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The need to do it right

It’s the basis of the scientific method

Doing the statistics wrong may lead to far-reaching conclusions that
may be incorrect (e.g., BICEP)

The näıve, simple way may be totally misleading, and wrong.

Figure 1: WMAP (credit: M.
Tegmark)

Figure 2: WMAP temperature
correlation function (Spergel et
al 2003)
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Parameter Inference and Bayes’ Theorem

Rule 1: Write down what you want to know.

Given some data ~x and some prior information, what is the probability

distribution for the model parameters ~θ? p(~θ|~x)

This posterior distribution can be written:

p(~θ|~x) =
p(~x |~θ)p(~θ)

p(~x)
Bayes ′ Theorem

p(~θ) = prior pdf of parameters, often written π(~θ)

p(~x |~θ) = likelihood of the data given model parameters. It is treated
as an unnormalised function of ~θ

p(~θ|~x) = posterior probability of the parameters, normalised by

p(~x) = evidence

All probabilities are implicitly conditional on the model M, and treat
probability as a degree of belief.
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Sampling distribution

Figure 3: CMB power spectrum
(Planck Collaboration 2015)

Figure 4: WMAP temperature
correlation function (Spergel et
al 2003)

We need to know the sampling distribution = probability of getting any
data set, given a model and its parameters.
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The Prior

Frequentists don’t like priors.

Bayesians embrace them. Interpreting probability as a state of
knowledge, then having to specify the prior state (before doing the
experiment) makes perfect sense.

For parameter inference, the prior becomes unimportant as more data
are added and the likelihood dominates, but cosmologists are rarely in
this luxurious position.

Generally we want uninformative priors if we don’t know anything.
Subtle problem.

Common choices are π=constant for location parameters (e.g. mean)

π ∝ 1/θ (‘the’ Jeffreys Prior) for scale parameters (which must be
positive, e.g. variance)

The posterior from one experiment can be used as a prior for the next
experiment (very useful for combining experimental results)
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Marginalisation
The posterior probability of (say) two parameters is given by
marginalising (integrating) over the others:

p(θi , θj |~x) =

∫
k 6=i or j

d~θk p(~θ|~x)

Figure 5: Posterior probabilities for parameters in pairs, marginalised over all
others. From Huff et al (2013).
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Case Study. BPZ: Bayesian Photometric Redshifts

We follow Benitez (2000), ApJ, 536, 571

Obtain a posterior for the redshift of a galaxy given measurements of
fluxes in some broadband filters (typically 5).

Figure 6: Spectrum and broad
band fluxes Figure 7: Template spectra
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BPZ: likelihood and posterior

Figure 8: From Benitez (2000)
Figure 9: Galaxy Types (credit:
tes.com)

Sometimes the likelihood or posterior can be characterised by a mean
and a variance. Not here.

Marginalising over the template type gives a rich posterior that has
no obvious frequentist analogue
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Profile likelihoods

Profile likelihoods (where the likelihood is maximised wrt some
parameters) makes little sense from a Bayesian perspective.

likelihood.pdf

Figure 10: Profile likelihood. From Boiger et al (2016).
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Model Comparison

A higher-level question than parameter inference, in which one
wants to know which theoretical framework (‘model’) is preferred,
given the data (regardless of the parameter values)

The models may be completely different, e.g. General Relativity vs
MOND vs f (R),

or variants of the same idea. e.g. flat Universe vs. model with
curvature

The sort of question asked here is essentially ‘Do the data favour a
more complex model?’

The likelihood itself is not the whole story - it will always increase if
we allow more freedom.
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Bayesian Evidence or Marginal Likelihood

Rule 1: Write down what you want to know.

p(M|~x) - the probability of the model, given the data.

Use Bayes’ theorem:

p(M|~x) =
p(~x |M)π(M)

p(~x)

p(~x |M) is the Bayesian Evidence, or Marginal Likelihood, and is
the denominator in Bayes’ theorem for parameter inference:

p(~θ|~x ,M) =
p(~x |~θ,M)π(~θ|M)

p(~x |M)

where we have written the dependence on the model M explicitly.

It normalises the posterior (so that it integrates to unity):

p(~x |M) =

∫
d~θ p(~x |~θ,M)π(~θ|M).
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Bayesian Evidence

The relative probabilities of two models is then

p(M ′|~x)

p(M|~x)
=

∫
d~θ′ p(~x |~θ′,M ′)π(~θ′|M ′)∫
d~θ p(~x |~θ,M)π(~θ|M)

× π(M ′)

π(M)

The first ratio is the Bayes Factor,

B ≡
∫
d~θ′ p(~x |~θ′,M ′)π(~θ′|M ′)∫
d~θ p(~x |~θ,M)π(~θ|M)

.

Alan Heavens (ICIC, Imperial College) Statistical Tools (for Cosmology) 13 / 30



Model Comparison

B ≡
∫
d~θ′ p(~x |~θ′,M ′)π(~θ′|M ′)∫
d~θ p(~x |~θ,M)π(~θ|M)

Figure 11: Planck power
spectrum, and LCDM model
with most probable parameters.
Models which cannot reproduce
the curve, or can only if the
parameters are fine-tuned, will
be disfavoured. Credit: Planck

Figure 12: Cosmic String model
predictions for CMB (Wyman et
al 2005)
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Bayesian evidence

Challenges: The evidence requires a multidimensional integration over the
likelihood and prior, and this may be very expensive to compute.

Fisher matrix approach: assume the likelihood is a multivariate
gaussian (Laplace approximation)

Approximations: e.g., AIC and BIC may be unreliable as they are
based on the best-fit χ2, and from a Bayesian perspective we want to
know how much parameter space would give the data with high
probability. Also don’t include the prior. Not Bayesian.

Nested sampling (e.g., multinest, polychord, diffusive nested
sampling), where one tries to sample the likelihood in an efficient way.
State-of-the-art.
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Gaussian Example
Let M0 be x ∼ N (0, σ2), and M1 be x ∼ N (µ, σ2), where the prior on µ
is gaussian with variance Σ2. Let the measurement be x = λσ.

B01 =

√
1 +

Σ2

σ2
exp

[
− λ2

2(1 + σ2

Σ2 )

]
If λ� 1, then B01 can be � 1 and M1 is favoured. If λ ' 1 and σ � Σ,
then M0 is favoured (Occam’s razor). If likelihood is much broader than
prior, σ � Σ then B01 ' 1 and nothing has been learned.

Figure 13: x = log10(Σ/σ); y = datum/σ.
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Bayesian Hierarchical Models

Complex data analysis problems can often be split into steps: full
model is made up of a series of sub-models

The Bayesian Hierarchical Model (BHM) links the sub-models
together, correctly propagating uncertainties in each sub-model from
one level to the next.

At each step we will need to know conditional distributions.
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Analytic Example: straight line fitting
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Figure 14: Errors in both variables

Data: (X ,Y )

Model: y = mx

Parameter (to be inferred): m.

Complication: X and Y both have errors.

Rule 1: write down what you want to know.

p(m|X ,Y )
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Straight line fitting

Break problem into steps.

There are extra unknowns in this problem (so-called latent
variables), namely the unobserved true values of X and Y , which we
will call x and y .

The model connects the true variables.

y = mx

The latent variables x and y are nuisance parameters - we are
(probably) not interested in them, so we will end up marginalising
over them.

Introducing these latent variables is Data Augmentation
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Analysis

Bayes:
p(m|X ,Y ) ∝ p(X ,Y |m) p(m)

Let us assume p(m)=constant.

Introduce the latent variables x , y , and marginalise over them:

p(m|X ,Y ) ∝
∫

p(X ,Y , x , y |m) dx dy

Manipulate:

p(m|X ,Y ) ∝
∫

p(X ,Y |x , y ,m) p(x , y |m) dx dy

p(X ,Y |x , y ,m) = p(X ,Y |x , y) (errors do not depend on m)

p(x , y |m) = p(y |x ,m)p(x |m)

p(y |x ,m) = δ(y −mx) (model is deterministic)
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Analysis

Integration over y is trivial with the Dirac delta function:

p(m|X ,Y ) ∝
∫

p(X ,Y |x ,mx) p(x) dx

Prior on x is independent of m, so we have written p(x |m) = p(x).

Assume errors in X and Y are independent Gaussians with unit
variance, and take a uniform prior for x :

p(m|X ,Y ) ∝
∫

e−
1
2

(X−x)2
e−

1
2

(Y−mx)2
dx

Complete the square and integrate

p(m|X ,Y ) ∝ 1√
1 + m2

e
− (−mX+Y )2

2(1+m2)
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Results
We have marginalised analytically over x , but we can also investigate the
joint distribution of x and m:

p(x ,m|X ,Y ) ∝ e−
1
2

(X−x)2
e−

1
2

(Y−mx)2
.
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Figure 15: Posterior distribution
of x and m.
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Figure 16: Posterior distribution
of the slope m, for X = 10,
Y = 15.
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Sampling the posterior (or likelihood)
Probabilities are rarely analytic functions. We can evaluate them on a grid
in parameter space, but this is hopeless in many dimensions.

Instead, we sample the parameter space, with an expected number
density n(~θ) proportional to the target density (e.g. likelihood or
posterior).
The (unnormalised) target density is approximated by a set of delta
functions

p(~θ) ∝ n(~θ) '
N∑
i=1

δ(~θ − ~θi )

from which we can estimate any integrals (such as the mean,
variance): 〈

f (~θ)
〉
' 1

N

N∑
i=1

f (~θi ).

If we sample from the likelihood, and want the posterior, we can
weight the points with the prior. This is Importance Sampling
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Markov Chain Monte Carlo (MCMC)

Markov: Each point in the chain depends only on the previous point.

Metropolis-Hastings algorithm:

Take a step away from the present point, using a proposal
distribution q(~θ∗|~θ) = probability of a move from ~θ to ~θ∗.

Accept it with a probability which depends on the ratio of the new
and old target densities:

p(acceptance) = min

[
1,

p(~θ∗)q(~θ∗|~θ)

p(~θ)q(~θ|~θ∗)

]

If the proposal distribution is symmetric, the algorithm simplifies to
the Metropolis algorithm.

If new point is rejected, the previous point is repeated.
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Considerations

Figure 17: MCMC chain,
showing burnin (wikipedia)

Figure 18: Kuss et al. (2005)

Burn-in. Beginning of the chain is thrown away

Proposal distribution should be neither too small (poor mixing- i.e.
target is not explored efficiently), nor too large (too many rejections)

Rule-of-thumb: accept ∼ 0.25 of points

If you change the proposal distribution, you have to start again

Points will be correlated to some degree. Chain is often thinned

A convergence test must be done (typically Gelman-Rubin)
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Alternatives to Metropolis-Hastings

Gibbs Sampling: useful if you know the conditional distributions p(θi |~θ).
All points are accepted.

Figure 19: Gibbs sampling (credit: D. Stansbury)

Hamiltonian/Hybrid Monte Carlo (HMC): useful in very high
dimensional spaces, where finding an effective proposal distribution is hard.
Needs derivatives. See e.g., arXiV:0906.0664 for details of algorithm.
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Gibbs sampling for straight line fit
Exercise: show that the conditional distributions of m given x , and x
given m, are

p(m|x ,X ,Y ) ∼ N
(
Y

x
,

1

x2

)
; p(x |m,X ,Y ) ∼ N

(
X + Ym

1 + m2
,

1

1 + m2

)
We sample alternately from m and x
Marginalising over x is trivial: simply ignore the values of x in the
chain.

Figure 20: Gibbs sampling of
the latent variable x , and
the slope m.

Figure 21: Gibbs sampling of
the slope m.
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Complex BHM with Gibbs Sampling
Weak lensing in the CFHTLenS survey (Alsing, Heavens, Jaffe, 2016).
∼ 500, 000 latent variables
Gibbs sampling.

Figure 22: Mean κ (projected mass) map for one CFHTLenS field, and two
redshift ranges.
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Summary

Most cosmological analysis is now Bayesian

Parameter inference is routine, typically using MCMC methods

Model comparison is increasingly possible

Complete statistical models of data are needed for principled analysis,
and Bayesian Hierarchical Models lead the way

Very high dimensional inference can be done with Gibbs or
Hamiltonian Monte Carlo

Procedure:

What are the data?
What is/are the theoretical model(s)?
What are the parameters of the model(s)?
What is the likelihood function?
Apply Rule 1: what do you want to learn?
Calculate!
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Further Reading
Data Analysis: a Bayesian Tutorial (Devinder Sivia and John Skilling,
CUP)
Bayesian Methods in Cosmology (Roberto Trotta,
https://arxiv.org/abs/1701.01467
Bayesian Data Analysis (Andrew Gelman et al., CRC Press)
Information Theory, Inference and Learning Algorithms (David
Mackay, CUP)
Berkeley course on Bayesian Modeling and Inference (Michael I.
Jordan).

http://www.cs.berkeley.edu/~jordan/courses/

260-spring10/lectures/
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