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Executive Summary



The main conseguence of predictivity from first principles is the
existence of the systematic perturbative expansion...

LO Is not a model
NLO is not a model
NNLO is not a model

Pyvthia is not QCD
Herwig is not QCD
Sherpa is not QCD
Geneva is not QCD

SCET is not a theory
-- It IS a framework !

Kirill Melnikov at QCD@LHC 2016




Corollary

LO is not a model
NLO is not a model
NNLO is not a model

LL Is not a model
NLL I1s not a model
NNLL I1s not a model

he question Is just how one obtains it!
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Both predictions are systematically improvable, but the
status is quite different

Fixed order

* |n principle, we know what to compute at any
order, for any IR safe observable.

e |n practice: general LO and NLO in automated
form, NNLO for 2—2 cross sections, N3LO for
2—71 Cross sections.

Resummation

e [or very simple observables (i.e. global event
shapes, gr spectra), we know in principle how to
obtain any accuracy.

e Some NLL and NNLL automation. A few selected
NSLL results.



Future challenges for precision QCD

For resummation we need both
1. more in principle”
e resummation of more complex observables
2. more in practice”
e automation
e petter observables

In my talk, | will focus on the first point, in particular
on higher-log resummation for non-global
observables.




Automated resummation

Automated computations of 2-loop soft functions Bell, Rahn
and Talbert ‘16

e NNLL for jet veto cross sections, 1B, Frederix, Neubert and
Rothen ‘15

e NLL for pp—2 jets Farhi, Feige, Freytsis and Schwartz *15

e NNLL soft-gluon resummations for arbitrary distributions. ttH,
Brogqgio, Ferroglia, Pecjak, Signer and Yang ‘15. ttW,
Broggio, Ferroglia, Ossola and Pecjak '16

e ARES: NNLL for 2-jet observables in ete” Banfi, McAslan,
Monni and Zanderighi '15, ‘16

e GENEVA results for Drell-Yan process — talk by Simone Alioli

Note: NNLL resummations use automated one-loop computations
of hard functions as input.



Better observables: myinpp = £+

Challenges and contaminations

e (Grooming can mitigate these problems
e MMDT also eliminates NGLs in my

e Analytical NLL Dasgupta, Fregoso, Marzani, Salam
'13, Larkoski, Marzani, Soyez, Thaler 14

38



NNLL + O(as?) for jet mass
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Soft Drop Groomed Mass
Soft Drop, z¢yt = 0.1, =0
03F 18XeV, pp - Z+j, pry > 500 GeV,R = 0.8 |
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do.resum

dm? /
k=q,q,9

/ includes pdfs, emissions
that were groomed

sum over jet flavor

\

away, out-of-jet radiation,...

15

— Z Dk(pTa Zcut s R)Sc,k(zcutm?]) 02 Jk (m?])

collinear-soft radiation
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Factorization theorems

resummation in principle

|0



A key ingredient to obtain logarithmically enhanced
terms Is factorization

—.9. gt spectrum of EW boson for gr « M CSS "84

| 2 172\ ~Faa(zhom)
= H(M?*, u) — /d%Le—%quL (wa2 )
0

. Ze?] By, (21,27, 1) Byn, (22,27, 1) 4 (¢ ¢ @)]
| |

Scale separation: Only functions of single scale!

(Transverse PDFs Byn also depend on non-
perturbative scale mp, can again be factorized.)
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Factorization and resummation

Once factorization is understood, resummation
reduces 1o

1. Fixed-order computations of ingredients

2. Solution of evolution equations.

In EFTs such as SCET, these are RG evolution
equations, driven by anomalous dims.

Resummed computations = fixed order in EFT + RG
evolution of Wilson coefficients

o RG improved perturbation theory: LO = NLL ...
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gt resummation at N3LL

Unknown ingredients at achieve N3LL accuracy

1.

Four-loop [ cusp aka As

NEW

2.

Three-loop anomaly Fqt® aka rapidity anomalous
dimension yr, directly related to Bz of CSS.

_ 2 T 2 —1q | ‘X

wo-loop H functions and beam functions Bgn

[ cusp

12 M2 ) —Fyg(22,11)

x Y €2 [Byn, (21,27, 1) Byn, (22,27, 1) + (¢ <> @)] -
Catani, Grazzini et al. ‘12
Gehrmann, Luebbert, Yang '12 ‘14




Full three-loop double differentia

soft function in QCD

2 g CiCp (Hl'l[X] — Hl';[X] ) - ‘g_CACF N¢ (Hl,llx] — Hl';[X] + CanCG' in N=1 SYM
110 o
cZng |- —— Ho,1 [ e :
3~ Ho,
(400 3-loop coefficient Liand Zhu "16
F D% (8_1 Ho,1 [Xx]
Ca Cr n¢ (- —7988 ’76 =0
81
808 112C,n
2312 r_ 98(a — — a’f
27 o1 (X] M =CaCa ( 863 27) T
32
" H 176 6392 12328 154
2 oo 75 =CaCh (‘TC"’@ " 81C2 MY = 3<4
—— Ho,1,0,0,1[X
3 Ho,1,0,0,
297029 824 904
chor (Zgr o | — 1926 — =59 ) + CaCany <_ 81<2 N 27C3
88 C2 Ho,0,1[x}
3 204 n 62626 L Con2 _32(3 B 1856
31912 Ho o114 3 729 o 9 729
304 1711
96 2 Ho,1,1,1 (¥ + C,CrNy | — C3 _16¢, +
88 9 27
3 Ho,1,0,0,1[X
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Hard functions

Three-loop [ for an any numlber of legs is known!
Almelid, Duhr, Gardi ’16; confirmed by Henn, Mistloerger ‘16

Cph) = Y =5 Goun(a) 1“? #2010 + Ay ({pijui})

(4,7)

AP ({piju}) = 16 fabefcde{ Z [TQTb'TCTd F(pikji, pitjk)
1<i<g<k<i<n b e rand]
+ T{TLTST) F(pijkis Pitks)

Pijkl = (—si5)(—swi) + T T T;T; ]:(Pijzk,mklj)}
ij (—8ik)(—851) —C Z > T, T} T?Ti},
=1 1<9<k<n
: Jj,lj#z

An s strongly constrained by factorization TB, Neubert
'09; Gardi, Magnea '09 + Dixon '09, + Del Duca, Duhr, and White ‘11
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Missing factorization theorems

{ v
A
s o ———
Non-global observables forward scattering, Glauber gluons

(e.g. phase-space cuts, jets, ...) (pp scattering contains forward part)

oo &
1 H > ) F
000000000}

3 N

000000000
Small masses Power corrections
(e.g. b-quarks in H production, (e.g. corrections to threshold limit,

EW effects at large gr, ..) next-to-eikonal corrections)
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A ot of progress during the past year

5 3

Caron-Huot ’15
Larkoski, Moult, Neill ’15 '16
1B, Neubert, Shao, Rothen ’15 +

Del Duca,Falcioni, Magnea, Vernazza 14
Fleming "14,
Rothstein, Stewart ‘16

Pecjak ‘16
= <
Non-global olbservables forward scattering

(e.g. phase-space cuts, jets, ...) (pp scattering contains forward part)

Melnikov, Penin '16 + Tancred, Larkoski, Neill, Stewart ‘14
Wever '16 Bonocore, Laenen, Melville,
Caola, Forte, Marzani, Muselli, Vita Magnea, Vernazza and White
‘16 '14.°15,’16
Small masses Power corrections
(e.g. EW effects at large gr, (e.g. corrections to threshold limit,

b-quarks in H production) next-to-eikonal corrections)
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Non-global logarithms



Consider the simplest collider-physics problem
involving large logarithms.

Two regions:

outside:
small energy ‘
0 g

\ A -

inside: large enerc

19



Arises in many situation, in particular in all
exclusive jet cross sections

veto on
additional jets
. o

=




Many more examples

* jet vetoes (includes unrestricted radiation near
the beam pipe)

® (gaps between jets
e jet substructure
e isolated photons (veto on radiation near photon)

e cvent shapes such as the light-jet mass and
narrow jet broadening

Such observables are called non-global, since they are
INnsensitive to radiation inside certain regions of phase
space.

21



Non-global observables

veto:
ot <BQ « Q ‘
L ‘
‘\ A =

unrestricted Ein ~ Q

L

— large logs os" In"(Eout/ Ein) ~ as" IN"(6)



Large logarithms os" In™(B) in non-global observables
do not exponentiate Dasgupta and Salam "02.

Leading logarithms at large N¢ can be obtained from
non-linear integral equation

. dQn:) . . . .
0,Gu(E) = [ 58w [0 Gy () Gin(E) — Gua(D)
/ f Banfi, Marchesini, Smye ‘02
L~N.a;Inpg wi = —"%"" _ dipole radiator

Nk =My N - Ty
23



L L resummation

* The leading logarithms arise from configurations in
which the emitted gluons are strongly ordered

Ei1>»> Eo>» Ez>» ... » En

* Multi-gluon emission amplitudes become extremely
simple in this limit, especially at large N

ML = (py - VIV 0)]F = N2 g2 (Pa - 1y)
M7= [ pm [YT5] 0) i 2 (Pa - p1) (D1 P2) -+ (D - Db)

perms of 1---m

* Their simple structure is the basis for the BMS
equation.



Non-global logarithms (NGLs)

A lot of recent work on NGLs

 Resummation of leading logs beyond large N, Weigert ‘03, Hatta,
Ueda '13 + Hagiwara '15; Caron-Huot '15.

e« Caron-Huot’s functional RG has a close relation to our results

e Fixed-order results: 2 loops for S(w,wg). Kelley, Schwartz, Schabinger
and Zhu "11; Hornig, Lee, Stewart, Walsh and Zuberi '11; with jet-cone
Kelley, Schwartz, Schabinger and Zhu “11; von Manteuffel,
Schabinger and Zhu 13, leading non-global log up to 5 loops by
solving BMS equation Schwartz, Zhu '14, up to 12 loops Caron-Huot
16, up to 5 loops and arbitrary N, Delenda, Khelifa-Kerfa ‘15

« Approximate resummation of such logs, based on resummation for
observables with n soft subjets. Larkoski, Moult and Neill ‘15

A systematic factorization of non-global observables was missing.



“Globalization”

Alternative SCET approach to observables with NGLs based on
resummation for substructure. Larkoski, Moult, Neill ‘15

e Divide Jet cross section into contributions from n sub-jets.
|dea is to lower the hard scale in the NGLs by resolving the
subjets.

C) “’f%\z 2@ /

e Resum global logarithms in subjet observables: Dressed
gluons”.

e At leading-log level, this maps into iterative solution of BMS
equation Larkoski, Moult, Nelill "16

26



Factorization for NGLs



Basic physics Is soft radiation off energetic
partons inside |et.

Wilson line along direction of each hard parton
inside the jet.

Si(n;) = Pexp <ig5/0 dsn; - A% (sn;) Tf)

28



Soft emissions In process with m energetic particles are
obtained from the matrix elements of the operator

S1(n1) S2(n2) - .. Sm(nm)|Mm(ip}))

soft Wilson lines along the directions hard scattering amplitude
of the energetic particles / jets with m particles
(color matrices) (vector in color space)

soft particles can be inside or outside  energetic partons must be inside



For a jet of several (nearly) collinear energetic particles, one
can combine

S1(n) Se(n) = Pexp (igs / dsn - A%(sn) (T} + TQa))
0
iInto a single Wilson line with the total color charge.

For non-global observables one cannot combine the soft
Wilson lines = complicated structure of logs!

e For a wide-angle jet, the energetic particles are not
collinear.

e For a narrow-angle jets (see later), we find that small-
angle soft radiation plays an important role. Resolves
directions of individual energetic partons!



Factorization theorem

1B, Neubert, Rothen, Shao ’15 16, see also Caron-Huot ‘15

Hard function.
m hard partons along
fixed directions {n1, ..., Nm)

Soft function
with m Wilson lines

/

o(8) =3 (Hm({n},Q, 1) ® Sm{n}, @B, 1)) .

2 I ,\
color trace mtegrat.lon Qver the m
airections

m

First all-order factorization theorem for non-global
observable. Achieves full scale separation!



Comments

o |nfinitely many operators Sm, mix under RG

e Also for narrow-cone jets, the same type of

structure Is relevant TB, Neubert, Rothen, Shao ’15
16

e Check: Have computed all ingredients for
cone cross section at NNLO. Obtain full
logarithmic structure at this order.

HY 01+ HY 08P + 1V 08 + HV 08 + 1P w1+ #HP 0 1)

| =

3(675) —

32



2Ewout < BQ

0 = tan(«a/2)

g

o(f,9)

=1+ 22 A(5.0) + (22) B(5.9) +

o0 2T

A(B,0) = Cp [— 8InélnfB—1+6In2—6Ind — 662 + (g - 61n2) 6% 4 4 Liy(0%) —4L12(—52)]

3(5,5) = CIQ:BF + CprCyuBy + CFTanBf

671no 46*1In o 1

4
3 +(1_54)2+1—54

2 R 9 4

111n%6 —

+36In01n* (1 —6%) —12In61In* (1 +6%) +22Ind1n (1 — 6*) — 57°In (1 — &%)
+22In6In (1+6%) —7?In (1 +6%) — 410’ (14 6%) + 33 Lis (—6) + 22 Lis (6?)
+481n6 Lip (—67) — 12In (1 — 6%) Lis (—6%) — 361n (1 + 67) Lis (—6%)
+12In2Lis (—6%) 4+ 241n6 Lis (6°) +241n (1 — 6%) Lis (6*) + 12In2 Lis (6°)

+12In (1 —6*) Lip (1 — 6%) — 6 Liz (1 — 6*) + 24 Liz (1 — 6%) — 36 Liz (—0°)

+c5(0),

14~ o |_ 1 19¢c41.. C 1N



dB/dInp

dAB/dnf3

Numerical check against Event2

Cr? CrCa
200 T 400f T of
100 - [ i
: 300 | 201
0k I I
: % [ % ~40 -
_100; '3 200f 'S ol
-200 | % = ,
L 100 - r
300 |- : -80
~400 05 t0o |
5;} —tt 1 5: “““““““““““ .7
i et : 10| ]
0 ammemammees™™ i I ]
Q. (| EgziEnnm o nane, Q. I . ]
5t = * = 5 .
I RS i RS f ]
. fact. thm. X = |
I < < I ]
L S -5+ = 0
[ | RAGhtdddd I I TP owmm—— =
_15; Event 2 L oo
20| 7 10 5|
10 8 -6 -4 2 0 -10 8 -6 -4 2 0 -10 8 -6 -4 2 0
IngB IngB IngB

Works: agreement for small 5.

Reproduce all logs, not only the leading ones!
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Light-jet mass & hemisphere soft function

1B, Ben Pecjak and Dingyu Shao 1610.01608


http://arxiv.org/abs/arXiv:1610.01608

Hemisphere mass observables
M

M. R
%% nr

hrust axis splits ete~ events in two
hemispheres with masses M., Mg

1

heavy jet mass: pp = @maX(MlzﬂM%{)
1
light jet mass: py = —min(Mlz;,M%z)

36



Light-jet versus heavy-jet mass

Heavy jet mass pn IS a global olbservable, resummed
to N3LL Chien Schwartz ‘10, light-jet mass p; is non-

global.

Burby and Glover ‘O1 computed p1 at NLL in coherent
branching formalism. Dasgupta and Salam ‘02
discover additional non-global logarithms

Can analyze left-jet mass p; instead of light jet mass.

Relation
d
4o _ 2
dpe

do

do

dpr,

dph

PL=Ph=P¢

Left-jet mass M is manifestly non-global.

37



ALEPH
NLL

NLL (global only) -

11111111111111111111111111111

PL 1 do
R(pr) :/ dpp,——— = SNG(Hs, 1) Xq(PL)
0 o apy,

e Sneg includes leading nonglobal logs. Taken from MC
parameterisation of Dasgupta Salam '02.

e Many SCET papers resum NG observables to NNLL
up to NGLs. Byers beware...

38



L N e :
ALEPH 20
0 i NLL ] i
V NLL (global only) | 25 ¢
1 do | A 1 do 20}
—— 40 . . ——
o dp, L I ] odo, 151
. . ] 10}
: : 50
oLl .. o T 0t ]
000 001 002 003 004 005 006 000 001 002 003 004 005 006
Pr Ph

e Heavy-jet mass R(pn) = [Zq(pn))°

. \Ior—perturbative corrections are important
N the peak region and will shift the peak to
the right.

39



Factorization theorem for left-jet mass
1B, Ben Pecjak and Dingyu Shao 1610.01608

”ﬁ}?;;} Ma ~ Q

do 00 , S i
CZMI% — Zzzq;g/o dwr, Jz(ML — QCUL> ﬂ; <Hm({ﬂ}, Q) &) Sm({ﬂ}ij)>

i

e Hard function Hm has m partons on the right hemisphere and a
single parton in the left one (which then branches into a jet Ji).

e SOft functions Sm are exactly the same as in the narrow jet case

(later).
40
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Hemisphere soft function

e Many previous studies of NGLs were
oerformed for hemisphere soft function

S(wr,wr) ZTr 0/5(7)ST(n)| X)(X|S(n)ST(7)|0)6(wr —n - Pr) 6(wr, — 7 - Pp)

e | eading logs are related to the ones
arising in light-jet mass event shape

e [actorization formula for w; < we

S(wr,wr) = Z ’HS {n}t,wr) ® Smai1({n,n}, wL)>
m=0

/

mode with p, ~ wr mode with p, ~ wr

41



e Structure of theorems is similar in all cases

e (Characterist

directions of

IC
al

.'.'ea.

ure: Wilson lines along

energetic partons!

e Have computed both observables to NNLO

e (Checks

e Numerical for light-jet mass, using Event?

e Analytical check for S(wr wrg) using Kelley,
Schwartz, Schabinger, Zhu '11; Hornig,
Lee, Stewart, Walsh, Zuberi '11

42



Narrow-cone |ets



Soft emissions from a narrow |et

For a narrow jet 6 — 0 In direction n one would
expect that one could combine

S1(n1) S2(nz) ~ Pexp (igs/ dsn - A% (sn) (T} + T2a)>
0

SINCE N1 = N2 = N.

Doing so, one ends up with a single Wilson line per
jet and a simple form of the soft radiation.

e \WNorks for global observables such as thrust,
broadening, ...

44



Soft emissions from a narrow |et

Consider the emission of single soft a gluon from energetic
particles with momenta p; inside a narrow |et:

Approximation: p; ~ E; n'

This approximation breaks down when the soft emission
has a small angle, i.e. when k* ~ wn*!

Small region of phase space, but it turns out that it gives a
leading contribution to jet rates!



Momentum modes for |et processes

1B, Neubert, Rothen, Shao,1508.06645; Chien, Hornig and Lee 1509.04287

Region Energy Angle Inv. Mass

e Hard Q 1 Q

S [

25 Collinear Q ¢ QO
T W

» Soft 3Q 1 BQ
new Coft 3Q & 3oQ

Full jet cross section is recovered after adding the contributions
from all regions (“method of regions”)

* Additional coft mode has very low characteristic scale 36Q!
Jets are less perturbative than they seem!

* Effective field theory has additional “coft” degree of freedom.



Factorization for two-jet cross section

1B, Neubert, Rothen, Shao ‘16

Laplace space color trace |
T f l integration over angles

l -oo l 12

5(r) = 00 H(Q) S(Q7) | > (Tin(Q0) © Unn(Q0T) )

m=1 \ _
T Coft functions with
Soft function m Wilson lines

Hard function Jet functions with m partons
at fixed direction

Checks against wide-angle result and fixed-order event
generator.



All-order resummation



O

7(8) = > (Hm({n},Q, 1) ® Sm({n}, QB, 1))

m=2 /

T

High-E physics Low-E physics
Wilson coefficients EFT Operator

Renormalization of hard Wilson coe

ficlients

Hin({n},Q.0.¢) =Y  Hi({n},Q,6,1) Zi1,({n},Q,0,¢, )
[=2

e Same /-factor must render Sy finite!

e Associated anomalous dimension I'2

d
dln p

49

z{,({n},Q.6,e,1) = > Z[({n},Q.0,¢, n) ® T}, ({n},Q, 6, 1)
=k



Resummation by RG evolution

Wilson coefticients fulfill renormalization .
group (RG) equations
d ———
T Hin(Q, 1) ZHZ Q, 1) T1,(Q, 1) Q -
0O
1. Compute Hm at a characteristic high 0
scale un~ Q %
g
2. Evolve Hm to the scale of low energy Vo
ohysics w~ Of T Op

Avoids large logarithms ay" In*(f) of scale

ratios which can spoil convergence of
perturbation theory.



RG = Parton Shower

e [ngredients for LL (VeRy 0 0 ...

7‘[2(,&:@):00 0 ‘/ESRS 0 ...

N rW—=1 0 0 Vy Ry ...
H,.(n=Q) =0 for m > 2 0 0 0 Vi
Sm(p=pQ) =1 \: S )

e RG
d Q) do o
L (t) = Hon () Vi + Hon 1 () Ronr . £ — /
" 1 1 a(py Bla) dm

e [Fquivalent to parton shower equation

t
Hon (1) = Hon (1)l / A Hoy 1 () Ry eV

t1

51



1-loop anomalous dimension

Vo =T ==2) (Tr Tir+Tir- Tj,R)/

(49)

A7 w7

Ry =T a0 N Ty T W O ().

m,m-+1

(49)

e (Contain dipoles — dipole shower

kK __
Wk =

TG = Ty

T = M Tvg - T

e TJrivial color structure at large Nc:

T, - T,

\
/4

52
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Smc(t)

1073 |-

4—loop

N

o
ete” —

2 |ets

rapidity gap Ay=1

parton

| | | | | | | L ! l
0.00 0.05 0.10

t

x
0.15

ILOWGI"

e Equivalent to the dipole shower used by Dasgupta

and Salam '02.

53
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NGL parton shower

e Not a gene
eading NG
more, nothl

ral-purpose parton shower! Produces
s In this type of observables. Nothing

Ng less.

e Since it derives from RG, we know exactly what
needs to be added to go to NLL

1. Hard functions H>D and Hz®

2. One-loop soft functions S,V

3. Two-loop anomalous dimension I'nm®@. Can be
extracted from Caron-Huot "15.

e Need to Monte-Carlo NLL corrections to be efficient.
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Summary and Outlook

Resummation = factorization + fixed order + evolution.

Have obtained factorization formulas for non-global
observables

e wide and narrow cone jets, light-jet mass, hemisphere soft
function

e computed all logs at NNLO, verified against fixed order
Key features

e Multi-Wilson line structure of soft radiation

e Resummation of NGLs from RG evolution
Are developing MC formalism for higher-log resummation
Applications ...

Interplay with Glauber gluons? Superleading logs?
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Extra slides



Action of [ on H-

AT B AT I~
NTRZNT
AT TN AT TN
NT% NITR%
AT AN
TRV L 1
AT N A ; N

oo B

NLL /_, F __\

S o
(@
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Momentum modes again (for experts)

Split momenta into light-cone components

n* n*

p" =P+ TP-7 +

Scaling of the momentum components (8 ~ 6?)
(p—|- sy P— 5 PL )
collinear: p.~Q( 1, 6%, &)

soft: ps~Q( B8, B8, 5 )
coft: pr~BQ( 1, 6, 5)

Note: every component of coft mode is smaller than the
corresponding collinear one. Different than SCET, , SCET),,
SCET+5, SCET, , SCET,, ...



Method of regions expansion

To isolate the different contributions, one expands the
amplitudes as well as the phase-space constraints in each
momentum region.

* (Generic soft mode has O(1) angle: after expansion, it is
always outside the jet.

e (Collinear mode has large energy E » BQ. Can never go
outside the |et.

« Coft mode can be inside or outside, but its contribution to
the momentum inside the jet is negligible.

Expansion is performed on the integrand level: the full result is
obtained after combining the contributions from the ditferent
regions.



Computation of v/ dz/ Ba

—aslest to extract coefficient from a three-loop
soft function

o
Nty

Same matrix element as H production near
threshold Anastasiou et al., Liet al. "14, but
constraint on pxrinstead of Ex

e pDx 71 function needs additional regulator

60



Computation of v/ dz/ Ba

* |nteresting to consider double differential
soft function in Exand px 7. Li, Nelill, Zhu ‘16

e [x regularizes rapidity divergences

® |ntriguing relations among threshold and
gt soft functions

e || and Zhu 16 have computed three-loop
double differential soft function

e make general ansatz, fix coefficients using
Taylor expansion
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Top mass in Pythia”

1 do Butenschoen, Dehnadi, Hoang, Mateu, Preisser and Stewart ‘16

0'de
| — T - - - T T - T T T ] pole scheme at NNLL

. o ] 150F E
[ Q =700 GeV .
350F - 100k 3
300F ; : 58 k 3
: : 715 1720 1725 1730 1735

250:-T/f/
200F 1/ 150k pole scherne gt' NL'L """""
1505_ —+— PYTHIA (incompatibilty uncert.)_é 100k
— Theory (NNLL perturbative uncert.) S0 lﬂﬂm |
O T50 " oa51s 015 0.15% i 1720 7725 1730 1735
) m;°

Butenschoen et al. compute NNLL resummed result for thrust

event shapeinete™ — tt

e [xclusive observable, sensitive to my

e Compare to MC predictions at different O and relate
Pythia parameter mMCto m;Pole

e Universality? Initial state effects at hadron colliders?
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N-jettiness subtraction

Boughezal, Liu, Petreillo 15, Gaunt, Stahlhofen, Tackmann Walsh 15
gror in

Two-loop graphs
Soft and collinear
emissions: factorization

Use event shape 7~ to separate out most singular region of NNLO
computations

o Use SCET to compute ¢ in singular region
e Use existing NLO code away from end-point.

Extension of gr subtraction Catani, Grazzini 'O/ to processes with jets in
the final state.
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N-jettiness subtraction
e Advantage: can use existing NLO codes to
obtain NNLO results

o Already an impressive list of applications H,
Z, W, W4, H+], Z+|, HZ, HW, vy, ...

-M 8 includes NN

e MC
fina

states

Bougheza

-ocke, Giele, Liu, Pet

O for color
, Campbell,

riello and Wil

e (Challenge: independence of slicing
Tn. Parameter needs to be small, but
numerical problems if too small.

gt or
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Jet radius logarithms

A lot of work during the past year

® |nclusive jet cross section Chien, Kang, Ringer
and Vitev '16; Idilbl, Kim *16; Dai, Kim, Lelbovich ‘16

®* pbased on jet fragmentation function

e [EXxclusive jet cross sections Chien, Hornig, Lee
'15, Kolodrubetz, Hornig, Makris and Mehen 16
Pietrulewicz, Stewart, Tackmann and Waalewijn ‘16

® non-global logarithms are not resummed
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