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O U T L I N E

• Cosmology: 

- Cosmo. perturbation theory key results. 

- Application to observations. 

• Modified gravity: 

- The panorama of theories. 

- One method of testing them.
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B A C K G R O U N D  V S .  P E R T U R B AT I O N S

`Background’ ⇒ smooth, homogeneous, isotropic universe. 

Plug into Einstein 
 field equation :

Gµ⌫ =
8⇡G

c4
Tµ⌫

ds

2 = �c

2
dt

2 + a(t)2 dxi
dxi

⇒ Friedmann + matter conservation equations:

H2 =

✓
ȧ

a

◆2

=
8⇡GN

3
(⇢M + ⇢R + . . .)

⇢̇X = �3H⇢X(1 + wX)rµT
µ
⌫ = 0 ⇒



B A C K G R O U N D  V S .  P E R T U R B AT I O N S

Cosmological L.P.T.  ⇒  first-order description of inhomogeneity. 

Linear deviations from smooth universe, valid on large scales. 

Think in Fourier space, i.e. collection of modes labelled by k .

ds

2 = �dt

2 (1 + 2 ) + a

2(t) (1� 2�) dx2

In conformal Newtonian gauge:

Together with a perturbed energy-momentum tensor for matter:

�⇢X = ⇢X�X , vX , �PX , �X

Plug into: �Gµ⌫ =
8⇡G

c4
�Tµ⌫ …

00       0i      ii       ij 



2r2� = 8⇡G
X

X

⇢X�X

B A C K G R O U N D  V S .  P E R T U R B AT I O N S

…leads to four equations, from the 00, 0i, ii and ij parts of the tensor. 

00 + 3H x 0i equations leads to the Poisson equation:

where �X = �X + 3H(1 + wX)vX

The ij component is particularly simple:

�� = 8⇡G
X

X

⇢X(1 + wX)�X



2r2� = 8⇡G
X

X

⇢X�X

B A C K G R O U N D  V S .  P E R T U R B AT I O N S

…leads to four equations, from the 00, 0i, ii and ij parts of the tensor. 

00 + 3H x 0i equations leads to the Poisson equation:

where �X = �X + 3H(1 + wX)vX

The ij component is particularly simple:

�� = 0



�̈M + 2H�̇M � 3

2
H2�M = 0

B A C K G R O U N D  V S .  P E R T U R B AT I O N S

2r2� = 8⇡G
X

X

⇢X�X �� = 0

Careful expansion of                                yields: �(rµT
µ
⌫ ) = 0

where �X = �X + 3H(1 + wX)vX

rµT
µ
⌫ = 0



Semi-nonlinear 
regime?

�̈M + 2H�̇M � 3

2
H2�M = 0

B A C K G R O U N D  V S .  P E R T U R B AT I O N S

2r2� = 8⇡G
X

X

⇢X�X �� = 0

CLPT ok when

�M , vM , �,  ⌧ 1

Nonlinear regime 
⇒ simulations

knl~0.1k~5x10-3

~ max. scale for 
current gal. surveys

Cosmological 
horizon

k
kH~10-4 [h Mpc-1]
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Planck Collaboration, 2013.
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G R O W T H  R AT E

REDSHIFT SPACE DISTORTIONS 277 

Real Space Redshift Space 

Linear: o 
Nonlinear 
Collapse: 

Observer 
Figure 9.11. Redshift space distortions. In each case, a contour of constant density (circular 
in real space) is distorted in redshift space so that it looks asymmetric. Arrows denote direction 
and magnitude of velocity. In the case of nonlinear collapse, the velocities are so large that a 
point on "our side" (the bottom) of the center is mapped onto a point on the opposite side 
(compare the position of the solid dot on the bottom left and right). 

ness, requiring careful treatment not only of linear over densities, but also of the 
much more complicated effects of nonlinearities. We will content ourselves with a 
quantitative treatment of Hnear distortions, since this applies on large scales and is 
the starting point for all further work. 

Suppose we measure the power spectrum in redshift space. How is this distorted 
power spectrum related to the underlying true spectrum in real space? Kaiser (1987) 
first solved this problem, working within the context of linear theory. The starting 
point is the realization that the number of galaxies in a particular region is the 
same, whether we use redshift-space or real-space coordinates. Therefore, 

ns{xs)d^Xs = n{x)d^x (9.35) 

where n is the density of galaxies at x in real space, and ris is the density 
in redshift space. The infinitesimal volume around a point in redshift space is 
d^Xs = dxsX^ sin 6d6d(j), while the volume around a point in real space is d^x = 
dxx'^ sin OdOdcj). The angular volume elements are identical, so 

ns{xs)^n{x)J (9.36) 
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We measure redshift-space distortions (RSDs) in galaxy surveys.

f(a) =
@ ln�M

@ ln a

`Growth rate’:
f(z)�8(z)
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We measure redshift-space distortions (RSDs) in galaxy surveys.

f(z)�8(z)

f(a) =
@ ln�M

@ ln a
density normalisation

`Growth rate’:
f(z)�8(z)



G R O W T H  R AT E

�̈M + 2H�̇M � 3

2
H2�M = 0Recall:

f(z)�8(z)

f(a) =
@ ln�M

@ ln a
density normalisation

`Growth rate’:
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f(a) =
@ ln�M

@ ln a
density normalisation

`Growth rate’:
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Tensor relating true and 
apparent image positions:

Aij =
@✓iS
@✓j



Aij � �ij =
1
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Z �1

0
d�@i@j (�+ ) g(�)

G A L A X Y  W E A K  L E N S I N G

contains cosmological distances 
+ number density of galaxies
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I S N ’ T  G R  S U P E R  W E L L - T E S T E D ?

Shapiro time delay: Binary pulsars:

Yes!

Credit: John Rowe Animation/Australia 
Telescope National Facility, CSIRO.

`Screening mechanisms’ protect the GR limit in modified gravity models.
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“The only second-order, local gravitational field equations derivable 
from an action containing solely the 4D metric tensor (plus related 
tensors) are the Einstein field equations with a cosmological constant.”
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Sgrav =
M

2
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2

p
�g d

4
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�

(r�)2 � 2V (�)
i

“The only second-order, local gravitational field equations derivable 
from an action containing solely the 4D metric tensor (plus related 
tensors) are the Einstein field equations with a cosmological constant.”

1. Add new field content.

R�

Z h

Five options:
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L O V E L O C K ’ S  T H E O R E M

Z

“The only second-order, local gravitational field equations derivable 
from an action containing solely the 4D metric tensor (plus related 
tensors) are the Einstein field equations with a cosmological constant.”

2. Higher dimensions.

Sgrav =
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1. Add new field content.
Five options:
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2. Higher dimensions.
1. Add new field content.
Five options:

3. > 2nd order derivatives in the field equations.

Sgrav =
M

2
Pl

2

p
�g d

4
x RR

“The only second-order, local gravitational field equations derivable 
from an action containing solely the 4D metric tensor (plus related 
tensors) are the Einstein field equations with a cosmological constant.”

i
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2. Higher dimensions.
1. Add new field content.
Five options:

3. > 2nd order derivatives in the field equations.
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4. Non-locality.

“The only second-order, local gravitational field equations derivable 
from an action containing solely the 4D metric tensor (plus related 
tensors) are the Einstein field equations with a cosmological constant.”



L O V E L O C K ’ S  T H E O R E M

2. Higher dimensions.
1. Add new field content.
Five options:

3. > 2nd order derivatives in the field equations.

? ? ? ? ? ? ?

4. Non-locality.
5. Radically change our action principle (emergence).

“The only second-order, local gravitational field equations derivable 
from an action containing solely the 4D metric tensor (plus related 
tensors) are the Einstein field equations with a cosmological constant.”



Modified Gravity

Add new field content

Higher dimensions Non-local

Scalar

Vector

Tensor

f

✓
R

⇤

◆

Some
 degravitation 

scenarios

Scalar-tensor & Brans-Dicke

Galileons
Ghost condensates

the Fab Four

Coupled Quintessence
f(T)

Einstein-Cartan-Sciama-Kibble

Chern-Simons

Cuscuton

Chaplygin gases

Einstein-Aether

Massive gravity
Bigravity

EBI

Bimetric MOND

Horndeski theories Torsion theories

KGB

TeVeS

General RμνRμν, 
☐R,etc.f (R)

Hořava-Lifschitz

f (G)

Conformal gravity

Strings & Branes

Generalisations 
of SEH

Cascading gravity

Lovelock gravity

Einstein-Dilaton-
Gauss-Bonnet

Gauss-Bonnet

Randall-Sundrum Ⅰ & Ⅱ DGP

Kaluza-Klein

Lorentz violation

Lorentz violation

Emergent 
Approaches

Padmanabhan 
thermo. 

2T gravity

Rµ⌫⇤�1Rµ⌫

Higher-order

CDT

Tessa Baker
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These relations change in alternative theories of gravity.

2r2� = 8⇡Gµ(a)
X

X

⇢X�X2r2� = 8⇡Gµ(a)
X

X

⇢X�X

�� = 0
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These relations change in alternative theories of gravity.

�� = 0

2r2� = 8⇡Gµ(a)
X

X

⇢X�X2r2� = 8⇡Gµ(a)
X

X

⇢X�Xµ(a)
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2r2� = 8⇡Gµ(a)
X

X

⇢X�X2r2� = 8⇡Gµ(a)
X

X

⇢X�Xµ(a)

Rerun all the previous linear P.T. calculations with μ & ∑ folded in.

1

2
(�+ ) = ⌃(a)�

These relations change in alternative theories of gravity.
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�̈M + 2H�̇M � 3

2
H2�M = 0Recall:

f(z)�8(z)

f(a) =
@ ln�M

@ ln a
density normalisation

`Growth rate’:
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S U M M A R Y

tessa.baker@physics.ox.ac.uk

• Cosmo. linear perturbation theory.

• Observables: supernovae, CMB, 
growth rate, weak lensing.

• Modified gravity: Lovelock’s 
theorem.

• Putting it all together: testing 
parameterised deviations from GR.
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