

Gravitational Waves from an experimentalist's point of view

Angus Bell (angus.bell@glasgow.ac.uk)

University of Glasgow For the LIGO Scientific Collaboration and

the Virgo Collaboration

With thanks to Prof Giles Hammond many slides

LIGO-G1700009

Overview

- History of gravitational waves
- Ground based detector technology
 - Detector basics
 - Recent upgrades, aLIGO
 - Expectations

•GW150914/GW151226: a pair of black hole binary mergers

• What's next?

Not the first detection

PHYSICAL REVIEW

VOLUME 117, NUMBER 1

JANUARY 1, 1960

Detection and Generation of Gravitational Waves*

J. WEBER University of Maryland, College Park, Maryland (Received February 9, 1959; revised manuscript received July 20, 1959)

Methods are proposed for measurement of the Riemann tensor and detection of gravitational waves. These make use of the fact that relative motion of mass points, or strains in a crystal, can be produced by second derivatives of the gravitational fields. The strains in a crystal may result in electric polarization in consequence of the piezoelectric effect. Measurement of voltages then enables certain components of the Riemann tensor to be determined. Mathematical analysis of the limitations is given. Arrangements are presented for search for gravitational radiation.

The generation of gravitational waves in the laboratory is discussed. New methods are proposed which employ electrically induced stresses in crystals. These give approximately a seventeen-order increase in radiation over a spinning rod of the same length as the crystal. At the same frequency the crystal gives radiation which is about thirty-nine orders greater than that of a spinning rod.

FIG. 2. Argonne National Laboratory and University of Maryland detector coincidence.

Two bar detectors ~ 1000 km apart

VOLUME 22, NUMBER 24

PHYSICAL REVIEW LETTERS

16 JUNE 1969

EVIDENCE FOR DISCOVERY OF GRAVITATIONAL RADIATION*

J. Weber

Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742 (Received 29 April 1969)

Coincidences have been observed on gravitational-radiation detectors over a base line of about 1000 km at Argonne National Laboratory and at the University of Maryland. The probability that all of these coincidences were accidental is incredibly small. Experiments imply that electromagnetic and seismic effects can be ruled out with a high level of confidence. These data are consistent with the conclusion that the detectors are being excited by gravitational radiation.

J. Weber, 1960's

Brief History

Abb, 23: Der Aluminiumzylinder des in Mitchen wiederhohen Weder-Espannentes mit Heinz Billing, der fen Verschaubau lebete. Der Zylinder hingt an einem Stahdraht. Deutlich zu sehen ist die Isolation apgen mechanische Erschätterungen, bestehend aus absorbstehet Lausen von Eisen und Gammi. Im kintergrund der Vakuumtank und die Elektronik mit einer Antenne für Zeitzeichen.

Germany-Italy/UK, 70's-80's

US, 70's-80's, R. Weiss / R. Forward)

Interferometer prototypes, 80's-90's Glasgow/Garching/Caltech

Modern bars 80's-90's

Brief History

GEO 600 (GEO-HF): 90's-current

AEI prototype: 2010-current

Glasgow 10m: 1978-current, this facility from 2003

• The UK has a strong history, and continues to have a leadership role in current detector technology and implementation

International Network

· A network is required to localise the source direction

- Gravity is emergent from geometry in GR
- matter/energy curves spacetime
- space-time tells light/matter how to move

$$G_{\mu\nu} = \kappa T_{\mu\nu}$$

IGR)

SUP

General Relativity & Gravitational Waves

Gravitational Wave travelling into the plane

Ring of free particles

We need to measure the ellipticity [using a ruler that doesn't also stretch]

Interferometric Detectors

 $\cdot \mathbf{A}$ passing gravitational wave will lengthen one arm and shrink the other arm

 \cdot light travelling the two paths from the beam splitter to the test masses (and back) will acquire different phases

 \cdot This phase change produces a change in light intensity at output port

Detector Sensitivity

·LIGO ran from 2002 to 2010 – final run S6 ending in 2010

• No detections made but many upper limits placed on sources

 $\cdot\,aLIGO$ project aim was to increase detection sensitivity by a factor of ${\sim}10$ – this meant a complete rebuild

aLIGO Sensitivity

· aLIGO design sensitivity

Seismic and Suspensions

- The mirror needs to be suspended to a level $10^{-19} \text{ m}/\sqrt{\text{Hz}}$ at 10 Hz
- Utilise multiple pendulum systems which are excellent isolators
- \cdot aLIGO uses 7 stages (3 seismic active/passive stages + 4 suspension stages)

• $(f_0/f)^8$ for 4 stages

Fundamental Noise Sources

Everything moves

Even if the external environment was perfectly noise-free, all our internal parts are generating their own displacement noise

Mirror Requirements

Thermal Noise

10⁻¹⁹ m/√Hz at 10Hz (longitudinal) 10⁻¹⁶ m/√Hz at 10Hz (vertical)

$$S_x(f) = \frac{k_{\rm B}T}{\pi^2 f^2} |\text{Re}[Y(f)]|$$

 $\frac{Fluctuation-Dissipation}{S_x (m^2/Hz), to mechanical admittance, Y}$

For the mirror coating, in amplitude terms:

$$A_x(f) \propto \left(T \frac{d}{fw^2} \varphi_c\right)^{1/2}$$
m/ \sqrt{Hz}

 $w = \text{laser beam radius} \\ d = \text{coating thickness} \\ \phi_c = \text{mechanical loss} \\ \end{cases}$

Coating Thermal Noise

- Brownian thermal noise associated with the mirror coatings will limit design sensitivity of aLIGO at \approx 70Hz.
- Amorphous Ion Beam Sputtered coatings are currently the materials of choice for aLIGO;
- \cdot Ta $_2O_5$ (high index) loss is greater than SiO_2 (low index) loss

coating microstructure

Core Optics

- 40kg test masses are suspended as "free" particles
- Fused silica substrates with low OH content
- Two step polish:
 - Superpolish: ~1 Å microroughness
 - Ion Beam Figuring: corrects figure, maintains microroughness

Zygo Interferometer, Caltech

Fundamental Noise Sources

Mirror Requirements

Thermal Noise

10⁻¹⁹ m/√Hz at 10Hz (longitudinal) 10⁻¹⁶ m/√Hz at 10Hz (vertical)

$$S_x(f) = \frac{k_{\rm B}T}{\pi^2 f^2} |\text{Re}[Y(f)]|$$

Pendulum mode 1 Hz
 Suspension violin modes 500 Hz
 Mass internal modes few kHz
 We minimise the noise in our detection band by minimising mechanical loss φ_c

Fused Silica Fibre Pulling

Low thermal noise requires ultra-low loss materials => fused silica

Glasgow has supplied the machines used in AdV VIRGO and aLIGO

aLIGO Suspensions

Fused silica technology has been essential to meet aLIGO requirements

aLIGO Quadruple Suspension

- □ The input test masses (ITM) and end test masses (ETM) of Advanced LIGO are suspended via a quadruple pendulum system
- Seismic isolation: use quadruple pendulum with 3 stages of maraging steel blades for horizontal/vertical isolation
- □ **Thermal noise reduction:** monolithic fused silica suspension as final stage
- Control noise minimisation: use quiet reaction pendulum for global control of test mass position

□ Actuation: Coil/magnet actuation at top 3 stages, electrostatic drive at test mass

Developed under the ALUK project (Glasgow/RAL/Birmingham/Strathclyde)

A Bit More Detail

Local and Global Control

- Local control: damping at top mass, separately for each chain, using Optical Sensors/Electromagnetic Actuators
- Global control (length and angular) at all four levels
 - Control strength decreases as we go down the chain
 - Electrostatic drive (ESD) using gold pattern on reaction mass/compensator plate at test mass level
 - Calibration
 - Direct actuation on the test mass with another laser provides a very well known force

Building and installing quadruple suspension at LIGO Hanford site

aLIGO Sensitivity

Our window – ground based interferometers University of Glasgow **Cosmic Strings** BH and **Relic radiation** Binar Extreme Mass Ratio Inspirals Supermassive BH Binaries Binaries coalescen 10-16 Hz 10⁻⁹ Hz 10⁻⁴ Hz 100 **Inflation Probe** Pulsar timing Space detectors Slide Credit: Matt Evans (MIT)

A New Probe of the Universe

GW sky??

- Gravitational Waves will
 give us a different, non
 electromagnetic view of
 the universe, and open a
 new spectrum for
 observation.
- This will be complementary information, as different from what we know as *hearing* is from *seeing*.

EXPECT THE UNEXPECTED!

GW150914: The Paper

• Excerpt from the detection paper:

"On September 14, 2015 at 09:50:45 UTC, the LIGO Hanford, WA, and Livingston, LA, observatories detected the coincident signal GW150914 ..."

PHYSICAL

TERS

PEBRUARY 2010

REVIEW

1

0

0.5

-0.5

-1

H1 observed

Strain (10⁻²¹)

GW150914: The Signal

Hanford, Washington (H1)

Some Facts

- First direct detection of Gravitational Waves
- Confirmation of their existence came from the Hulse-Taylor binary (1975) (and also conformation that they travel unimpeded through space)
- · First direct observation of a black hole
- inferred from the characteristic ring-down of the observed signal (and not from the influence on gas surrounding a black hole)
- First observation of a black hole binary
- There is no other way to observe other than via their gravitational wave emission
- $\cdot~$ The "brightest" event ever detected: 3.6 x $10^{49}\,W$
- Total radiated energy ~ 3 solar mass
- Placed constraint on the graviton mass
- $-\lambda_{g} > 10^{13}$ km or $m_{g} < 1.2 \text{ x } 10^{-22} \text{ eV/c}^{2}$

G W 1 5	0914:	FACTS	HEET
BACKGROUND IM (BOTTOM) IN TH HORIZONS (M	AGES: TIME-FREQU E TWO LIGO DETEC IDDLE-TOP), BEST	IENCY TRACE (TOP) CTORS; SIMULATION FIT WAVEFORM (MIL	AND TIME-SERIE OF BLACK HOL DDLE-BOTTOM)
first direct detect	ion of gravitational of a black	waves (GW) and first hole binary	direct observatio
observed by source type	LIGO L1, H1 black hole (BH) binary	duration from 30 Hz # cycles from 30 Hz	~ 200 ms ~10
date	14 Sept 2015	peak GW strain	1 x 10 ⁻²¹
time	09:50:45 UTC	peak displacement of	±0.002 fm
likely distance	0.75 to 1.9 Gly 230 to 570 Mpc	interferometers arms frequency/wavelength at peak GW strain	150 Hz, 2000 km
redshift	0.034 to 0.136	peak speed of BHs	~ 0.6 c
signal-to-noise ratio	24	peak GW luminosity	3.6 x 1056 erg s-1
false alarm prob.	< 1 in 5 million	radiated GW energy	2.5-3.5 Mo
false alarm rate	< 1 in 200,000 yr	remnant ringdown free	q. ~ 250 Hz
Source Mas	ses M⊙	remnant damping tim	e ~ 4 ms
total mass	60 to 70	remnant size, area	180 km, 3.5 x 10 ⁵ km
primary BH	32 to 41	consistent with	passes all tests
secondary BH	25 to 33	general relativity?	performed
remnant BH	58 to 67	graviton mass bound	< 1.2 x 10 ⁻²² eV
mass ratio	0.6 to 1	coalescence rate of 2 binary black holes	
primary BH spin	< 0.7		2 to 400 Gpc - yr
secondary BH spin	< 0.9	online trigger latency	~ 3 min
remnant BH spin	0.57 to 0.72	# offline analysis pipelin	nes 5
signal arrival time delay	arrived in L1 7 ms before H1	CPU hours consumed	~ 50 million (=20,00 PCs run for 100 day
likely sky position	Southern Hemisphere	papers on Feb 11, 2016	13
likely orientation resolved to	face-on/off -600 sq. deg.	# researchers	-1000, 80 institution in 15 countries

etector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds Acronyms: L1–LIGO Livingston, H1–LIGO Hanford; Gly–giga lightyear-9.46 × 10^{12} km; Mpc–mega parsic=3.2 million lightyear, Gpc= 10^{10} Mpc, fm=fmtometer= 10^{10} m, Mo=1 solar mass= 2×10^{10} kg.

Phys. Rev. Lett. 116, 061102, 2016

GW150914: The Signal

- Numerical relativity models of the BH coalescence
- Over 0.2s the signal increases in frequency and amplitude in about 8 cycles from 35 to 150 Hz
- \cdot Effective BH separation in units of Schwarzschild radius $R_s{=}2GM_{tot}/c^2{=}210km$
- Binary Black Hole System
- $M_1 = 36 + 5/-4 M_{sol}$
- $M_2 = 29 + 4 M_{sol}$
- Final Mass = $62 + 4 M_{sol}$
- Distance = 410 +160/-180 Mpc (redshift z = 0.09)

Sky localisation GW150914

LIGO Hanford (H1)

LIGO Livingston (L1)

Source position determined mainly by triangulation and signal strength (antenna patterns different due to orientation)

EM and neutrino follow-up

Rapid EM observations in region of GW source – no significant source

- Search for coincident high energy neutrino candidates in IceCube and ANTARES data
- > Search window \pm 500s
- No υ candidate in both temporal and spatial coincidence
- 3 v candidates in IceCube and 0 v candidate in ANTARES (consistent with expected atmospheric background)

GW151226 2nd detection

 \cdot from the detection paper:

"We report the observation of a gravitational wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC."

- Second observation of BBH in O1 data
- Firmly establishes field of GW astronomy
- Initial localization: ~1400 deg²
- Signal increased in frequency and amplitude over about 55 cycles from 35 to 450 Hz (over ≈1s)

Estimating the Significance

LIGO Hanford (H1)

- Time shift the data at both sites by greater than light travel time
- Perform a cross correlation => false alarm rate

Comparing The Events

https://arxiv.org/abs/1606.04856

Phys. Rev. Lett. 116, 241103, 2016 43

3rd signal

https://arxiv.org/abs/1606.04856

Future of the Field

- Multi-Band Multi-Messenger gravitational wave astronomy
 - Compact binary coalescence studies (neutron star EOS/BH populations)
 - Testing gravity/numerical relativity at extremes
 - Continuous waves/Stochastic background

https://gwic.ligo.org

Future of the Field

worldwide network of advanced detectors are currently A operating/under development Advanced LIGO

ET

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

KAGRA (Japan)

Einstein Telescope (Europe 3G detector)

Summary

• This is an extremely exciting time in Gravitational Wave Astronomy with the next observing run of aLIGO (O2) currently underway and AdvVIRGO joining later this year

 \cdot With 2 detections the Gravitational Wave window has truly been opened

 \cdot The detectors are performing well, and UK expertise has been essential to realise aLIGO

 \cdot Future 3rd generation detectors will further push technologies and realise improvement in sensitivity/widening of operation bandwidth (>1Hz)

aLIGO suspension designs

Strong Evidence for GW

- Hulse-Taylor Binary Pulsar (PSR B1913+16)
- Two neutron stars in very close orbit, loosing energy via GWs
- Matches exactly (99.7%) what GR predicts
- In 300 Myrs the system will coalesce (and produce a massive GW)

