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Disclaimer

Alot of progress in pQCD in the last year | » o
| eImpossible / useless to cover everything in 45 minutes '

In the following: more or less coherent overview of some
| key ingredients needed for precision physics at the LHC,
| with CHERRY-PICKED EXAMPLES OF NEW (=AFTER ANNUAL
| THEORY MEETING 2015) RESULTS

| ®* Apologies if your favorite topic is not covered... |
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Physics at the LLHC: need for precision

e Despite the standard model being “‘complete’, strong
indications that new physics may be present at the LHC

e Before the LHC, some expectation of new physics beyond the
corner (naturalness, fine tuning, WIMP miracle...): SUSY, extra
dimensions... So far, this has not happened

e Discovering new physics turned out to be more challenging.
No spectacular new signatures = new physics can be hiding in
small deviations from SM behavior, or in unusual places

e To single them out: TEST THE (IN)CONSISTENCY OF THE SM AT
THE LHC, as best as we can

I PRECISION QCD IS NOW A PRIVILEGED TOOL FOR ;
| DISCOVERY AT THE LHC |

Also, pushing the frontier of pQCD forward, we keep learning about the
structure of a REAL-WORLD QFT.



Precision goals: some (rough) estimates

Imagine to have new physics at a scale A
eif A small — should see it directly, bump hunting

oif A large, typical modification to observable w.r.t.
standard model prediction: 0O ~ Q?/ A2

estandard observables at the EW scale: to be sensitive to ~
TeV new physics, we need to control 0O to few percent

ehigh scale processes (large pr, large invariant masses...):

sensitive to ~TeV if we control 0O to 10-20%

| THESE KINDS OF ACCURACIES ARE WITHIN REACH OF LHC |
) EXPERIMENT CAPABILITIES. ’

f WE SHOULD PUSH OUR UNDERSTANDING OF PQCD TO MATCH{
| THEM ON THE THEORY SIDE ;




Precise predictions: requirements

THE GOAL: PRECISE MODELING OF THE
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Parton distribution functions



“Few percent”: the theory side

do = /dx1dx2f($1)f(wz)d0part(331, 22)F7(1+ O(Aqep/Q))

/

NP eftfects: ~ few percent
Input parameters: ~few percent.

No good control /understanding
of them at this level. LIMITING
FACTOR FOR FUTURE DEVELOPMENT

In principle improvable

|HARD SCATTERING MATRIX ELEMENT

; elarge Q — most interesting and theoretically clean

V, s~ (0.1 — For TYPICAL PROCESSES, we need NLO for ~ 10%
' and NNLO for ~ 1 % accuracy. Processes with large
| perturbative corrections (Higgs): N3LO

| e Going beyond that is neither particularly useful (exp.
| precision) NOR POSSIBLE GIVEN OUR CURRENT UNDERSTANDING |}
. OF QCD ;



NLO computations:

status and recent progress



NLO Computatl()ns Where d() we stand

Thanks to a very good understandzng of one- loop amplztudes and to
significant development in MC tools (— real emission) now

~ NLOS THE STANDARD FOR LHC ANALYSIS

= R S

* Many pubhcly available codes allow anyone to perform NLO analysis
for reasonably arbitrary [~ 4 particles ( ~ 3 colored) in the final state] LHC

processes: MADGRAPH5_AMC@NLO, OPENLOOPS(+SHERPA),
GOSAM(+SHERPA), RECOLA, HELAC...

e The next step for automation: NLO EW (basically there), arbitrary BSM

Dedicated codes allow for complicated final states, e.g.:

0V(V)+jets [BLACKHAT+SHERPA], jets [NJET+SHERPA], tt+jets [Hoche et al. (2016)] —
also allow for interesting theoretical analysis (mult. ratios predictions...)

* H-+ets [GoSam+SHERPA]. Recently: up to 3-jets at LO with full top-mass
dependence [Greiner et al. (2016)] — investigate the high-p: Higgs spectrum

e Off-shell effects in ttX processes: ttH [Denner and Feger (2015)], ttj [Bevilacqua
et al. (2015)]



NI1.O Computatl()ns where do we stand

Thanks to a very good understandmg of one- loop amplztudes and to

significant development in MC tools (— real emission) now |
% NLQ IS THE STANDARD FOR LHC ANALYSIS % ;’

NLO RESULTS: SOME THEORETICAL SURPRISE

*NLO “revolution” triggered by new ideas for loop amplitude
computation — unitarity, on-shell integrand reduction

e Sophisticated incarnations of traditional “Passarino-Veltman”-like
tensor reduction proved to be COMPETITIVE WITH UNITARITY METHODS
(COLLIER + OPENLOOPS)

e Amplitudes computed with numerical methods are fast and stable in
degenerate kinematics — can be used in NNLO computations (so far
established for color-singlet processes)



NLO: loop-induced processes

In the past year, significant progress for loop-induced processes

e
s e

NLO

e Relevant examples: Higgs pi, gg—=VV (especially after qq—=VV@NNLO),
go—VH (especially after qq@NNLO), di-Higgs...

e Despite being loop-suppressed, the large gluon flux makes the yield for these
processes sizable

e cluon-fusion processes — expect large corrections

* At NLO simple infrared structure, but virtual corrections require complicated
two-loop amplitudes

e Real emission: one-loop multi-leg, in principle achievable with 1-loop tools



A small detour: loop amplitudes

Computation of loop-amplitudes in two steps:

1. reduce all the integrals of your amplitudes to a minimal set of
independent ‘master” integrals

2. compute the independent integrals

At one-loop:

e independent integrals are always the same (box, tri., bub., tadpoles)
e only (1) is an issue. Very well-understood (tensor reduction, unitarity...)

Beyond on-loop:reductionnot W'evllﬂ understood, MI many an '
| process-dependent (and difficult to compute...) S




Iwo-loop: reduction

¢S50 far: based on SYSTEMATIC ANALYSIS OF SYMMETRY RELATIONS between
different integrals (IBP-LI RELATIONS [Tkachov; Chetyrkin and Tkachov (1981);
Gehrmann and Remiddi (2000)] / LAPORTA ALGORITHM [Laporta (2000)])

OState of the art for phenomenologlcally relevant amphtudes
e 2 — 2 with massless internal particles (di-jet, H/ V+jet, VV)

| o2 — 2 with two mass scales: ttbar [Czakon et al. (2007)], H+JET WITH
| FULL TOP MASS DEPENDENCE [Melmkov et al (2016)]

& RSO RIS RS

OGoing beyond: significant improvements of tools, NEW IDEAS

e Motivated by the one-loop success, many interesting attempts to
generalize unitarity ideas / OPP approach to two-loop case

e We are still not there, but a lot of progress

e nteresting proof-of-concept for unitarity-based approaches: 5/ 6-

gluon all-plus amplitudes at two-loops [Badger, Frellesvig, Zhang (2013);
Badger, Mogull, Ochiruv, O’Connell (2015); Badger, Mogull, Peraro (2016)]



Iwo-loop: master integrals

e For a large class of processes (~ phenomenologically relevant scattering
amplitudes with massless internal lines) we think we know (at least in
principle) how to compute the (very complicated) MI. E.g.: DIFFERENTIAL

EQUATIONS [Kotikov (1991); Remiddi (1997); HENN (2013); Papadopoulos (2014)]

e Recent results for very complicated processes: planar 3-jet [Gehrmann,
Henn, Lo Presti (2015)], towards planar Vjj/ Hjj [Papadopoulos, Tommasini,
Wever (2016)]

e In these cases, the basis function for the result is very well-known
(Goncharov PolyLogs) and several techniques allow to efficiently handle
the result (symbol, co-products...) and numerically evaluate it

— —

O, f = eflx(a;, Y, 2y ) f

boodt
G(anaan—17°"7a17t) e G(a'n—la"'?a'l)tn)
0 tn — Up

Sij = Q?i ‘|‘pj)2
X = {5127523,S34,S457S51}



Iwo-loop: master integrals

e Unfortunately, we know that GPL are not the end of the story. For pheno-
relevant processes, we typically exit from this class when we consider
amplitudes with internal massive particles (e.g. ttbar, H+])

e Progress in this cases as well (e.g. [Tancredi, Remiddi (2016); Adams,
Bogner, Weinzierl (2015-16)]) but we are still far from a satisfactory
solution — real conceptual bottleneck for further development

| e FIRST STEP TOWARDS A SOLUTION: planar results for H+J with full top |
| mass effects. Solution as 1-fold integrals. Elliptic functions. [Bonciani |

® Side note: some times physics come and help you. b-quark mass effects for
Higgs p: relevant in the region my < p: < my, Using this condition

massively simplify the computation of integrals — AMPLITUDE IN THIS
REGIME RECENTLY COMPUTED [Melnikov et al. (2016)]. But result cannot be

extended for ps > mpy



Back to loop induced: NLLO for gg = VV

Thanks to the progress in loop-amplitude computations, NLO corrections to
go—-WW /ZZ and to gg—(H)—VV signal /background interference

[FC, Melnikov, Rontsch, Tancredi (2015-16); Campbell, Ellis, Czakon, Kirchner (2016)]

all loops, interference only
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e Large corrections (relevant especially for precision pp—ZZ cross-section)
e Higgs interference: large, but as expected (Ksig~Kpkg~Kint)

 Top mass effects (important for interference) through 1/mexpansion —
reliable only below threshold (although some hope for past-threshold
extension via Padé approximations)
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L.oop imnduced: di-Higgs@NI[.0

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (2016)]
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¢ 2-loop amplitude beyond current
reach (reduction and for MI)

e Completely different approach:
FULLY NUMERICAL INTEGRATION OF
EACH INDIVIDUAL INTEGRAL

e Table of 665 phase-space points

e Highly non-trivial computer-
science component (GPUs, very
delicate numerical integration...)

L.LESSONS FROM THE EXACT COMPUTATION:

e Reasonable approximations to extend 1/m; result beyond the top
threshold (rescaled Born, exact real radiation) can fail quite significantly

e Exact K-factor much less flat than for m¢approximations



L.oop imnduced: di-Higgs@NI[.0

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (2016)]

Now that we know the exact result, many interesting questions:

e do we understand why the approximate m; result fails so miserably
(high energy matching, genuinely large two-loop components...)?

eideal playground for approximation testing. Can we find something
which works? Can we study e.g. the Padé approximation used to
extend the 1/m; expansion in gg—=VV?

e especially relevant because we now know FULLY DIFFERENTIAL NNLO
CORRECTIONS IN THE M;—co LIMIT [de Florian et al (2016)] — Would like
to know best way to combine the results

e

| CAN THIS FULLY NUMERICAL APPROACH BE APPLIED TO MORE GENERAL CASES? |
| eprocesses with more than two (mun, yrn) variables (gg—41) ‘

: e processes with a more complicated tensor structure (H+]) _f



NLO+PS

I Thanks to a understanding of one-loop amplitudes and to significant |
development in MC tools (— real emission, all order soft/collinear emission)|
| now NLO + PS 1s THE STANDARD FOR LHC ANALYSIS i

PARTON SHOWER EVOLUTION

e All order-emission of soft/collinear
partons

e Does not capture hard emission/
virtual corrections

e As such, IRRELEVANT FOR HIGH-Q
PHYSICS

* CAN GENERATE FULL EVENTS —
HADRONIZATION — DETECTOR
SIMULATIONS

e Also, although in the (N)LL
approximation only, capture multi-
parton dynamics (e.g. jet structure...)




NLO computations: NLO+P5

/‘ v Ieallyme NO and PS | ,

s = SN Sl R LA o

e Methods to combine NLO computations and fixed order
(“matching”) now standard: MC@NLO (~exponentiate soft radiation),
POWHEG (~exponentiate full real emission), GENEVA (~SCET matching)

NEW KID IN TOWN: KrkINLO [Jadach et al (2016)] (~redefine PDF to contain
“nasty” universal bits of NLO)

eImproved accuracy pushed for improvement in parton shower

ebetter control of evolution, e.g. DIRE [Hoche, Prestel (2015)]

ebetter control of some logarithmic structure, e.g. HEJ for high-
energy 10gS [Andersen, Smillie (2011-...)], DEDUCTOR [Nagy, Soper (2016)]
for threshold logs

ebeyond purely classical evolution (try and introduce some
quantum corrections), e.g. [Nagy, Soper (2014-...)]

ebetter control of resonance structure of the process [JeZo, Nason (2015),
Frederix et al. (2016)]



Example: unified treatment ot WWbb

“Single-top” “Top-pair” "WW”

R L g
£ }m@ m——

These 3 “processes” share the same initial / final state — THEIR
SEPARATION IS UNPHYSICAL (quantum interference)

ein the past: we were unable to properly generate the WWDbb final state

e more or less ad-hoc ways of separating the three (IDEA: selection cuts
should clearly select one of the 3 topologies)

e thanks to recent advance we can consider WWbb as a whole, putting
these analysis on solid theoretical grounds



Example: unified treatment ot WWbb

[JeZo, Lindert, Nason, Oleari, Pozzorini (2016)]

= 8TeV I
g 10~ L -~ tt ® decay —o— _
2 tt $\\
800 \ Full WWbb, top cuts
z LU :
E -
©
S Top@NLO, top cuts
1.2 )mxx | A\ production®decay
’g 1.0 B = ' r——E
~ oo ——
S w - | ‘Top@NLO, top cuts
150 160 170 180 190 200
My, (GeV]

e Radiation in the decay crucial for the reconstructed top mass

o After top selection cuts, naive expectation WWbb~ top
production®decay works well (I't « m¢ — factorization) — NNLO!

o Shift in reconstructed top mass: ~ 100 MeV (WWbb vs top prod®decay)



A bonus of PS: merging

Often, radiative corrections are dominated by real emission: new
channels/new topologies opening up. The classic example: DY
production, leading jet p: [slide from G.P. Salam (2011)]

104 L ! ! ! ! ! ! ! i z
[} pp, 14 TeV | LO
— 103 | '
> 10 LRARAR!
@ g q
Q)
o 10°
o
~
o) 10
= NLO: new
— 1 =
) 1,2\"_ channel, topology
S o Y :
O 107 ¢ 1 q q responsible for the
| large corrections
10- | | | | | | |
200 300 400 500 600 700 800 900 10C

pt,“ [GeV]

Bulk of corrections ~ trivial ( = no loop, LO at higher multiplicity).
CAN WE CAPTURE THEM?
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combination

A bonus of PS: merging

e Parton shower MC provide an ideal framework to perform such

“Merge” together samples of different multiplicities. Well established
techniques to LO (CKKwW, MLM), and a lot of different approaches to

NLO accuracy (NLOPS, MEPs, MENLOPS, MEPsS@NLO, FxFX, MINLO,
GENEVA )
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Merging: Higgs pi with finite top mass effects

Complete NLO corrections with full top-quark mass dependence:
still unavailable (2-loop amplitudes) (NNLO in the HEFT)

uuuuuuuuuuuuuuuuuuuuuuuu
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e Same behavior as predicted by
high energy resummation
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From merging to NNLOPS

Merged sample close to full NNLO computation (~right real
emission, missing virtual corrections). For color-singlet processes,
extension of merging ideas led to combination of NNLO + PS
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L.ogs beyond Parton Shower:

progress M resummation



L.ogs and resummation

e Often, at the LHC we are dealing with multi-scale processes —
large ratios — large soft/ collinear logs, resummation at least
desirable

e AT HIGH Q, VERY FAR FROM SOFT/ COLLINEAR REGIONS — EFFECTS
SHOULD BE IRRELEVANT

e BUT: often in intermediate regions (statistics...)

e Also, often fiducial cuts / analysis strategies force us into soft-
sensitive regions (jet veto, jet substructure...)

e FINALLY, understanding all-order structure of perturbative soft/
collinear emission can give glimpse into non-perturbative regime
of QCD (and help singling out genuine non perturbative effects,
hadronization, UE...)



Resummation: recent progress

The past year saw many interesting development, obtained with
different frameworks (SCET, ordinary QCD...). Impossible to
summarize in few slides (even to enumerate...).

SOME examples

e Forward scattering and Glauber gluons, next-to-leading-power
resummation, non-global logarithms, automatic NNLL for IRC
observables, jet radius logs, Higgs quark mass logs...

e Progress in automation / resummation for generic observables
(two-loop soft function, ttH, ttW resummations...), high precision
phenomenology (Higgs /DY py, Jet Veto...)

*One loop soft function with arbitrarily many soft gluons, three-
loop soft anomalous dimension, three-loop double differential
soft function/rapidity an. dim. (and NSLL p; resummation)

*Jet substructure, better understanding, better observables...



Non global logs

If observable sensitive only to radiation in PART OF THE PHASE
SPACE: complicated “non global” logarithmic structure, non-
exponentiation [Dasgupta, Salam (2001)]

e Example: hemisphere jet mass

spoil real/virtual cancellation

Every time we are dealing with exclusive jets, gaps, isolation...

{ PROBLEMATIC TO RESUM BEYOND LL |

[(1007) wreres “e3dnSse(q]



Non global logs: a factorization theorem
[Becher et al (2016)]

o(8) =S (Hm({n},Q, 1) @ Sm({n}, QB, 1))

m—=2 | \

Hard emission, “inside” Soft emission, everywhere

| FACTORIZATION SEEMS UNDER CONTROL — |
’ CAN EXTEND BEYOND LL




Non global logs

50
[Becher, QCD@LHC2016]

40
T

e Equations can be solved — 30

numerically, in a PS-like approach " 2

eSizable effect (needed to 10

understand NP contamination)

¢See also [Caron-Huot (2015), Larkoski,
Moult, Neill (2016)]

: examples

) 1 - J FIRST NON TRIVIAL '

‘ ete” = 2 jets \ , R R '

e rapidity gap Ay=1_ ESULTS RECENTLY |

2 ' * APPEARED ;

1 ® . parton hower e A et e o sarriraaia)
. Hemisphere mass

“““““““““ 02 60 —

ALEPH
NLL :
NLL (global only) -

PL
[Becher, Pecjak, Shao (2016)]



Jet radius logs
[Dasgupta et al (2016), Chen et al (2015) Kolodrubetz et al (2016), Kang et al (2016)]

* Clustering logs now to all orders, at LL — small R accessible
eLL <= PS... but here disentangled

PRI SNEEI

3 effects: ratio of inclusive jet spectra at R=0.4 and 0.6

1 ; T 1
1 > perturbative (~ In R) " pp, 7 TeV, CT10 5 5
. . o " |y|] < 0.5, anti-k; alg. : :
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i > MPI/UE (~ R?) T 09 f e T S a1l |-
‘ o I : : o i
| To disentangle them, need =3 R % |
 values: = : ; ; ; :
' o 08| _nfgdE - S SR -
» = _ . g’ - 2 : : -
; 0.6-0.7: large MPI/UE %— .E.L ATLAS data (approx. uncert.) —+——
i > 0.4: non-pert. effects cancel? o NLO x (NP corr.)
{ > 0.2-0.3: large hadronisation C 07} NNLOg x (NP corr.) [ _
{ - (NNLO+LLR) x (NP corr.) EE—1 -
1 . . L a1 §
100 200 500 1000 2000;

Pt [GeV] . ,,
|G.P. Salam, “Future challenges for perturbative QCD” 2016]



Highest precision for

standard candles:

NLO/NNLO predictions



Fully inclusive: Higes N°LLO phenomenology

* Monumental computation: perturbative QCD under control
-Physms at the few percent level BASICALLY EVERYTHING IS RELEVANT

§ | b %
| |o=48.58 b+§ g 33(73 (theory) = 1.56 pb (3.20%) (PDF+as).

| 48.58pb=  16.00pb . (LO, rEFT)
+20.84 pb . (NLO, rEFT)
— 2.05pb : ((t,b,c), exact NLO)
+ 9.56 pb . (NNLO, rEFT)
+ 0.34pb : (NNLO, 1/my)
+ 2.40pb . (EW, QCD-EW)

+ 1.49pb . (N®LO, rEFT)

» Todo List: - Full mass dependent NNLO
- Mixed O(a@as) corrections
- N3LO PDFs

910 HI®ADD T2312qpsA]

d(scale) d(trunc) d(PDF-TH) J(EW) d(t,b,c) 5(1/my)

fOl0Pb +018pb 056 pb  +0.49pb £0.40pb  £0.49 pb

fgzg% 1+0.37% +1.16% +1% +0.83% +1%

(inclusive VBF@N3LO: [Dreyer, Karlberg (2016)]



Beyond fully inclusive: NNLO differential

Apart from complicated multi-loop amplitudes, the big problem of higher
order computations is how to consistently handle IR singularities

J 1540 ] o
€ €

COMPLICATED IR STRUCTURE HIDDEN IN THE PHASE SPACE INTEGRATION



The problems with NNLO computations

Apart from complicated two-loop amplitudes, the big problem of NNLO
computations is how to consistently handle IR singularities

IR divergences hidden in PS integrations

e After integrations, all singularities are manifest and cancel (KLN)

e We are interested in realistic setup (arbitrary cuts, arbitrary
observables) — we need fully differential results, we are not allowed
to integrate over the PS

e The challenge is to EXTRACT PS-INTEGRATION SINGULARITIES
WITHOUT ACTUALLY PERFORMING THE PS-INTEGRATION



NNLO differential: solutions

Thanks to multi-year effort of the whole community: we now have
DIFFERENT WAYS TO DEAL WITH THIS PROBLEM. Each has its own
merits / problems.

Local subtractions (cancellations point by point in the phase-space)

* antenna [Gehrmann-de Ridder, Gehrmann, Glover] — jj, Hj, V]

* Sector-decomposition+FKS [Czakon; Boughezal, Melnikov, Petriello;
Czakon, Heymes] — ttbar, single-top, Hj

e P2B [Cacciari, Dreyer, Karlberg, Salam, Zanderighi] — VBFy, single-top
® Colorful NNLO [Del Duca, Somogyi, Tocsanyi, Duhr, Kardos]: only e*e so far

Non-local subtractions (cancellation globally after integration)
® g: subtraction [Catani, Grazzini] = H, V, VH, VV, HH

* N-jettiness [Boughezal et al; Gaunt et al] = H, V, vy, VH, Vj, Hj, single-
top



NNL.O differential: solutions




Ratio to NLO

Recent NNLO results: dijet

[Currie, Glover, Pires (2016)]

~40 partonic channels, highly non-trivial color flow. Realistic jet
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e Non trivial shape correction (NLO scale choice?), sizable effect
eLarge effect on PDF? (see also jj in DIS [Niehues, Currie, Gehrmann

(2016)])



Recent NN1.O results: VJ

MCFM
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e Highly improved theoretical accuracy (~exp error)
e Small deviations evident (PDFs? Calibration?)
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Recent NNL.O results: di-bosons

[Grazzini et al. (2015-2016)]

In the last year, the PROGRAM OF COMPUTING FULLY DIFFERENTIAL NNLO
CORRECTION TO DI-BOSON PROCESSES HAS BEEN COMPLETED
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o Fully exclusive analysis possible. Corrections strongly cut-sensitive
— FIDUCIAL REGION comparisons (jet veto, gg contribution...)

e General picture: GOOD AGREEMENT DATA / NNLO (with some possible
room for discussion for WW jet-veto, see [Dawson et al (2016)])



Recent NNLO results: top
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* Tension in pyop alleviated
e Allow for precision physics
in the top sector

* LARGE CORRECTIONS in exclusive region
e Similar behavior observed in Higgs in

VBEF [Cacciari et al (2015)]



Recent NNL.O results: MCEM@NNI.O

[Campbell, Ellis, Williams (2016); Campbell et al (2016); Boughezal et al (2016)]
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*NNLO slicing available for some color-singlet processes in MCFM

oV /H+] will be next?
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Recent NNLO results: H+J phenomenology

[Chen et al (2016)]
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*Realistic final states — fiducial region
e[mportant benchmarking between different computations

* Non-trivial final states possible



Application of f.o. results: Il and jet vetoes

[Banfi, FC, Dreyer, Monni, Salam, Zanderighi, Dulat (2015)]
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e Combination of f.o. N3LO (Higgs inclusive) and NNLO (H+]
exclusive) with NNLL resummation, LLg resummation, mass effects...

e No breakdown of fixed (high) order till very low scales
e Even more so for Z+jet [Gerhmann-De Ridder et al (2016)]



Application of NNLO results: H pr

[Monni, Re, Torrielli (2016)]
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e Matching of NNLO H+J with NNLL Higgs prresummation
eSignificant reduction of perturbative uncertainties

e Again, no breakdown of perturbation theory (resummation effects:
25% at pr =15 GeV, ~0% at pt = 40 GeV)



Conclusions and outlook

e LHC is driving amazing progress in perturbative QCD
e “LHC as a precision machine”: possible!

e Sophisticated higher order computations achievable

*Big progress in multi-loop computations

e Better understanding of logarithmic structures / PS

e Reliable theory-experiment comparison possible (fiducial region...)

e Many other aspects not covered here

 Progress in input parameters: o fits, PDFs improvement. Photon PDF
[Manohar, Nason, Salam, Zanderighi (2016), Harland, Khoze, Ryskin (2016)]

*5-loop evolution of as [Baikov, Chetyrkin, Kithn (2016)]

e Input parameters: the top mass [Beneke et al, Hoang et al (2016)]
e EW corrections, mixed QCD-EW...

e Going beyond state of the art: qulte hard (technical / conceptual problems)

A LOT OF THEORETICAL FUN AHEAD DIRECTLY
RELEVANT FOR LHC PHENOMENOLOGY!
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very much for

your attention!



