar{K}\to\pi\pi}(E_{cm}) & t_{K\bar{K}\to K\bar{K}}(E_{cm}) \end{pmatrix}$$

Determinant equation for $t(E_{cm})$ at each E_{cm}

- Given $\mathbf{t}(E_{cm})$: solns. of equ. \rightarrow finite-vol. spec. $\{E_{cm}\}$ But we need: spectrum $\rightarrow \mathbf{t}(E_{cm})$
- Under-constrained problem (e.g. 2 channels: 3 unknowns but 1 equ.)
 → Parameterize E_{cm} dependence of t-matrix and fit {E_{lattice}} to {E_{naram}}

Try different parameterizations, e.g. various *K*-matrix forms (for elastic scattering also Breit Wigner, effective range expansion).

The ρ resonance: **coupled-channel** $\pi\pi$, $K\bar{K}$

(HadSpec) [PR D92, 094502 (2015)]

Resonant $\pi^+ \gamma \rightarrow \rho \rightarrow \pi^+ \pi^0$ amplitude

Briceño et al (HadSpec) [PRL 115, 242001 (2015); PRD 93, 114508 (2016)]

Light scalar mesons (< 1 GeV)

Light scalar mesons (< 1 GeV)

Light scalar mesons (< 1 GeV)

κ in πK, ηK

J^P = 0⁺, Isospin = ½, Strangeness = 1

Wilson, Dudek, Edwards, CT (HadSpec) [PRL 113, 182001 2014); PR D91, 054008 (2015)]

κ in πK, ηK

 $J^{P} = 0^{+}$, Isospin = ½, Strangeness = 1

Wilson, Dudek, Edwards, CT (HadSpec) [PRL 113, 182001 2014); PR D91, 054008 (2015)]

κ in πK, ηK

 $J^{P} = 0^{+}$, Isospin = ½, Strangeness = 1

a_0 resonance in $\pi\eta$, $K\bar{K}$

$J^{P} = 0^{+}, I = 1$

Dudek, Edwards, Wilson (HadSpec) [PR D93, 094506 (2016)]

$J^{P} = 0^{+}, I = 1$

Resonance strongly coupled to both $\pi\eta\,\,{\rm and}\,K\bar{K}$

Dudek, Edwards, Wilson (HadSpec) [PR D93, 094506 (2016)]

$J^{P} = 0^{+}, I = 1$

Resonance strongly coupled to both $\pi\eta\,$ and $K\bar{K}$

Dudek, Edwards, Wilson (HadSpec) [PR D93, 094506 (2016)]

$J^{P} = 0^{+}, I = 0$

$J^{P} = 0^{+}, I = 0$

$J^{P} = 0^{+}, I = 0$

$J^{P} = 0^{+}, I = 0$

$J^{P} = 0^{+}, I = 0$

Charm-light (D) and charm-strange (D_s) mesons

Some earlier LQCD studies:

- Mohler *et al* [PR D87, 034501 (2012)] 0⁺ $D \pi$ and 1⁺ $D^* \pi$ resonances
- Mohler et al [PRL 111, 222001 (2013)] 0⁺ D_s(2317) below D K threshold
- Lang et al [PRD 90, 034510 (2014)] 0⁺ D_s(2317) and 1⁺ D_{s1}(2460), D_{s1}(2536)

Dπ, Dη, $D_s \overline{K}$ (I=½)

 m_{π} = 391 MeV

Moir, Peardon, Ryan, CT, Wilson (HadSpec) [JHEP 1610, 011 (2016)]

Dπ, Dη, D_sκ̄ (I=½)

Moir, Peardon, Ryan, CT, Wilson (HadSpec) [JHEP 1610, 011 (2016)]

Some other recent work on charmonium(-like) mesons:

- Ozaki, Sasaki [PR D87, 014506 (2013)] no sign of Y(4140) in J/ $\psi \phi$
- Prelovsek & Leskovec [PRL 111, 192001 (2013)] 1⁺⁺ I=0 near $D\bar{D}^*$ X(3872)?
- Prelovsek et al [PL B727, 172; PR D91, 014504 (2015)] no sign of Z⁺(3900) in 1⁺⁻
- Chen *et al* (CLQCD) [PR D89, 094506 (2014)] 1⁺⁺ I=1 $D\bar{D}^*$ weakly repulsive
- Padmanath et al [PR D92, 034501 (2015)] 1⁺⁺ I=0 [X(3872)?]; no I=1 or Y(4140)
- Lang *et al* [JHEP 1509, 089 (2015)] I=0 $D\bar{D}$: 1⁻⁻ ψ (3770) and 0⁺⁺
- Chen et al (CLQCD) [PR D92, 054507 (2015)] 1^{+-} I=1 $D^*\overline{D}^*$ weakly repulsive?
- Chen *et al* (CLQCD) [PR D93, 114501 (2016)] 0⁻⁻, 1⁺⁻ I=1 $D^*\overline{D}_1$ some attraction?
- Ikeda *et al* (HAL QCD) [PRL 117, 242001 (2016)] π J/ ψ , $\rho \eta_c$, $D\overline{D}^*$ using HAL QCD method suggest Z⁺(3900) is a threshold cusp
- Albaladejo et al [EPJ C76, 573 (2016)] different scenarios for PR D91, 014504

Bottom mesons:

- Lang et al [PL B750, 17 (2015)] BK (0⁺) and B^{*}K (1⁺) I=0 bound states
- Lang et al [PR D94, 074509 (2016)] $B_s \pi$, BK (I=1) J^P = 0⁺ no sign of X(5568)

Summary

- Significant progress in using lattice QCD to study resonances etc. Coupled-channel scattering for the first time.
- Extract many energy levels → map out scattering amps.
- Some examples of recent work:
 - ρ resonance (many calculations),
 - Light scalars (κ , $a_0(980)$, σ), charm-light mesons
- Also transitions, e.g. ρ resonance $(\pi\pi) \rightarrow \pi \gamma$
- Ongoing work on formalism (e.g. 3-hadron scattering)
- Connections with analysis of experimental data
- Use m_{π} dependence as a tool

Hadron Spectrum Collaboration

Jefferson Lab, USA: Jozef Dudek, Robert Edwards, David Richards, Raul Briceño

Trinity College Dublin: Mike Peardon, Sinéad Ryan, David Wilson, Cian O'Hara, David Tims

University of Cambridge: CT, Graham Moir, Gavin Cheung, Antoni Woss

Tata Institute: Nilmani Mathur

Spectroscopy on the lattice

Energy eigenstates from:
$$C_{ij}(t) = \langle 0 O_i(t) O_j^{\dagger}(0) 0 \rangle$$

Interpolating operators $\sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \ \bar{\psi}(x) \left[\Gamma \overleftarrow{D} \overleftarrow{D} \dots \right] \psi(x)$

Spectroscopy on the lattice

Energy eigenstates from:
$$C_{ij}(t) = \langle 0 O_i(t) O_j^{\dagger}(0) 0 \rangle$$

Interpolating operators $\sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \ \bar{\psi}(x) \left[\Gamma \overleftarrow{D} \overleftarrow{D} \dots \right] \psi(x)$

$$C_{ij}(t) = \sum_{n} \frac{e^{-E_n t}}{2E_n} < 0|\mathcal{O}_i(0)|n > < n|\mathcal{O}_j^{\dagger}(0)|0 >$$

Large basis of ops -> matrix of corrs. - generalised eigenvalue problem

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

$$\lambda^{(n)}(t) \rightarrow e^{-E_n(t-t_0)} \quad v_i^{(n)} \rightarrow Z_i^{(n)} \equiv <0|\mathcal{O}_i|n> \quad (t>t_0)$$

$$\det \left[\delta_{ij} \delta_{\ell\ell'} \delta_{mm'} + i\rho_i \ t_{ij}^{(l)} \ \left(\delta_{\ell\ell'} \delta_{mm'} + i\mathcal{M}_{\ell m;\ell'm'}^{\vec{P}}(q_i^2) \right) \right] = 0$$

Lüscher, Nucl. Phys. B354, 531 (1991); extended by many others

Ial Subuule to A

Scattering t-matrix:
$$S_{ij} = \delta_{ij} + 2i\sqrt{\rho_i \rho_k} t_{ij}$$

 $\vec{P} = \text{overall mom.}$
det $\left[\delta_{ij}\delta_{\ell\ell'}\delta_{mm'} + i\rho_i t_{ij}^{(l)} \left(\delta_{\ell\ell'}\delta_{mm'} + i\mathcal{M}_{\ell m;\ell'm'}^{\vec{P}}(q_i^2)\right)\right] = 0$
 i, j label channels
 $e.g. \ K\pi, \ K\eta$
 $\vec{q} = \vec{k}_{\text{cm}}L/2\pi$
 $Reduced symmetry \Rightarrow \ell \text{ mix}$
Subduce to lattice irrep $(\Lambda) \Rightarrow$
 $\mathcal{M}_{\ell n;\ell'n'}^{\vec{d},\Lambda}\delta_{\Lambda\Lambda'}\delta_{\mu\mu'}$
 $(\ell \ that evaluates to \Lambda \ min)$

Scattering t-matrix:
$$S_{ij} = \delta_{ij} + 2i\sqrt{\rho_i\rho_k} t_{ij}$$
 $\vec{P} = \text{overall mom.}$ det $\left[\delta_{ij}\delta_{\ell\ell'}\delta_{mm'} + i\rho_i t_{ij}^{(l)} \left(\delta_{\ell\ell'}\delta_{mm'} + i\mathcal{M}_{\ell m;\ell'm'}^{\vec{p}}(q_i^2)\right)\right] = 0$ $i, j \text{ label channels}$ $i, j \text{ label channels}$ $\rho_i = \frac{2k_{\text{cm},i}}{E_{\text{cm}}}$ ~ gen. zeta fns. - effect of finite vol. $\vec{q} = \vec{k}_{\text{cm}}L/2\pi$ Reduced symmetry $\rightarrow \ell$ mixGiven t: solns \rightarrow finite-vol. spec. $\{E_{\text{cm}}\}$ Subduce to lattice irrep $(\Lambda) \rightarrow \mathcal{M}_{\ell n;\ell'n'}^{\vec{d},\Lambda}\delta_{\Lambda\Lambda'}\delta_{\mu\mu'}$ We need: spectrum $\rightarrow t$ -matrix(ℓ that subduce to Λ mix)

Scattering Parameterizations

Elastic

$$k_i^{2\ell+1} \cot \delta_{\ell} = \frac{1}{a_{\ell}} + \frac{1}{2} r_{\ell} k_i^2 + P_2 k_i^4 + \mathcal{O}(k_i^6) \qquad \qquad t^{(\ell)} = \frac{1}{\rho} e^{i\delta_{\ell}} \sin \delta_{\ell}$$
$$t^{(\ell)}(s) = \frac{1}{\rho(s)} \frac{\sqrt{s} \Gamma_{\ell}(s)}{m_R^2 - s - i\sqrt{s} \Gamma_{\ell}(s)} \qquad \Gamma_{\ell}(s) = \frac{g_R^2}{6\pi} \frac{k^{2\ell+1}}{s m_R^{2(\ell-1)}}$$

K-matrix param. – respects unitarity (conserve prob.) and flexible

$$t_{ij}^{-1}(s) = \frac{1}{(2k_i)^{\ell}} K_{ij}^{-1}(s) \frac{1}{(2k_j)^{\ell}} + I_{ij}(s) \quad \operatorname{Im}[I_{ij}(s)] = -\delta_{ij}\rho_i(s)$$

e.g. $K_{ij} = \left(g_i^{(0)} + g_i^{(1)}s\right) \left(g_j^{(0)} + g_j^{(1)}s\right) \frac{1}{m^2 - s} + \gamma_{ij}^{(0)} + \gamma_{ij}^{(1)}s$

The ρ : other elastic $\pi\pi$ calcs.

Bali *et al* (RQCD) [PR D93, 054509 (2016)]

 $m_{\pi} \approx 150 \text{ MeV}$ No strange quarks in the sea ($N_f = 2$)

 $M_{\rm R}$ = 716 ± 21 ± 21 MeV Γ = 113 ± 35 ± 3 MeV g = 5.64 ± 0.87

The ρ : other elastic $\pi\pi$ calcs.

Bali *et al* (RQCD) [PR D93, 054509 (2016)]

The ρ : other elastic $\pi\pi$ calcs.

Guo *et al* [PR D94, 034501 (2016)], Hu *et al* [PRL 117, 122001 (2016)]

No strange quarks in the sea $(N_f = 2)$

Some other recent calculations:

Bulava et al [NP B910, 842 (2016)]