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Executive Summary



LO is not a model
NLO is not a model

NNLO is not a model
....

Pythia is not QCD
Herwig is not QCD
Sherpa is not QCD
Geneva is not QCD

SCET is not a theory
-- it is a framework !

The main consequence of predictivity  from first principles is the 
existence of the systematic perturbative  expansion...
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Corollary

The question is just how one obtains it!
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LO is not a model 
NLO is not a model 

NNLO is not a model 
…

LL is not a model 
NLL is not a model 

NNLL is not a model 
…



Both predictions are systematically improvable, but the 
status is quite different 
Fixed order


• In principle, we know what to compute at any 
order, for any IR safe observable. 

• In practice: general LO and NLO in automated 
form, NNLO for 2→2 cross sections, N3LO for 
2→1 cross sections. 

Resummation

• For very simple observables (i.e. global event 

shapes, qT spectra), we know in principle how to 
obtain any accuracy. 

• Some NLL and NNLL automation. A few selected 
N3LL results.
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Future challenges for precision QCD
For resummation we need both 

1. more ``in principle’’ 

• resummation of more complex observables 

2. more ``in practice’’ 

• automation 

• better observables 

In my talk, I will focus on the first point, in particular 
on higher-log resummation for non-global 
observables.

6



Automated resummation
• Automated computations of 2-loop soft functions Bell, Rahn 

and Talbert ‘16 

• NNLL for jet veto cross sections, TB, Frederix, Neubert and 
Rothen ‘15 

• NLL for pp→2 jets Farhi, Feige, Freytsis and Schwartz ’15 

• NNLL soft-gluon resummations for arbitrary distributions. ttH, 
Broggio, Ferroglia, Pecjak, Signer and Yang ‘15. ttW, 
Broggio, Ferroglia, Ossola and Pecjak ’16 

• ARES: NNLL for 2-jet observables in e+e- Banfi, McAslan, 
Monni and Zanderighi ’15, ‘16 

• GENEVA results for Drell-Yan process → talk by Simone Alioli 

Note: NNLL resummations use automated one-loop computations 
of hard functions as input.
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Better observables: mJ in pp → Z + j
Challenges and contaminations 

• Grooming can mitigate these problems 
• mMDT also eliminates NGLs in mJ 

• Analytical NLL Dasgupta, Fregoso, Marzani, Salam 
’13, Larkoski, Marzani, Soyez,Thaler ’14 
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Measure        on the jet in pp    Z + j eventsm2
J

How to get to Precision Jet Substructure

Can eliminate these problems by 
grooming the jet!

non-global logs

pile-up underlying event



NNLL + O(αs2) for jet mass

Based on factorization
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Comparison with Pythia8 Monte Carlo

Almost three decades of perturbative control in a single jet distribution!

Results: NNLL+αs2 Jet Substructure
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NNLL+αs2, β = 1NNLL+αs2, β = 0

Hadronization and underlying event only dominate form2
J/p

2
T . 10�3

Frye, AJL, Schwartz, Yan 2016
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Factorization for NNLL Resummation

41

Factorization for NNLL Resummation

Z

d�

de(2)2

=
X

k=q,q̄,g

Dk(pT , zcut, R)SC,k(zcut, e
(2)
2 )⌦ Jk(e

(2)
2 )

sum over jet flavor

includes pdfs, emissions
that were groomed

away, out-of-jet radiation,...

collinear-soft radiation

hard collinear radiation

Effective theory for soft drop 
groomed jets

Frye, AJL, Schwartz, Yan 2016

Coefficient Dk can be 
extracted from fixed-order

Only assumes collinear 
factorization of high pT jets in 

pp collisions

d�resum

dm2
J

=
X

k=q,q̄,g

Dk(pT , zcut, R)SC,k(zcutm
2
J)⌦ Jk(m

2
J)

m2
J ⌧ zcutp

2
TJ ⌧ p2TJ

Frye, Larkoski, Schwartz, Yan’16 



Factorization theorems
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resummation in principle 
Figure 1. Pictorial representation of the factorization theorems for the differential cross sections
with respect to the hemisphere jet masses in the limit ML ≪ MR ≪ Q (left), and to the left-jet mass
when ML ≪ MR ∼ Q (right). Blue lines correspond to collinear partons inside the jet functions,
the red lines represent soft emissions. The green lines in the left picture correspond to the hard
part of the hemisphere soft function, while the black lines in the right picture correspond to hard
emission into the right hemisphere.

2 Factorization

The derivation of the factorization formula follows the same steps in both cases and is

similar to the one relevant for wide-angle cone-jet cross sections presented in [20]. We will

first sketch the derivations of the theorems and specify the ingredients. We then relate the

soft functions to the ones which arise in the case of the narrow-cone jet cross sections. Due

to this relation, we can use the results [20] for these and only the hard functions need to

be computed.

2.1 Hemisphere soft function

The hemisphere soft function describes radiation originating from a quark and an anti-

quark along the directions n and n̄ of the two jets. Their soft radiation is described by

Wilson lines. The one generated by the outgoing quark along the n direction is

S(n) = P exp

(
igs

∫ ∞

0
ds n · Aa(sn)ta

)
, (2.1)

and the soft function is defined as

S(ωL,ωR) =
1

Nc

∑

X

Tr⟨0|S(n̄)S†(n)|X⟩⟨X|S(n)S†(n̄)|0⟩δ(ωR − n · PR) δ(ωL − n̄ · PL) ,

(2.2)

where the trace is over color indices. We call the hemisphere which contains the thrust

vector the right hemisphere. The right-moving particles therefore have n̄ · p > n · p and

PR(L) is the total momentum in the right (left) hemisphere. Usually, the function S(ωL,ωR)

is defined in terms of the soft gluon field in SCET. However, the soft SCET Lagrangian

is equivalent to the full QCD one so for our discussion we will consider (2.2) as a matrix

element in QCD. In the asymmetric case ωL ≪ ωR the function S(ωL,ωR) develops large,

non-global logarithms (NGLs) in the ratio κ ≡ ωL/ωR ≪ 1. It is these logarithms which

we seek to resum using effective-field-theory methods.

– 5 –



A key ingredient to obtain logarithmically enhanced 
terms is factorization


E.g. qT spectrum of EW boson for qT ≪ M CSS ’84 

(Transverse PDFs Bq/N also depend on non-
perturbative scale mp, can again be factorized.) 
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d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)
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)e�(t0�t)Vn

(13)

�LL =
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⇥
Bq/N1

�
z1, x

2
T , µ

�
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+ (q $ q̄)

⇤
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Scale separation: Only functions of single scale!



Once factorization is understood, resummation 
reduces to 

1. Fixed-order computations of ingredients 
2. Solution of evolution equations.  

In EFTs such as SCET, these are RG evolution 
equations, driven by anomalous dims. 

Resummed computations = fixed order in EFT + RG 
evolution of Wilson coefficients 

• RG improved perturbation theory: LO = NLL …

Factorization and resummation
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Unknown ingredients at achieve N3LL accuracy 

1. Four-loop Γcusp aka A4 

2. Three-loop anomaly Fqq(3) aka rapidity anomalous 
dimension γr, directly related to B3 of CSS. 

3. Two-loop H functions and beam functions Bq/N

qT resummation at N3LL
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 Catani, Grazzini et al. ‘12 
Gehrmann, Luebbert, Yang ’12 ‘14

Γcusp

N
EW
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Full three-loop double differential soft function in QCD

19

Cancel in N=1 SYM

❖ Taking the τ → 0, rapidity divergence manifest as Log(τ)

20

3-loop coefficient   Li and Zhu ’16



Hard functions
Three-loop Γ for an any number of legs is known! 

  
  

Δn is strongly constrained by factorization TB, Neubert 
’09; Gardi, Magnea ’09 + Dixon ’09, + Del Duca, Duhr, and White ‘11

15

the behavior of amplitudes in collinear limits. We have argued that only the simple form

Γ({p}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs)

is consistent with all these constraints and have explicitly checked that they exclude any
additional contributions up to three-loop accuracy. We also find that contributions from
terms involving higher Casimir operators are excluded at four loops. However, our arguments
do not exclude the presence of the term

∆Γ({p}, µ) =
∑

(i,j,k,l)

fadef bce
T

a
i T

b
j T

c
k T

d
l F (βijkl, βiklj − βiljk)

at three-loop order (and analogous terms in higher orders), where the function F (x, y) would
have to vanish whenever two parton momenta become collinear, and the conformal cross ratios
βijkl are defined in (50). We consider it unlikely that such functions arise in the anomalous-
dimension matrix and thus conjecture that they are absent. Since the discussion in our paper
relies solely on the commutation relations and the Jacobi identity, our results apply to any
massless gauge theory based on a semi-simple group. Furthermore, by combining our results
with methods developed in [87, 88, 89, 90, 91], which relate the singularities of massive and
massless amplitudes, our formalism can be generalized to the massive case. This is worked
out in detail in [92].

The above form of the anomalous dimension is consistent with all existing results for higher-
order scattering amplitudes, but it would be desirable to further test it with explicit multi-loop
calculations. It will be particularly interesting to compare with the three-loop result for the
full four-parton amplitude in N = 4 SYM given in [12], once the necessary master integrals
become available. In particular, this result will check whether color correlations between four
partons appear, and whether they obey the constraints from soft-collinear factorization and
collinear limits, i.e. whether they have the form discussed above. Also of great interest would
be a calculation of the four-loop cusp anomalous dimensions of quarks and gluons in QCD
or its supersymmetric extensions, either by direct calculation, extending the work of [13],
or by using the approach based on the AdS/CFT correspondence [19]. This would test our
prediction of Casimir scaling. The recent accomplishment of the exact evaluation of three-loop
form factor integrals [28, 82] gives us hope that these calculations will become feasible in the
not too distant future.

Understanding the IR structure of scattering amplitudes is of significant theoretical inter-
est, and having explicit results for the divergent part of the amplitudes provides an important
check on multi-loop calculations. Also, since the singularities must cancel against those of
diagrams with real gluon emission, our results might lead to an improved treatment of the soft
and collinear singularities in real emission processes. However, the most important application
of our work are resummations of Sudakov logarithms in multi-jet processes. There is a rich
literature on Sudakov resummation for QCD processes, starting with the pioneering papers
[93, 94, 95, 96] (for a review, see [97] and references therein). In the effective theory, the
resummation of these logarithmically-enhanced contributions is achieved by solving the RG
equations for the Wilson coefficients. For two-jet observables, effective-theory methods have
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Three-loop corrections to the soft anomalous dimension in multi-leg scattering

Øyvind Almelid,1 Claude Duhr,2, 3, ⇤ and Einan Gardi1

1Higgs Centre for Theoretical Physics, School of Physics and Astronomy,
The University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK

2CERN Theory Division, 1211 Geneva 23, Switzerland
3Center for Cosmology, Particle Physics and Phenomenology (CP3),
Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium

We present the three-loop result for the soft anomalous dimension governing long-distance sin-
gularities of multi-leg gauge-theory scattering amplitudes of massless partons. We compute all
contributing webs involving semi-infinite Wilson lines at three loops and obtain the complete three-
loop correction to the dipole formula. We find that non-dipole corrections appear already for three
coloured partons, where the correction is a constant without kinematic dependence. Kinematic de-
pendence appears only through conformally-invariant cross ratios for four coloured partons or more,
and the result can be expressed in terms of single-valued harmonic polylogarithms of weight five.
While the non-dipole three-loop term does not vanish in two-particle collinear limits, its contribu-
tion to the splitting amplitude anomalous dimension reduces to a constant, and it only depends on
the colour charges of the collinear pair, thereby preserving strict collinear factorization properties.
Finally we verify that our result is consistent with expectations from the Regge limit.

Infrared (long-distance) singularities are a salient fea-
ture of gauge-theory scattering amplitudes, and a de-
tailed understanding of their structure and how they can-
cel in measurable cross sections is key to precision col-
lider physics. For this reason, there has been a contin-
uous theoretical interest in the factorization and expo-
nentiation properties of the singularities, and their use
for resummation of large logarithmic corrections, start-
ing from the analysis of the form factor in the early
days [1–10] through to many recent studies of multi-leg
amplitudes of both massless [9, 11–28] and massive par-
tons [29–39] at the multi-loop level, and the formulation
of the non-Abelian exponentiation theorem in the multi-
leg case [40–44].

The focus of this paper will be the infrared (IR) struc-
ture of a scattering amplitude for n massless partons.
More precisely, if the external legs have momenta pi,
i = 1..n, with p2i = 0, long distance singularities (both
soft and collinear) can be factorized as follows

Mn ({pi} ,↵s) = Zn ({pi} , µ,↵s)Hn ({pi} , µ,↵s) , (1)

where µ is a factorization scale, ↵s ⌘ ↵s(µ2) is the
renormalised D-dimensional running coupling, Hn is a
finite hard scattering function, and Zn is an operator
in colour space that collects all IR singularities in the
form of poles in the dimensional regularization param-
eter ✏ = (4 � D)/2. The IR singularities contained in
Zn have their origin in loop momenta becoming either
soft or collinear to any of the scattered partons (see e.g.
Ref. [45]). Collinear singularities depend on the spin and
momentum of that particle, and decouple from the rest of
the process. In contrast, soft (non-collinear) singularities

⇤On leave from the “Fonds National de la Recherche Scientifique”
(FNRS), Belgium.

are independent of the spin, but they depend on the rel-
ative directions of motion and the colour degrees of free-
dom of the scattered particles. Hence, soft singularities
are sensitive to the colour flow in the entire process, and
their structure is a priori rather complex. Nevertheless,
they are significantly simpler than finite contributions to
the amplitude. They can be computed by considering
correlators of products of Wilson-line operators emanat-
ing from the hard interaction, following the classical tra-
jectory of the scattered particles and carrying the same
colour charge.
Specifically, Zn can be obtained as a solution of a

renormalization-group equation as

Zn = Pexp

(

� 1

2

Z µ2

0

d�2

�2
�n

�

{pi} ,�,↵s(�
2)
�

)

, (2)

where �n is the so-called soft anomalous dimension ma-

trix for multi-leg scattering, and P stands for path-
ordering of the matrices according to the order of scales �.
We stress that �n itself is finite, and IR singularities are
generated in Eq. (2) owing to the fact that �n depends on
the D-dimensional coupling, which is integrated over the
scale down to zero momentum. The functional form of �n

is highly constrained, and owing to factorization and the
rescaling symmetry of the Wilson line velocities [18–20],
through three loops it must take the form

�n ({pi} ,�) = �dip.
n ({pi} ,�) +�n ({⇢ijkl}) , (3)

with

�dip.
n ({pi} ,�) = � 1

2
b�K (↵s)

X

i<j

log

✓

�sij
�2

◆

Ti ·Tj

+
n
X

i=1

�Ji (↵s) , (4)

where �sij = 2 |pi · pj | e�i⇡�ij , with �ij = 1 if partons
i and j both belong to either the initial or the final
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FIG. 1: Representative 3-loop connected webs contributing to the soft anomalous dimension with 4 coloured lines.

state and �ij = 0 otherwise; Ti are colour generators
in the representation of parton i, acting on the colour in-
dices of the amplitude as described in Ref. [11]; b�K(↵s)
is the universal cusp anomalous dimension [7, 46, 47],
with the quadratic Casimir of the appropriate represen-
tation scaled out (Casimir scaling of the cusp anomalous
dimension holds through three loops [46]; it may be bro-
ken by quartic Casimirs starting at four loops); �Ji are
the anomalous dimensions of the fields associated with
external particles, which govern hard collinear singular-
ities, currently known up to three loops [28, 48]. Equa-
tion (4) is known as the dipole formula, and captures the
entirety of the soft anomalous dimension matrix up to
two loops. According to the non-Abelian exponentiation
theorem [44] the colour factors in �n must all correspond
to connected graphs as shown in Fig. 1. Tripole cor-
rections correlating three partons, with colour factors of
the form ifabcTa

iT
b
jT

c
k, which could appear starting from

two loops, are not present in the soft anomalous dimen-
sion at any order because the corresponding kinematic
dependence on the three momenta is bound to violate
the rescaling symmetry constraints [18–20]. While a con-
stant correction proportional to ifabcTa

iT
b
jT

c
k is excluded

by Bose symmetry, kinematic-independent corrections in-
volving three lines of the form fabef cde

�

Ta
i ,T

d
i

 

Tb
jT

c
k

(last two diagrams in Fig. 1) are admissible and we will
see that they do indeed appear. The first admissible
corrections involving kinematic dependence in Eq. (3)
are then quadrupoles, because four momenta can form
conformally-invariant cross ratios,

⇢ijkl ⌘
(�sij)(�skl)

(�sik)(�sjl)
, (5)

which are invariant under a rescaling of any of the mo-
menta. Since diagrams with four colour generators con-
tribute for the first time at three loops, this is the first
order at which contributions to �n in Eq. (3) may ap-
pear,

�n ({⇢ijkl}) =
1
X

`=3

⇣↵s

4⇡

⌘`
�(`)

n ({⇢ijkl}) . (6)

Three-loop graphs can connect at most four lines, and
so the general form of the three-loop correction is com-
pletely determined by the four-parton case and can be

written as

�(3)
n ({⇢ijkl}) = 16 fabefcde

n

(7)
X

1i<j<k<ln

h

Ta
iT

b
jT

c
kT

d
l F(⇢ikjl, ⇢iljk)

+Ta
iT

b
kT

c
jT

d
l F(⇢ijkl, ⇢ilkj)

+Ta
iT

b
lT

c
jT

d
k F(⇢ijlk, ⇢iklj)

i

� C

n
X

i=1

X

1j<kn
j,k 6=i

�

Ta
i ,T

d
i

 

Tb
jT

c
k

o

,

where C is a constant and F is a function of two
conformally-invariant cross ratios. Both C and F are
independent of the colour degrees of freedom. Moreover,
Eq. (7) is the most general three-loop ansatz consistent
with Bose and rescaling symmetry, so C and F are inde-
pendent of the number of legs n. Note that the terms in
this sum are not all independent, because of the antisym-
metry of the structure constants and the Jacobi identity.

�(3)
n is independent of the details of the underlying the-

ory and completely determined by soft gluon interactions.

In particular, this implies that �(3)
n is the same in QCD

and in N = 4 Super Yang-Mills, and it is therefore ex-
pected to be a pure polylogarithmic function of weight
five. Its functional form has been constrained by consid-
ering collinear limits and the Regge limit [18–26], but
it has so far remained unclear whether three-loop correc-
tions to the dipole formula are present. The purpose of

the present paper is to compute �(3)
n . We will present

its complete functional form, hence determining soft sin-
gularities of any massless multi-leg amplitude at three

loops. Since C and F can be extracted from �(3)
4 , we

restrict our computation to the case n = 4. Before pre-
senting the final result, we give a brief summary of the
computation. A complete account of the computation
will be presented in a forthcoming publication [49].
We set up the calculation of the soft anomalous dimen-

sion through the renormalization of a product of semi-
infinite Wilson lines with four-velocities �k, with �2

k 6= 0.
By considering non-lighlike lines we avoid collinear sin-
gularities, and obtain kinematic dependence via cusp an-

gles �ij ⌘ 2�i ·�j/
q

�2
i �

2
j . We eventually extract �(3)

n for
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FIG. 1: Representative 3-loop connected webs contributing to the soft anomalous dimension with 4 coloured lines.

state and �ij = 0 otherwise; Ti are colour generators
in the representation of parton i, acting on the colour in-
dices of the amplitude as described in Ref. [11]; b�K(↵s)
is the universal cusp anomalous dimension [7, 46, 47],
with the quadratic Casimir of the appropriate represen-
tation scaled out (Casimir scaling of the cusp anomalous
dimension holds through three loops [46]; it may be bro-
ken by quartic Casimirs starting at four loops); �Ji are
the anomalous dimensions of the fields associated with
external particles, which govern hard collinear singular-
ities, currently known up to three loops [28, 48]. Equa-
tion (4) is known as the dipole formula, and captures the
entirety of the soft anomalous dimension matrix up to
two loops. According to the non-Abelian exponentiation
theorem [44] the colour factors in �n must all correspond
to connected graphs as shown in Fig. 1. Tripole cor-
rections correlating three partons, with colour factors of
the form ifabcTa

iT
b
jT

c
k, which could appear starting from

two loops, are not present in the soft anomalous dimen-
sion at any order because the corresponding kinematic
dependence on the three momenta is bound to violate
the rescaling symmetry constraints [18–20]. While a con-
stant correction proportional to ifabcTa
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k is excluded

by Bose symmetry, kinematic-independent corrections in-
volving three lines of the form fabef cde
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which are invariant under a rescaling of any of the mo-
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where C is a constant and F is a function of two
conformally-invariant cross ratios. Both C and F are
independent of the colour degrees of freedom. Moreover,
Eq. (7) is the most general three-loop ansatz consistent
with Bose and rescaling symmetry, so C and F are inde-
pendent of the number of legs n. Note that the terms in
this sum are not all independent, because of the antisym-
metry of the structure constants and the Jacobi identity.

�(3)
n is independent of the details of the underlying the-

ory and completely determined by soft gluon interactions.

In particular, this implies that �(3)
n is the same in QCD

and in N = 4 Super Yang-Mills, and it is therefore ex-
pected to be a pure polylogarithmic function of weight
five. Its functional form has been constrained by consid-
ering collinear limits and the Regge limit [18–26], but
it has so far remained unclear whether three-loop correc-
tions to the dipole formula are present. The purpose of

the present paper is to compute �(3)
n . We will present

its complete functional form, hence determining soft sin-
gularities of any massless multi-leg amplitude at three

loops. Since C and F can be extracted from �(3)
4 , we

restrict our computation to the case n = 4. Before pre-
senting the final result, we give a brief summary of the
computation. A complete account of the computation
will be presented in a forthcoming publication [49].
We set up the calculation of the soft anomalous dimen-

sion through the renormalization of a product of semi-
infinite Wilson lines with four-velocities �k, with �2

k 6= 0.
By considering non-lighlike lines we avoid collinear sin-
gularities, and obtain kinematic dependence via cusp an-

gles �ij ⌘ 2�i ·�j/
q

�2
i �

2
j . We eventually extract �(3)

n for
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FIG. 1: Representative 3-loop connected webs contributing to the soft anomalous dimension with 4 coloured lines.
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where C is a constant and F is a function of two
conformally-invariant cross ratios. Both C and F are
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Missing factorization theorems 
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forward scattering, Glauber gluons 
(pp scattering contains forward part)

Small masses 
(e.g. b-quarks in H production, 

EW effects at large qT, …)

Power corrections 
(e.g. corrections to threshold limit,  

next-to-eikonal corrections)
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Figure 3: Example diagrams for the next-to-soft radiaive jet function, where the p leg has been
replaced by a generalised Wilson line, and • denotes a next-to-soft emission vertex, arising from
Eq. (2.8).
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The first two terms in Eq. (3.3) are accompanied by a factor (2p · k)�✏, corresponding to the
collinear scale associated with radiation from a jet [39, 43]. The third term in Eq. (3.3), on the
other hand, contains a different ratio of scales involving the auxiliary vector n. Note that for the
choices in Eq. (2.30) the ratio for both jets becomes
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This is the same dependence arising in (next-to-)soft webs connecting both external partons
(shown for example in Fig. 1(d)). Terms with this scale dependence thus constitute the double
counting of overlapping (next-to-)soft and collinear regions for the virtual gluon momentum,
to be removed by the subtraction term A eJ

µ,a. In our present calculation, one may interpret
this overlap diagrammatically by defining a next-to-soft radiative jet function eJµ,a(p, k, n). This
function appears in the subtraction term A eJ

µ,a instead of the full radiative jet function used in
the definition of AJi

µ,a, Eq. (2.11). By analogy with Eq. (2.11), we then write

A eJ1
µ,a (p1, p2, k) =

eH (p

1

, p
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, nj)
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2

k=1

eJ (pk, nk)

eJµ,a(p1, n1

, k) J(p

2

, n

2

) . (3.7)

The function eJµ,a can be obtained from the diagrams for the full radiative jet, by replacing the
emission vertices on the p leg with the soft or next-to-soft Feynman rules arising from Eq. (2.8),
and including at most one next-to-soft vertex. At tree-level (using the normalisation of Eq. (3.1))
one simply finds eJ (0)

µ (p, n, k) = J

(0)

µ (p, n, k). At the one-loop level, one encounters diagrams such
as those in Fig. 3: in fact, only the diagrams in Fig. 3(a) and (b) are non-vanishing, By analogy
with Eq. (3.3), one can write the result in the form

eJ (1)

µ = (�2p · k)�✏
h

CF
eJ (1)

µ,F + CA
eJ (1)

µ,A,coll.

i
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eJ (1)

µ,A,soft , (3.8)

and one finds that
eJ (1)

µ,F =

eJ (1)

µ,A,coll. = 0 ,

eJ (1)

µ,A,soft = J

(1)

µ,A,soft , (3.9)

so that the next-to-soft radiative jet function reproduces precisely the third term in Eq. (3.3):
subtracting it from the full jet leaves only collinear contributions, as required.

According to Eq. (2.29), for the complete result one also needs the radiative next-to-soft
function eSµ at one-loop. The relevant diagrams are similar to those entering the next-to-soft
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Figure 2. Two-loop diagrams contributing to the abelian double logarithmic corrections. Diagrams
that differ by the direction of the fermion flow are not shown.

whereas A(0),1c,s
+++ = 0. At the same time, the vector contribution of region II vanishes due

to our choice of the polarization vector for the gluon g3, p2 · ϵ3 = 0. As the result, the total

vector contribution of the diagram Fig.1c is given by the double logarithmic integral over

the interval |u|/s < α < 1, m2
b/|t| < β < 1 from region I. It reads

A(0),1c,v
++± = ±L2

∫ 1−τu

0
dη

∫ τt−η

0
dξ = ∓L2 (1− τu)(1− 2τt − τu)

2
. (3.22)

We are now in position to present the leading-order bottom-quark contribution to gg → Hg

helicity amplitudes in the double logarithmic approximation. We sum the contributions of

individual diagrams given in Eqs.(3.8,3.12,3.21,3.22) and obtain

A(0)
+++ = L2

(

1−
τ2

2

)

, A(0)
++− = −L2

(

1 +
τ2

2

)

, (3.23)

where we used τ = ln(m2
b/p

2
⊥)/L. These results coincide with the double logarithmic limits

of the one-loop amplitudes computed in Ref. [16] long time ago.4 Our analysis identifies

the origin of the double logarithmic enhancement of the gg → Hg amplitude mediated by a

light quark. With this understanding, it is straightforward to extend the above calculation

first to two loops and then to all orders in the strong coupling constant αs. We will describe

how to do this in the next sections.

4 Two-loop helicity amplitudes in the double logarithmic approximation

It is easy to convince oneself that a two-loop diagram contributing to gg → Hg can develop

leading O(mb) double logarithmic enhancement only if exactly one of its fermion lines is

4See also Ref. [15] for a recent discussion.
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Figure 3: Example diagrams for the next-to-soft radiaive jet function, where the p leg has been
replaced by a generalised Wilson line, and • denotes a next-to-soft emission vertex, arising from
Eq. (2.8).
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This is the same dependence arising in (next-to-)soft webs connecting both external partons
(shown for example in Fig. 1(d)). Terms with this scale dependence thus constitute the double
counting of overlapping (next-to-)soft and collinear regions for the virtual gluon momentum,
to be removed by the subtraction term A eJ

µ,a. In our present calculation, one may interpret
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the definition of AJi
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The function eJµ,a can be obtained from the diagrams for the full radiative jet, by replacing the
emission vertices on the p leg with the soft or next-to-soft Feynman rules arising from Eq. (2.8),
and including at most one next-to-soft vertex. At tree-level (using the normalisation of Eq. (3.1))
one simply finds eJ (0)

µ (p, n, k) = J

(0)

µ (p, n, k). At the one-loop level, one encounters diagrams such
as those in Fig. 3: in fact, only the diagrams in Fig. 3(a) and (b) are non-vanishing, By analogy
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so that the next-to-soft radiative jet function reproduces precisely the third term in Eq. (3.3):
subtracting it from the full jet leaves only collinear contributions, as required.
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Non-global logarithms
18



Consider the simplest collider-physics problem 
involving large logarithms.  

Two regions:

19

outside: 

small energy

inside: large energy



Arises in many situation, in particular in all 
exclusive jet cross sections 

20

veto on 

additional jets

J

J



Many more examples 
• jet vetoes (includes unrestricted radiation near 

the beam pipe) 
• gaps between jets 
• jet substructure 
• isolated photons (veto on radiation near photon) 
• event shapes such as the light-jet mass and 

narrow jet broadening  
• … 

Such observables are called non-global, since they are 
insensitive to radiation inside certain regions of phase 
space. 

21



veto:

 Eout < βQ ≪ Q

unrestricted Ein ~ Q

Non-global observables

→ large logs αsn lnn(Eout / Ein) ~ αsn lnn(β) 



Large logarithms αsn lnm(β) in non-global observables 
do not exponentiate Dasgupta and Salam ’02. 

Leading logarithms at large Nc can be obtained from 
non-linear integral equation

23
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Figure 14. The action of the operator Vm on an amplitude in the large-Nc limit.

suppressed at large Nc. At large Nc, emissions arise only between nearest-neighbour legs,

since all other attachments would lead to non-planar contributions which are suppressed.

Based on the above simplification, the effect of Rm in the large-Nc limit is shown diagram-

matically in Figure 13. The action of Vm simplifies analogously, as shown in Figure 14.

The large-Nc color factor from squaring the amplitudes is simply a factor of Nc for each

color loop, and the number of additional color loops is equal to the number of powers of

αs, so that the color factor is obtained by switching to the ’t Hooft coupling λ = Nc αs.

We now plug the explicit results (5.11) for the anomalous-dimension coefficients Vm

and Rm into the expressions (5.17). For the coefficients of the expansion in t, we then

obtain

S
(1)
2 = −4Nc

∫
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3OutW

3
12 ,

S
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2

2!
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]
, (5.20)

where
∫
Ω 3Out =

∫ dΩ(n3)
4π Θnn̄

out(n3), and we have used the abbreviation

P kl
ij = W k

ij

(
W l

ik +W l
kj

)
. (5.21)

The above expressions include all leading logarithms, i.e. the global and non-global loga-

rithmic terms appear together.

Let us now relate the above expressions to the leading logarithmic resummation of

NGLs at large Nc, which can be obtained by solving the BMS equation [26]

∂L̂Gkl(L̂) =

∫
dΩ(nj)

4π
W j

kl

[
Θnn̄

in (j)Gkj(L̂)Gjl(L̂)−Gkl(L̂)
]
, (5.22)

with boundary condition Gkl(0) = 1. The function Gkl(L̂) depends on two light-like refer-

ence vectors nk and nl. After solving the equation, the resummed soft function is obtained

as S({n}, Qβ, µ) = G12(L̂) with L̂ = 4Nc t. While the non-linear integral equation (5.22)
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Non-global logarithms
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(
1− δ4

)
+ 24Li3

(
1− δ2

)
− 36 Li3

(
−δ2

)

− 36 Li3
(
δ2
)
+ 24Li3

(
δ2

1 + δ2

)
− 12 ζ3 −

11π2

12
−

1

2
− π2 ln 2−

3

8
M

[1]
A (δ)

]

lnβ

+ cA2 (δ) ,

Bf =−
16

3
ln δ ln2 β −

8

3

[
1

1− δ4
+

4δ4 ln δ

(1− δ4)2
+ 4 ln(1− δ4) ln δ + 2 ln2 δ −

10

3
ln δ

+ 6Li2(−δ2) + 4Li2(δ
2)−

π2

6
−

1

2

]

lnβ + cf2 (δ) . (22)

W j
kl =

nk · nl

nk · nj nl · nj
. (23)dipole radiatorL̂ ⇠ Nc ↵s ln�



LL resummation
• The leading logarithms arise from configurations in 

which the emitted gluons are strongly ordered 

E1 ≫ E2 ≫ E3 ≫ …  ≫ Em 

• Multi-gluon emission amplitudes become extremely 
simple in this limit, especially at large Nc 

  
• Their simple structure is the basis for the BMS 

equation.

3 Strong energy ordering

In this section, we review the structure of the real, virtual and real-virtual integrands relevant
for the leading non-global logarithm at large N

c

limit [55]. While simplifications arising from
the strong-energy-ordering (SEO) limit have been known for decades, we try to provide more
explicit details than we have found in the literature. Hopefully, our exposition will clarify the
set of approximations going into the NGL calculation. A reader already familiar with SEO can
skip this section.

3.1 Real emission

To begin, consider the cross section for emission of m gluons o↵ classical quark sources in the aµ

and bµ directions. The di↵erential cross section for real-emission is then

1

�
0

d�
m

=
1

m!
d�

m

��M1···m
ab

��2 (9)

where �
0

is the tree-level cross section and the phase space is

d�
m

=
mY

i=1

d3p
i

(2⇡)3 2!
i

=
mY

i=1

!
i

d!
i

4⇡2

d⌦
i

4⇡
(10)

In the limit that the energy of the gluons is strongly ordered, at large N
c

the matrix-element
squared can be written as [55]

��M1···m
ab

��2 =
��hp

1

· · · p
m

��Y †
a

Y
b

�� 0i��2 = Nm

c

g2m
X

perms of 1···m

(p
a

· p
b

)

(p
a

· p
1

) (p
1

· p
2

) · · · (p
m

· p
b

)
(11)

It does not matter if E
1

� E
2

� · · · � E
m

or if the gluons are ordered in some other permutation;
because they are identical particles, the matrix element is independent of the gluon labels.

To simplify cross section formula, it is helpful to pull out the energies from the dot-products,
by writing

(ij) ⌘ p
i

· p
j

!
i

!
j

= 1� cos ✓
ij

(12)

where ✓
ij

is the angle between the directions ~p
i

and ~p
j

. Then we define the radiator function as

W1···m
ab

=
(ab)

(a1)(12) · · · (mb)
(13)

and
P1···m

ab

=
X

perms of 1···m

W1···m
ab

(14)

so that ��M1···m
ab

��2 = Nm

c

g2m
1

!2

1

· · ·!2

m

P1···m
ab

(15)
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A lot of recent work on NGLs 

• Resummation of leading logs beyond large Nc Weigert ’03, Hatta, 
Ueda ’13 + Hagiwara ’15; Caron-Huot ’15. 

• Caron-Huot’s functional RG has a close relation to our results 

• Fixed-order results: 2 loops for S(ωL,ωR). Kelley, Schwartz, Schabinger 
and Zhu ’11; Hornig, Lee, Stewart, Walsh and Zuberi ’11; with jet-cone  
Kelley, Schwartz, Schabinger and Zhu ‘11; von Manteuffel, 
Schabinger and Zhu ’13, leading non-global log up to 5 loops by 
solving BMS equation Schwartz, Zhu ’14, up to 12 loops Caron-Huot 
’16, up to 5 loops and arbitrary Nc Delenda, Khelifa-Kerfa ‘15 

• Approximate resummation of such logs, based on resummation for 
observables with n soft subjets. Larkoski, Moult and Neill ‘15 

A systematic factorization of non-global observables was missing.

Non-global logarithms (NGLs)



``Globalization”
Alternative SCET approach to observables with NGLs based on 
resummation for substructure. Larkoski, Moult, Neill ‘15 

• Divide jet cross section into contributions from n sub-jets. 
Idea is to lower the hard scale in the NGLs by resolving the 
subjets. 

• Resum global logarithms in subjet observables: ``Dressed 
gluons’’. 

• At leading-log level, this maps into iterative solution of BMS 
equation Larkoski, Moult, Neill ’16 

26



Factorization for NGLs



Basic physics is soft radiation off energetic 
partons inside jet. 

Wilson line along direction of each hard parton 
inside the jet. 

28

pµi = Ein
µ
i

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z t

0
dt0Hn�1(t

0
)Rn�1(t

0
)e�(t0�t)Vn

(13)

�LL =

1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H
lm({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H
lm(Q,µ) (16)

H2(µ = Q) = �0 (17)

Hm(µ = Q) = 0 for m > 2 (18)

Sm(µ = �Q) = 1 (19)

t =

Z ↵(Q)

↵(µ)

d↵

�(↵)

↵

4⇡
(20)

d

dt
Hm(t) = Hm(t)Vm +Hm�1(t)Rm�1 . (21)

Hm(t) = Hm(t1)e
(t�t1)Vn

+

Z t

t1

dt0Hm�1(t
0
)Rm�1e

(t�t0)Vn
(22)

d�

dqTdy
= H

�
M2, µ

�
1

4⇡

Z
d2x?e

�iq?·x?

✓
x2TM

2

b20

◆�Fqq̄(x2
T ,µ

)

⇥
X

q

e2q
⇥
Bq/N1

�
z1, x

2
T , µ

�
Bq̄/N2

�
z2, x

2
T , µ

�
+ (q $ q̄)

⇤
.

Si(ni) = P exp

✓
igs

Z 1

0
ds ni ·Aa

s(sni)T
a
i

◆

2



Soft emissions in process with m energetic particles are 
obtained from the matrix elements of the operator 

  

Figure 1. Definition of the parameters � and � of the dijet cross section. We use the thrust axis
~n, as the jet axis.

definiton is identical to the one in the seminal paper of Sterman and Weinberg [36]. Using

the thrust vector as the jet axis leads to a simpler form of the phase-space constraints and

will enable us to use existing two-loop results for the cone-jet soft function obtained in

[27, 28].

If we consider wide-angle jets with � ⇠ 1, the e↵ective theory contains only two mo-

mentum regions

hard: ph ⇠ Q (1, 1, 1) , (2.3)

soft: ps ⇠ Q� (1, 1, 1) .

The hard mode describes the energetic particles inside the jet. Given their momentum

scaling, these particles can never be outside the jet, in contrast to the soft partons which

can be emitted inside or outside the jet. Since there are no collinear singularities for large

cone size, the cross section is single-logarithmic, i.e. the leading logarithms have the form

↵n
s ln�.

The factorization of an amplitude with m hard partons and an arbitrary number of

soft partons is of course well known. Each of the hard partons get dressed with a Wilson

line along its direction. In analogy to factorization for amplitudes with coft particles [32],

we have

S1(n1)S2(n2) . . . Sm(nm)|Mm({p})i , (2.4)

where nµ
i = pµi /Ei and {p} = {p1, p2, . . . , pm}, but while the coft case involved quark

splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})i. One way

to obtain this formula is to write down the SCET operator for processes with m jets,

which involves m di↵erent collinear fields, perform the decoupling transformation and then

take the matrix element with exactly one collinear particle in each sector, which gives the

amplitude |Mm({p})i. (On the amplitude level, there is no di↵erence between collinear

and hard on-shell particles. The di↵erence in scaling only matters in the expansion of the

phase-space constraints.) To get the amplitude with an arbitrary number of soft particles

in the final state, one takes the relevant matrix element of the Wilson-line operator (2.4).

Doing so, the cross section takes the form

– 5 –

hard scattering amplitude 
with m particles 

(vector in color space) 

energetic partons must be inside

soft Wilson lines along the directions  
of the energetic particles / jets 

(color matrices) 

soft particles can be inside or outside



For a jet of several (nearly) collinear energetic particles, one 
can combine 

into a single Wilson line with the total color charge. 

For non-global observables one cannot combine the soft 
Wilson lines → complicated structure of logs! 

• For a wide-angle jet, the energetic particles are not 
collinear. 

• For a narrow-angle jets (see later), we find that small-
angle soft radiation plays an important role. Resolves 
directions of individual energetic partons!

but for brevity, we do not indicate this explicitly. Since they commute, Wilson lines along

common directions immediately combine into single Wilson lines, for example

S1(n)S2(n) = P exp

(
igs

∫ ∞

0
ds n · Aa

s(sn) (T
a
1 + T

a
2 )

)
. (2.6)

This property ensures that collinear particles only produce a single Wilson line carrying

the total color charge. However, since we deal with large-angle jets, the individual Wilson

lines do not combine in our example.

To derive formula (2.5) in the effective field theory we introduce a separate collinear

field for each of the energetic particles in the final state, i.e. we write down the SCET

operators for processes with m jets. This is possible since on the amplitude level there is

no difference between collinear and hard on-shell particles. The relevant purely collinear

SCET Lagrangian consists of m copies of the ordinary QCD Lagrangian. Operators in the

effective theory are conveniently expressed in terms of gauge-invariant fields χi and Aµ
i⊥,

which are related to the usual quark and gluon fields via [45]

χi(0) = W †
i (n̄i)

/ni /̄ni

4
ψi(0) , Aµ

i⊥(0) = W †
i (n̄i) [iD

µ
⊥ Wi(n̄i)] . (2.7)

The i-collinear Wilson lines in the fundamental representation are defined analogously to

the soft Wilson lines in (2.4) as

Wi(n̄i) = P exp

(
igs

∫ 0

−∞

ds n̄i ·Aa
i (sn̄i)t

a

)
. (2.8)

The argument denotes the direction of the Wilson line, which is conjugate to the direction

ni of the collinear particle. These Wilson lines ensure that these fields are invariant under

collinear gauge transformations in each sector [17, 18].

At leading order in power counting, m-jet operators in this effective theory involve

exactly one collinear field Φi ∈ {χi, χ̄i,Aµ
i⊥} from each sector i = 1, . . . ,m. Performing the

usual decoupling transformation

Φi = Si(ni)Φ
(0)
i , (2.9)

with the appropriate color representation Ti for each field, yields the Wilson-line structure

shown in (2.5). Finally, one evaluates the matrix element of the operator with one collinear

particle in each sector, using

⟨0|χ(0)
j (0) |pi⟩ = δij u(pi) ,

⟨0| Aµ,a(0)
j⊥ (0) |pi; a⟩ = δij ϵ

µ(pi) .
(2.10)

Together with theWilson coefficient of them-jet operator this gives the amplitude |Mm({p})⟩,
see [13] for details. Since the particles are on the mass shell, the higher-order corrections

to the relations (2.10) are all scaleless and vanish.

To get the amplitude for the emission of l soft partons in the final state with momenta

k1, . . . , kl, one computes the matrix element

⟨k1, . . . , kl|S1(n1)S2(n2) . . . Sm(nm) |0⟩ (2.11)

– 7 –



Hard function. 
m hard partons along  

fixed directions {n1, …, nm} 

Factorization theorem

Soft function 
with m Wilson lines

integration over the m 
directions 

color trace

Figure 3. omparison of our analytic results (solid lines) for the coe�cients of the three color
structures in the two-loop coe�cient dB/d ln ⇢h for the heavy-jet mass distribtion with numerical
results (points with invisibly small error bars) obtained using the Event2 event generator [13].

Putting everything together, inverting the Laplace transformation, and using relation

(1.5) we then obtain the following result for the logarithms in the light-jet cross section

d�

d⇢`
= (4.9)

This can be compared to numerical results obtained from running fixed-order event

generators such as Event2 [13] or eerad3 [? ] at low values of the jet mass.

[Write what we conclude from this comparison...]

5 Conclusions

• Non-global observables all have similar structure, key feature are multi-Wilson-line

operators tracking hard partons.

• Briefly discuss resummation.

• Numerical trouble with event generators?

�(�) =
1X

m=2

⌦Hm({n}, Q, µ)⌦ Sm({n}, Q�, µ)
↵
, (5.1)

– 16 –

TB, Neubert, Rothen, Shao ’15 ’16, see also Caron-Huot ‘15

First all-order factorization theorem for non-global 
observable. Achieves full scale separation!



Comments
• Infinitely many operators Sm, mix under RG 

• Also for narrow-cone jets, the same type of 
structure is relevant TB, Neubert, Rothen, Shao ’15 
’16 

• Check: Have computed all ingredients for 
cone cross section at NNLO. Obtain full 
logarithmic structure at this order.

32

For convenience, we factor out the Born cross section, so that H(0)
2 ⊗ 1 = 1. For the soft

function Sm defined in (2.12) the expansion in powers of αs reads

Sm = 1+
α0

4π
S(1)

m +
(α0

4π

)2
S(2)

m + · · · . (4.3)

Inserting these expansions into (4.1), we find for the NLO coefficient in the cross section

(3.34)

A(β, δ) =
1

2

〈
H

(1)
2 ⊗ 1+H

(0)
2 S

(1)
2 +H

(1)
3 ⊗ 1

〉
, (4.4)

and for the NNLO coefficient we obtain

B(β, δ) =
1

4

〈
H

(2)
2 ⊗ 1+H

(0)
2 ⊗ S

(2)
2 +H

(1)
2 ⊗ S

(1)
2 +H

(1)
3 ⊗ S

(1)
3 +H

(2)
3 ⊗ 1+H

(2)
4 ⊗ 1

〉
.

(4.5)

In the following, we first evaluate the hard function H
(1)
3 and then describe in detail the

calculation of the soft functions S2 and S3. The finiteness of the cross section can be

used to infer the higher-order unknown logarithmic terms in the contribution from the

hard functions H(2)
3 and H

(2)
4 . As in the narrow-angle case, we compare the resulting one-

and two-loop coefficients A(β, δ) and B(β, δ) with the numerical results obtained using the

event generator Event2. Finally, we study all the two-loop ingredients in the small-δ limit

and verify the factorization formulas (2.28) and (2.31) at this order.

4.1 Hard function

Following the operator definition in (2.14), the hard function H3 describing the process

γ∗ → q(p1) q̄(p2) g(p3) starts at O(αs) and is given by

α0

4π
σ0 H

(1)
3 =

1

2Q2(2π)2−4ϵ

3∏

i=1

∫
dEi E

1−2ϵ
i |M3({p1, p2, p3})⟩⟨M3({p1, p2, p3})|

× δ(Q− E1 − E2 − E3) δ
(3−2ϵ)(p⃗1 + p⃗2 + p⃗3) Θ

nn̄
in ({p1, p2, p3}) . (4.6)

The integrations over the energies are performed keeping the directions of the three particles

fixed. The crucial point is that for three-particle final states, the thrust axis always points

opposite to the direction of the most energetic particle, and the jet cone therefore centers

around it. For this reason, it is natural to decompose the phase-space integration into the

following regions:

I : x1 > x2 > x3 , II : x1 > x3 > x2 , III : x3 > x1 > x2 ,

IV : x3 > x2 > x1 , V : x2 > x3 > x1 , VI : x2 > x1 > x3 ,
(4.7)

where we parameterize the particle energies as xi = 2Ei/Q. The corresponding three-

body phase space is shown in Figure 8. In Figure 9 the kinematical configurations in the

different regions are illustrated. Regions I and VI suffer from overlapping soft and collinear

divergences, while regions II and V contain collinear divergences only. Regions III and IV

– 31 –
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MA =
2π2

3ϵ2
+

1

ϵ

(
−2 +

π2

2
+ 12 ζ3 + 6 ln2 2 + 4 ln 2

)
− 4 +

7π2

6
− 24ζ3 −

π4

6
+

8

3
ln4 2

− 4 ln3 2 + 6 ln2 2− 8π2

3
ln2 2− 4 ln 2 + 9π2 ln 2 + 56ζ3 ln 2 + 64Li4

(
1

2

)
.

This result was presented earlier in the supplemental material to [38], but the finite terms

were given only in numerical form.

Higher-order jet functions

The last unknown ingredients in the factorization formula (3.1) involve the one-loop cor-

rections to the 2-particle jet function as well as the 3-particle jet functions with parton

content qgg and qq̄′q′ (summed over flavors q′). Their combined contribution to the cross

section can schematically be written as

2σ0
(α0

4π

)2 〈
J

(2)
2 ⊗ 1+J

(2)
3 ⊗ 1

〉
. (3.32)

Some sample Feynman diagrams for these contributions are shown in Figure 6. We have

not computed these contributions individually but have inferred their divergent parts from

the finiteness of the cross section. The explicit result is given in Appendix A.

3.2 NNLO cross section

We now have all the ingredients at hand to obtain the full NNLO result for the cone-jet

cross section. The bare ingredients need to be combined according to the NNLO expansion

(3.1) of the factorization formula (2.34). After coupling renormalization all divergences

cancel and we get a finite result for the Laplace-transformed cross section σ̃(τ, δ). This

provides a highly nontrivial check of the factorization formula (2.34), since the individual

two-loop ingredients all depend on different scales. After expanding in ϵ, the divergences

then involve logarithms of the different scales, which must cancel in the cross section. We

stress that one would not obtain a finite result starting from the “standard” factorization

formula (1.2) involving only two soft Wilson lines. Beyond one-loop order the nontrivial

Wilson-line structure in (2.34) becomes an essential feature.

Up to the desired order, the Laplace-transformed cross section is a quadratic polyno-

mial in ln τ . For such a function, the Laplace transformation (2.30) can be inverted by

means of the simple substitutions

ln τ → ln β , ln2 τ → ln2 β − π2

6
. (3.33)

We choose µ = Q for the renormalization scale of the strong coupling and write

σ(β, δ)

σ0
= 1 +

αs

2π
A(β, δ) +

(αs

2π

)2
B(β, δ) + . . . . (3.34)

We follow the standard convention and define A(β, δ) and B(β, δ) as the coefficients in an

expansion in αs/(2π), while we expand in αs/(4π) in the rest of the paper. The explicit

result for the one- and two-loop coefficients reads

A(β, δ) = CF

[
− 8 ln δ ln β − 6 ln δ − 1 + 6 ln 2

]
,

– 26 –

A(β, δ) = CF

[
− 8 ln δ lnβ − 1 + 6 ln 2− 6 ln δ − 6δ2 +

(
9

2
− 6 ln 2

)
δ4 + 4Li2(δ

2)− 4 Li2(−δ2)
]
. (20)

B(β, δ) = C2
FBF + CFCABA + CFTFnfBf , (21)

with

BF =32 ln2 δ ln2 β +
8

3

[

4 ln3 δ + 12 ln 2 ln2 δ + 9 ln2 δ − 6 ln2
(
1 + δ2

)
ln δ − π2 ln

(
1 + δ2

)

+ 12 ln2 2 ln δ − 18 ln 2 ln δ −
5

2
π2 ln δ + 24 ln δ − 9 Li2

(
−δ2

)
+ 24 ln δ Li2

(
−δ2

)

− 12 ln
(
1 + δ2

)
Li2

(
−δ2

)
+ 12 ln2 Li2

(
−δ2

)
+ 6Li3

(
δ2

1 + δ2

)
− 6 Li3

(
1

1 + δ2

)

−
3π2

4
+ π2 ln 2−

3

16
M

[1]
F (δ)

]

lnβ + cF2 (δ) ,

BA =
4

3

[

11 ln δ −
π2

2
+ 3Li2(δ

4)

]

ln2 β +
4

3

[

11 ln2 δ −
67 ln δ

3
+

4δ4 ln δ

(1− δ4)2
+

1

1− δ4

+ 36 ln δ ln2
(
1− δ2

)
− 12 ln δ ln2

(
1 + δ2

)
+ 22 ln δ ln

(
1− δ2

)
− 5π2 ln

(
1− δ2
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+ 22 ln δ ln
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1 + δ2

)
− π2 ln

(
1 + δ2

)
− 4 ln3
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1 + δ2
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+ 33Li2

(
−δ2
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+ 22Li2

(
δ2
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+ 48 ln δ Li2
(
−δ2
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− 12 ln

(
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Li2

(
−δ2
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− 36 ln

(
1 + δ2
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Li2

(
−δ2

)

+ 12 ln 2 Li2
(
−δ2

)
+ 24 ln δ Li2

(
δ2
)
+ 24 ln

(
1− δ2

)
Li2

(
δ2
)
+ 12 ln 2 Li2

(
δ2
)

+ 12 ln
(
1− δ4

)
Li2

(
1− δ2

)
− 6 Li3

(
1− δ4

)
+ 24Li3

(
1− δ2

)
− 36 Li3

(
−δ2

)

− 36 Li3
(
δ2
)
+ 24Li3

(
δ2

1 + δ2

)
− 12 ζ3 −

11π2

12
−

1

2
− π2 ln 2−

3

8
M

[1]
A (δ)

]

lnβ

+ cA2 (δ) ,

Bf =−
16

3
ln δ ln2 β −

8

3

[
1

1− δ4
+

4δ4 ln δ

(1− δ4)2
+ 4 ln(1− δ4) ln δ + 2 ln2 δ −

10

3
ln δ

+ 6Li2(−δ2) + 4Li2(δ
2)−

π2

6
−

1

2

]

lnβ + cf2 (δ) . (22)

A(β, δ) = CF

[
− 8 ln δ lnβ − 1 + 6 ln 2− 6 ln δ − 6δ2 +

(
9

2
− 6 ln 2

)
δ4 + 4Li2(δ

2)− 4 Li2(−δ2)
]
. (20)

B(β, δ) = C2
FBF + CFCABA + CFTFnfBf , (21)

with

BF =32 ln2 δ ln2 β +
8

3

[

4 ln3 δ + 12 ln 2 ln2 δ + 9 ln2 δ − 6 ln2
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1 + δ2

)
ln δ − π2 ln
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2
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(
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(
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3
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2
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4

3
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3
+
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+

1
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n⃗

α
δ = tan(α/2)

2Eout < βQ

Figure 1. Definition of the parameters δ and β of the dijet cross section. We use the thrust axis
n⃗ as the jet axis.

Weinberg [42]. Using the thrust vector as the jet axis leads to a simpler form of the

phase-space constraints and enables us to use existing two-loop results for the cone-jet soft

function obtained in [32, 33].

2.1 Wide-angle jets

Let us first consider wide-angle jets with δ ∼ 1. In this case the effective theory contains

only two relevant momentum regions, whose components (n · p, n̄ · p, p⊥) scale as follows:

hard: ph ∼ Q (1, 1, 1) ,

soft: ps ∼ Qβ (1, 1, 1) .
(2.3)

The hard mode describes the energetic particles inside the jet. Since we are dealing with

wide jets, the energetic radiation inside the jet covers a large angular range. It is thus not

collinear to n⃗ but has a homogenous scaling of all components. Given their large energy,

these particles can never go outside the jet, in contrast to the soft partons which can be

emitted inside or outside. Since there are no collinear singularities for large cone size, the

cross section is single-logarithmic, i.e. the leading logarithms have the form αn
s ln

nβ.

The factorization of an amplitude with m hard partons and an arbitrary number of soft

partons is of course well known. Each hard parton gets dressed with a Wilson line along

its direction. For an outgoing particle in the color representation Ti propagating along the

direction ni, the appropriate Wilson line is given by the path-ordered exponential

Si(ni) = P exp

(
igs

∫ ∞

0
ds ni · Aa

s(sni)T
a
i

)
. (2.4)

The Wilson line Si is a matrix in color space, which acts on the color index of particle i.

The operator for the emission from an amplitude with m hard partons then takes the form

S1(n1)S2(n2) . . . Sm(nm) |Mm({p})⟩ , (2.5)

where nµ
i = pµi /Ei, and we use the compact notation {p} ≡ {p1, p2, . . . , pm}. This equation

is analogous to the factorization for amplitudes with coft particles [38], but while the coft

case involves splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})⟩.
In writing (2.5) we use the color-space formalism of [43, 44], in which amplitudes are treated

as n-dimensional vectors in color space. Since they act on different particles, the different

generators trivially commute [T a
i ,T

b
j ] = 0 for i ̸= j. The same is therefore true for the
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Numerical check against Event2

• Works: agreement for small β. 

• Reproduce all logs, not only the leading ones!
34

Figure 12. Comparison of our analytic results (solid lines) for the coefficients of the three color
structures in the two-loop coefficient dB(β, δ)/d ln β with numerical results (points with invisibly
small error bars) obtained using the Event2 event generator [44]. In the lower panels we show the
difference ∆B between Event2 and our result, which should be equal for small values of β. The
cone size is chosen as α = π/4, corresponding to δ ≈ 0.414.

5.1 Renormalization at one-loop order

Let us write the expansion of the Z-factor defined in (2.35) in the form

Z
H
ij ({n}, Q, δ, ϵ, µ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+∞∑

n=j−i

(αs

4π

)n
z
(n)
i,j ({n}, Q, δ, ϵ, µ) ; if i ! j ,

0 ; if i > j ,

(5.1)

with z(0)i,j = 1. The entries zi,j are matrices in the color space of the partons in the

amplitude and its conjugate. We denote the color generators T a
i acting on i-th particle

in the amplitude on the left-hand-side of Hm in (2.14) as T a
i,L, and those acting on the

conjugate amplitude on the right-hand side as T a
i,R. Because of the structure of (2.15), the

roles of T a
i,L and T a

i,R are reversed for the case of the soft function: the generators T a
i,L act

on the right-hand side of Sm.

Let us now verify that ZH , which is introduced to absorb the divergences of the hard

function, can indeed be used to renormalize the one-loop soft function. If this is true, we

must find that

∑

l≥m

Z
H
ml({n}, Q, δ, ϵ, µ) ⊗̂S l({n}, Qβ, δ, ϵ) = Sm({n}, Qβ, δ, µ) = finite . (5.2)
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Light-jet mass & hemisphere soft functionFigure 1. Pictorial representation of the factorization theorems for the differential cross sections
with respect to the hemisphere jet masses in the limit ML ≪ MR ≪ Q (left), and to the left-jet mass
when ML ≪ MR ∼ Q (right). Blue lines correspond to collinear partons inside the jet functions,
the red lines represent soft emissions. The green lines in the left picture correspond to the hard
part of the hemisphere soft function, while the black lines in the right picture correspond to hard
emission into the right hemisphere.

2 Factorization

The derivation of the factorization formula follows the same steps in both cases and is

similar to the one relevant for wide-angle cone-jet cross sections presented in [20]. We will

first sketch the derivations of the theorems and specify the ingredients. We then relate the

soft functions to the ones which arise in the case of the narrow-cone jet cross sections. Due

to this relation, we can use the results [20] for these and only the hard functions need to

be computed.

2.1 Hemisphere soft function

The hemisphere soft function describes radiation originating from a quark and an anti-

quark along the directions n and n̄ of the two jets. Their soft radiation is described by

Wilson lines. The one generated by the outgoing quark along the n direction is

S(n) = P exp

(
igs

∫ ∞

0
ds n · Aa(sn)ta

)
, (2.1)

and the soft function is defined as

S(ωL,ωR) =
1

Nc

∑

X

Tr⟨0|S(n̄)S†(n)|X⟩⟨X|S(n)S†(n̄)|0⟩δ(ωR − n · PR) δ(ωL − n̄ · PL) ,

(2.2)

where the trace is over color indices. We call the hemisphere which contains the thrust

vector the right hemisphere. The right-moving particles therefore have n̄ · p > n · p and

PR(L) is the total momentum in the right (left) hemisphere. Usually, the function S(ωL,ωR)

is defined in terms of the soft gluon field in SCET. However, the soft SCET Lagrangian

is equivalent to the full QCD one so for our discussion we will consider (2.2) as a matrix

element in QCD. In the asymmetric case ωL ≪ ωR the function S(ωL,ωR) develops large,

non-global logarithms (NGLs) in the ratio κ ≡ ωL/ωR ≪ 1. It is these logarithms which

we seek to resum using effective-field-theory methods.
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1 Non-global logarithms in hemisphere-mass observables

[Add introduction]

For a given final state configuration in an e+e− collision at center-of-mass energy Q

one defines the thrust axis n⃗ as the direction of maximum momentum flow. More precisely,

the unit-vector n⃗ is chosen to maximize the quantity
∑

i |n⃗ · p⃗i|, where the sum runs over

all particles in the final state. The event shape thrust T is defined as this sum normalized

to Q. The thrust axis splits each event into a left and right hemisphere and one can define

additional event shapes by considering the invariant masses ML and MR of the particles

in the hemispheres. Two commonly used event shapes are

heavy jet mass: ρh =
1

Q2
max(M2

L,M
2
R) (1.1)

light jet mass: ρℓ =
1

Q2
min(M2

L,M
2
R) (1.2)
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Light-jet versus heavy-jet mass
• Heavy jet mass ρh is a global observable, resummed 

to N3LL Chien Schwartz ‘10, light-jet mass ρl  is non-
global. 

• Burby and Glover ‘01 computed ρl at NLL in coherent 
branching formalism. Dasgupta and Salam ‘02 
discover additional non-global logarithms  

• Can analyze left-jet mass ρL instead of light jet mass. 
Relation 

• Left-jet mass ML is manifestly non-global.
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Figure 1. Pictorial representation of the factorization theorem for the hemisphere soft function
(left) and the left jet mass (right). Blue lines correspond to collinear partons inside the jet functions,
the red lines represent soft emissions. The green lines in the left picture correspond to the hard
part of the hemisphere soft function, while the black lines correspond to hard emission into the
right hemisphere.

symmetry and its definition, ρℓ is directly related to the left jet mass ρL = M2
L/Q

2,

dσ

dρℓ
= 2

dσ

dρL
−

dσ

dρh

∣∣∣∣
ρL=ρh=ρℓ

. (1.5)

Instead of the light jet mass one can therefore equally well analyze the factorization for

ρL. If one only measures the left jet mass, the mass of the right jet will typically be large

so that scale hierarchy c.) applies. We find that the cross section for the left jet mass

factorizes as

dσ

dM2
L

=
∑

i=q,q̄,g

∫ ∞

0
dωR Ji(M

2
L −QωL)

∞∑

m=1

〈
H

i
m({n}, Q)⊗ Sm({n, n},ωL)

〉
. (1.6)

Since the unobserved radiation in the right hemisphere is typically hard pµ ∼ Q, we no

longer encounter a jet function for this hemisphere, in contrast to the previous case (1.4).

The hard functions also differ from the function HS
m encountered for the hemisphere soft

functions. Rather than Wilson-line matrix elements as in (1.4), the functions Hi
m are now

given by squared QCD amplitudes with a single parton of flavor i in the left hemisphere

propagating along the n̄-direction and m partons in the right hemisphere. The subsequent

branchings of the hard parton on the left are described by the jet function Ji. A graphical

representation of the factorization theorems is shown in Figure 1.

Our paper is organized as follows. In the next section, we will flesh out the factorization

formula for the hemisphere soft function and discuss its derivation which can be obtained

following the same steps as in [10]. We also present a factorization formula relevant for

the light-jet mass event shape. The soft functions in these theorems can be related to the

coft functions computed in that reference so that the only new ingredients which need to

be computed are the hard functions. After computing these in Section 3 up to O(α2
s), we

verify that we reproduce the known NNLO result for the hemisphere soft function in the

limit ωL → 0. Next, we analyze the light-jet mass distribution in Section 4 and compare to

the numerical fixed-order result for this quantity. In Section 5 discuss the necessary steps

to perform resummation for this event shape and conclude.
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• SNG includes leading nonglobal logs. Taken from MC 
parameterisation of Dasgupta Salam ’02. 

• Many SCET papers resum NG observables to NNLL 
up to NGLs. Byers beware…
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Figure 3. NLL result for the left-jet mass distribution (red curve). The red uncertainty band is
obtained from scale variations as explained in the text. The green line is the purely global part of
the distribution. In blue we show experimental results from Aleph [48].

and the final result for the left-jet mass is obtained by convolving the soft function and the

jet function. Let us first combine the global piece with the jet function. Integrating also

over ρL, we obtain

Σq(ρL) =

∫ ρL

0
dρ′L

∫ Qρ′L

0
dω Jq(Q

2ρ′L −Qω, µh)SG(ω, µh)

= exp
[
2S(µs, µh)− 4S(µj , µh) + 2AγJ (µj, µh)

] e−γEη

Γ(η + 1)

(
Q2ρL
µ2
j

)η (
Qµs

µ2
j

)−ηS

,

(5.14)

where η = ηJ + ηS = 2AΓ(µj , µs). The integrated left-jet distribution is then obtained as

R(ρL) =

∫ ρL

0
dρ′L

1

σ

dσ

dρ′L
= SNG(µs, µh)Σq(ρL) , (5.15)

where we need to choose µs ∼ ρLQ and µh ∼ Q. The quantity Σq plays an important

role in the coherent branching formalism [43–45], where it arises as an integral over the jet

function. We verified that (5.14) indeed reproduces the result for this quantity given in

[24] after setting the scales to the default values µ2
j = ρLQ2 and µs = ρLQ. Formula (5.14)

shows that the jet function in the coherent-branching formalism also includes the global

part of the soft radiation. Our final resummed result (5.15) is therefore fully equivalent to

that presented in [4]. Squaring Σq, one obtains the integrated heavy-jet mass at NLL:

R(ρh) = [Σq(ρh)]
2 . (5.16)

We have checked that using (5.14) in the above result reproduces the resummed result

of [23]. Below we will use the result for R(ρh) together with relation (1.5) to obtain the

light-jet mass from the left-jet mass distribution (5.15).
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the distribution. In blue we show experimental results from Aleph [48].
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We have checked that using (5.14) in the above result reproduces the resummed result

of [23]. Below we will use the result for R(ρh) together with relation (1.5) to obtain the

light-jet mass from the left-jet mass distribution (5.15).
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• Heavy-jet mass  

• Non-perturbative corrections are important 
in the peak region and will shift the peak to 
the right.
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Figure 4. The red bands show the NLL result for the light-jet mass (left) and the heavy-jet mass
(right), compared to Aleph data (blue) [48]. The green line is the purely global part of the light-jet
mass distribution and peaks at a value of about 110.

The result for the resummed left-jet mass distribution (5.1) is shown in Figure 3. For

our plots, we choose Q = MZ and αs(MZ) = 0.1181 [46]. The red line shows the result for

the default scale choices, and to estimate its uncertainty, we perform two different scale

variations. In particular, we separately vary the hard scale µh and the jet scale µj by

factors of two around the default choices µ2
h = Q2 and µ2

j = ρLQ2, and show in the plots

the envelope of the two variations. At very low values of ρL the spectrum ends because

µs = ρLQ hits the Landau pole. One could also vary the soft scale, which would shift this

end-point and thus generate a larger uncertainty band. The green line in the plot shows the

global part of the left jet mass, i.e. the result without including SNG(µs, µh). The difference

between the two curves demonstrates that the non-global pieces have an important effect

on the distribution. Note that the distributions shown in the plot are obtained from taking

the derivative of the resummed cumulant R(ρL) in (5.15) with respect to ρL. For fixed

scales, integrating and differentiating would commute, but we choose the values of the

scales in the cumulant and then take the derivative, which is advantageous, as explained

in [47]. One benefit is that the spectrum is automatically normalized since R(ρL) → 1 for

ρL = 1 (the true upper limit of the spectrum is at a lower value and one often modifies the

resummation prescription such that the result vanishes beyond the kinematical limit; for

simplicity we will not do this here).

Our plots also include experimental results from the Aleph collaboration [48]. The

LEP experiments have measured the light-jet and heavy-jet mass distributions and we have

used relation (1.5) to convert their measurements into a result for the left-jet mass, naively

adding the uncertainties on the two distributions in quadrature. It is obviously better to

directly compare to the experimental result for the individual measurements, which is done

in Figure 4. The comparison shows that non-perturbative effects, which will shift the peak

to the right, are important at low values of ρL, where the distribution is large. This is

expected since the soft scale is µs ∼ ρLQ and takes non-perturbative values near the peak,

especially for the light-jet mass. To reproduce the data, one would have to include such
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Figure 3. NLL result for the left-jet mass distribution (red curve). The red uncertainty band is
obtained from scale variations as explained in the text. The green line is the purely global part of
the distribution. In blue we show experimental results from Aleph [48].
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part of the soft radiation. Our final resummed result (5.15) is therefore fully equivalent to

that presented in [4]. Squaring Σq, one obtains the integrated heavy-jet mass at NLL:

R(ρh) = [Σq(ρh)]
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We have checked that using (5.14) in the above result reproduces the resummed result

of [23]. Below we will use the result for R(ρh) together with relation (1.5) to obtain the
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– 24 –



Factorization theorem for left-jet mass

40

Figure 1. Pictorial representation of the factorization theorems for the differential cross sections
with respect to the hemisphere jet masses in the limit ML ≪ MR ≪ Q (left), and to the left-jet mass
when ML ≪ MR ∼ Q (right). Blue lines correspond to collinear partons inside the jet functions,
the red lines represent soft emissions. The green lines in the left picture correspond to the hard
part of the hemisphere soft function, while the black lines in the right picture correspond to hard
emission into the right hemisphere.

2 Factorization

The derivation of the factorization formula follows the same steps in both cases and is

similar to the one relevant for wide-angle cone-jet cross sections presented in [20]. We will

first sketch the derivations of the theorems and specify the ingredients. We then relate the

soft functions to the ones which arise in the case of the narrow-cone jet cross sections. Due

to this relation, we can use the results [20] for these and only the hard functions need to

be computed.

2.1 Hemisphere soft function

The hemisphere soft function describes radiation originating from a quark and an anti-

quark along the directions n and n̄ of the two jets. Their soft radiation is described by

Wilson lines. The one generated by the outgoing quark along the n direction is

S(n) = P exp

(
igs

∫ ∞

0
ds n · Aa(sn)ta

)
, (2.1)

and the soft function is defined as

S(ωL,ωR) =
1

Nc

∑

X

Tr⟨0|S(n̄)S†(n)|X⟩⟨X|S(n)S†(n̄)|0⟩δ(ωR − n · PR) δ(ωL − n̄ · PL) ,

(2.2)

where the trace is over color indices. We call the hemisphere which contains the thrust

vector the right hemisphere. The right-moving particles therefore have n̄ · p > n · p and

PR(L) is the total momentum in the right (left) hemisphere. Usually, the function S(ωL,ωR)

is defined in terms of the soft gluon field in SCET. However, the soft SCET Lagrangian

is equivalent to the full QCD one so for our discussion we will consider (2.2) as a matrix

element in QCD. In the asymmetric case ωL ≪ ωR the function S(ωL,ωR) develops large,

non-global logarithms (NGLs) in the ratio κ ≡ ωL/ωR ≪ 1. It is these logarithms which

we seek to resum using effective-field-theory methods.
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• Hard function Hm has m partons on the right hemisphere and a 
single parton in the left one (which then branches into a jet Ji ).  

• Soft functions Sm are exactly the same as in the narrow jet case 
(later).

energies but at fixed directions {n} = {n1, . . . , nm}, where the ni’s are light-like vectors.

The soft functions Sm+1 consist of m + 2 Wilson lines along the directions {n} of the m

hard partons and the two jets along nµ = (1, n⃗) and n̄µ = (1,−n⃗). Both of these are

matrices in color space [32, 33], and ⟨. . . ⟩ indicates a sum over color indices. The symbol

⊗ indicates that one has to integrate over the m directions of the emissions into the right

hemisphere. The form of the factorization theorem (1.4) is basically the same as the one

for wide-angle cone-jet cross sections derived in [20]. To see the connection, one should

view the right hemisphere as the inside of a jet which contains hard particles with momenta

pµ ∼ ωR and the left hemisphere as the outside region where a veto on radiation is imposed

which constrains the momenta to pµ ∼ ωL.

Before analyzing the factorization formula (1.4) in more detail and providing operator

definitions for its ingredients, we now turn to the light-jet mass ρℓ. Due to left-right sym-

metry and its definition, ρℓ is directly related to the left-jet mass ρL = M2
L/Q

2 according

to
dσ

dρℓ
= 2

dσ

dρL
− dσ

dρh

∣∣∣∣
ρL=ρh=ρℓ

. (1.5)

Instead of the light-jet mass one can therefore equally well analyze the factorization for

ρL. If one only measures the left-jet mass, the mass of the right jet will typically be large,

so that scale hierarchy c.) applies. We find that the cross section for the left-jet mass

factorizes as

dσ

dM2
L

=
∑

i=q,q̄,g

∫ ∞

0
dωL Ji(M

2
L −QωL)

∞∑

m=1

〈
H

i
m({n}, Q)⊗ Sm({n},ωL)

〉
. (1.6)

Since the unobserved radiation in the right hemisphere is typically hard, such that pµ ∼ Q,

we no longer encounter a jet function for this hemisphere, in contrast to the previous case

(1.3). The hard functions also differ from the function HS
m encountered for the hemisphere

soft functions. Rather than Wilson-line matrix elements as in (1.4), the functions Hi
m in

this case are given by squared QCD amplitudes with a single parton of flavor i in the left

hemisphere propagating along the n̄-direction and m partons in the right hemisphere. The

subsequent branchings of the hard parton on the left are described by the jet functions Ji.

A graphical representation of the factorization theorems is shown in Figure 1.

Our paper is organized as follows. In the next section, we will flesh out the factorization

formulas for the hemisphere soft function and for the light-jet mass event shape and discuss

their derivation, which can be obtained following similar steps as in [20]. The soft functions

in these theorems can be related to the coft functions computed in that reference so that the

only new ingredients to our factorization formulas are the hard functions. After computing

these in Section 3 up to O(α2
s), we verify that we reproduce the known NNLO result for

the hemisphere soft function in the limit ωL → 0. Next, we analyze the light-jet mass

distribution in Section 4 and compare to the numerical fixed-order result for this quantity.

In Section 5 we use the known result for the leading non-global logarithms in the hemisphere

soft function to obtain numerical results for the light-jet mass at NLL accuracy. In Section

6 we discuss the necessary steps to perform higher-order resummation for this event shape

and conclude.
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Hemisphere soft function
• Many previous studies of NGLs were 

performed for hemisphere soft function 

• Leading logs are related to the ones 
arising in light-jet mass event shape 

• Factorization formula for ωL ≪ ωR
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In the limit where the jet masses become small, perturbative corrections to these observ-

ables are logarithmically enhanced. For the heavy jet mass these logarithms have been

resummed up to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy [1], while

only leading-log predictions are available for the light-jet mass [2].1 The reason for the

poor accuracy for ρℓ is that it is not known how the observable factorizes in the limit of

small ρℓ, while the factorization is well known for the heavy-jet mass.

Due to left-right symmetry, the three possible scale hierarchies for the hemisphere

masses are a.) ML ∼ MR ≪ Q , b.) ML ≪ MR ≪ Q and c.) ML ≪ MR ∼ Q. The

relevant factorization theorem for case a.) has the form

dσ

dM2
LdM

2
R

= σ0H(Q2)

∫ ∞

0
dωL

∫ ∞

0
dωRJq(M

2
L −QωL)Jq(M

2
R −QωR)S(ωL,ωR) (1.3)

The hard function collects the virtual corrections to γ∗ → qq̄ which are known to three

loops [3, 4]. The jet functions are the usual inclusive jet functions of SCET which are known

to two loops [5, 6]. Also the hemisphere soft function S(ωL,ωR, µ) is known at NNLO [7–9].

This function measures the contribution of the soft radiation to the hemisphere mass in

each hemishere. Since the relevant anomalous dimensions are known for all ingredients to

(1.3), one can solve their RG evolution equations to obtain N3LL resummation for hierarchy

a.) which is the one relevant for the heavy jet mass ρh.

However, the above theorem does not achieve the resummation for case b.) since for

ωL ≪ ωR the soft function S(ωL,ωR) itself contains large logarithms of κ = ωL/ωR which

are examples of non-global logarithms. To be able to also resum these logarithms one must

factorize the physics at the two different soft scales ωL and ωR. In the context of the

function S(ωL,ωR), we will refer to ωR as the hard scale and ωL the soft one. The main

result we obtain in the present paper is that the hemisphere soft function factorizes in the

limit κ → 0 as

S(ωL,ωR) =
∞∑

m=0

〈
H

S
m({n},ωR)⊗ Sm+1({n, n},ωL)

〉
. (1.4)

The hard functions HS
m are the squared amplitudes for m emissions into the right hemi-

sphere, integrated over their energies but at fixed directions {n} = {n1, . . . , nm}, where the
ni’s are light-like vectors. The soft functions Sm+1 consist of m+2 Wilson lines along the

directions {n} of the m hard partons and the two jets along nµ = (1, n⃗) and n̄µ = (1,−n⃗).

The symbol ⊗ indicates that one has to integrate over the m directions of the emissions

into the right hemisphere. The form of the factorization theorem (1.4) is basically the same

as the one for wide-angle cone-jet cross sections derived in [10]. To see the connection, one

should view the right hemisphere as the inside of a jet which contains hard particles with

momenta pµ ∼ ωR and the left hemisphere as the outside region where a veto on radiation

is imposed which constrains the momenta to pµ ∼ ωL.

Before we will analyze the factorization formula (1.4) in more detail and provide op-

erator definitions for its ingredients, we now turn the light jet mass ρℓ . Due to left-right

1We count the logarithms in the exponent; the next-to-leading logarithms in the cross section are known

[2].
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2 Factorization

The derivation of the factorzation formula follows the same steps in both cases and is

similar to the one relevant for wide-angle cone-jet cross sections presented in [10]. We will

first sketch the derivations of the factorization theorems, and specify the ingredients. We

then relate the soft functions to the ones which arise in the case of the narrow-cone cross

sections. Due to this relation, we can simply use the results [10] for these and only the

hard functions need to be computed.

2.1 Hemisphere soft function

The hemisphere soft function originates from a quark and an anti-quark Wilson line along

the directions n and n̄ of the two jets. The Wilson line generated by an outgoing quark

along the n direction is

S(n) = P exp

(
igs

∫ ∞

0
ds n ·Aa(sn)ta

)
, (2.1)

and the soft function is therefore defined as

S(ωL,ωR) =
1

Nc

∑

X

Tr⟨0|S(n̄)S†(n)|X⟩⟨X|S(n)S†(n̄)|0⟩δ(ωR − n · PR) δ(ωL − n̄ · PL) ,

(2.2)

We call the hemisphere which contains the thrust vector the right hemisphere. The right-

moving particles therefore have n̄ · p > n · p and PR(L) is the total momentum in the right

(left) hemisphere. Usually, the function S(ωL,ωR) is defined in terms of the soft gluon field

in SCET. However the soft SCET Lagrangian is equivalent to the full QCD field and for

our discussion we will consider (2.2) as a matrix element in QCD. In the asymmetric case

ωL ≪ ωR the function S(ωL,ωR) develops large, “non-global logarithms” (NGLs) in the

ratio κ ≡ ωL/ωR ≪ 1. It is these logarithms which we seek to resum using effective-field

theory methods.

Before constructing the appropriate effective theory, it is useful to study the matrix ele-

ment (2.2) perturbatively. Clearly, one method is to calculate the hemisphere soft function

at a given order in perturbation theory, and then take the limit κ → 0 in the final result.

This was the approach taken in the next-to-next-to-leading order (NNLO) calculations of

[7, 9], and the obvious benefit of such a computation is it provides the hemisphere soft func-

tion for any value of κ. On the other hand, if one is interested only in NGLs appearing in

the limit κ → 0, it is much simpler to obtain results by expanding the phase-space integrals

appearing in the hemisphere soft function using the method of regions [11]. Indeed, in a

first step, we have used this method to reproduce the NNLO fixed-order calculations in the

non-global limit. The factorization results discussed below can be viewed as a translation

of this diagrammatic approach into the language of effective field theory.

We find that two momentum regions are needed for the leading-power diagrammatic

expansion in the limit κ → 0. Defining the light-cone components of an arbitrary vector p
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• Structure of theorems is similar in all cases 
• Characteristic feature: Wilson lines along 

directions of all energetic partons! 
• Have computed both observables to NNLO 
• Checks 

• Numerical for light-jet mass, using Event2  
• Analytical check for S(ωL,ωR) using Kelley, 

Schwartz, Schabinger, Zhu ’11; Hornig, 
Lee, Stewart, Walsh, Zuberi ’11
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Narrow-cone jets



For a narrow jet δ → 0 in direction n one would 
expect that one could combine 

since n1 ≈ n2 ≈ n. 

Doing so, one ends up with a single Wilson line per 
jet and a simple form of the soft radiation. 

• Works for global observables such as thrust, 
broadening, …

44

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(12)

〈
J2(Qδ)⊗ Ũ2(Qδτ)

〉
= (13)

Γ
J =

αs

4π

⎛

⎜⎜⎜⎜⎜⎜⎝

V1 R1 0 0 . . .

0 V2 R2 0 . . .

0 0 V3 R3 . . .

0 0 0 V4 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, (14)

ΓH + ΓS + Γ
J
nm = Γ

U
nm (15)

Ũ3(Qδτ) = 1+O(αs) (16)

⟨O|C⟩ = 1+O(αs) (17)

∂

∂L̂
Gab(L̂) =

∫
dΩ(nj)

4π
W j

ab

[
Θin(nj)Gaj(L̂)Gjb(L̂)−Gab(L̂)

]
(18)

S1(n1)S2(n2) ≈ P exp

(
igs

∫
∞

0
ds n · Aa

s(sn) (T
a
1 + T

a
2 )

)
. (19)

Soft emissions from a narrow jet



Consider the emission of single soft a gluon from energetic 
particles with momenta pi inside a narrow jet: 

  

This approximation breaks down when the soft emission 
has a small angle, i.e. when                   !  

Small region of phase space, but it turns out that it gives a 
leading contribution to jet rates!

Soft emissions from a narrow jet

∑

i

Qi

pi · ε

pi · k
= Qtot

n · ε

n · k
+ . . . (1)∑

i

Qi
pi · ε

pi · k
= Qtot

n · ε

n · k
+ . . . (1)

p
µ
i ≈ Ei n

µ (2)Approximation:

kµ ⇡ ! nµ



Momentum modes for jet processes

Full jet cross section is recovered after adding the contributions 
from all regions (“method of regions”) 

• Additional coft mode has very low characteristic scale βδQ! 
Jets are less perturbative than they seem! 

• Effective field theory has additional “coft” degree of freedom.

Region Energy Angle Inv. Mass

Hard Q 1 Q

Collinear Q δ Qδ

Soft βQ 1 βQ

Coft βQ δ βδQ

(

st
an

da
rd

 
SC

ET

new

TB, Neubert, Rothen, Shao,1508.06645; Chien, Hornig and Lee 1509.04287 



Coft functions with 
m Wilson lines

Factorization for two-jet cross section

Soft function

Hard function

3

k

p1

+

FIG. 1. Emission of a coft gluon from a collinear field χc =
W †

c ξc. The double line indicates the Wilson line Wc.

consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
(right). Collinear particles are shown in blue, soft emissions
in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.

formation with respect to β, i.e.

σ̃(τ) =

∫ ∞

0
dβ e−β/(τeγE ) dσ

dβ
. (8)

This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(9)
for the jet cross section, where the angle brackets de-
note the color trace ⟨M⟩ = 1

Nc
tr(M). The jet functions

Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫

Xt

∑
⟨0|U†

0 (n̄)U
†
1 (n1) . . .U

†
m(nm)|Xt⟩

× ⟨Xt|U0(n̄) . . .Um(nm)|0⟩ δ(Qβ − n̄ · pXout

t
) , (10)

and the jet function containing m partons is defined as

n/

2
Jm(Qδ) =

∑

spins

∫
dΠm|Mm(p0; {p})⟩⟨Mm(p0; {p})|

×2 (2π)d−1δ(Q−n̄·pXc
) δd−2(p⊥Xc

)
∏

i θ(δ
2n̄·pic−n·pic) ,

(11)

Jet functions with m partons 
at fixed direction

integration over angles
color traceLaplace space 

τ ↔ β

TB, Neubert, Rothen, Shao ‘16

Checks against wide-angle result and fixed-order event 
generator.



All-order resummation



• Renormalization of hard Wilson coefficients 

• Same Z-factor must render Sm  finite! 
• Associated anomalous dimension ΓH

49

Figure 3. omparison of our analytic results (solid lines) for the coe�cients of the three color
structures in the two-loop coe�cient dB/d ln ⇢h for the heavy-jet mass distribtion with numerical
results (points with invisibly small error bars) obtained using the Event2 event generator [13].

Putting everything together, inverting the Laplace transformation, and using relation

(1.5) we then obtain the following result for the logarithms in the light-jet cross section

d�

d⇢`
= (4.9)

This can be compared to numerical results obtained from running fixed-order event

generators such as Event2 [13] or eerad3 [? ] at low values of the jet mass.

[Write what we conclude from this comparison...]

5 Conclusions

• Non-global observables all have similar structure, key feature are multi-Wilson-line

operators tracking hard partons.

• Briefly discuss resummation.

• Numerical trouble with event generators?

�(�) =
1X

m=2

⌦Hm({n}, Q, µ)⌦ Sm({n}, Q�, µ)
↵
, (5.1)
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High-E physics 
Wilson coefficients

Low-E physics 
EFT Operator

of logarithmically-enhanced contributions to all orders in perturbation theory. This re-

summation is achieved by evolving the Wilson coefficients of these operators from the high

scale µ ∼ Q down to the scale where the low-energy physics takes place. Let us first

discuss the wide-angle cross section for which the factorization theorem has been given in

(2.15). In our effective theory, the hard functions Hm are the Wilson coefficients of the

Wilson-line matrix elements Sm and we regularize both quantities in d = 4−2ϵ dimensions.

The effective field theory matrix elements contain UV divergences since the short-distance

structure of the full theory is not resolved. The corresponding 1/ϵ poles can be removed

by renormalizing the hard Wilson coefficients according to

Hm({n}, Q, δ, ϵ) =
m∑

l=2

Hl({n}, Q, δ, µ)ZH
lm({n}, Q, δ, ϵ, µ) . (2.35)

In practice, it is easiest to obtain the bare Wilson coefficients from on-shell matching

calculations, where the poles arise from IR divergences. However, these IR poles are in

one-to-one correspondence to UV divergences since the effective-theory loop-integrals in

such matching computations are scaleless, see e.g. [13] for a detailed explanation of this

point within SCET. We have discussed this correspondence after (2.15). It implies that

we can understand the UV divergences of Hm from the structure of the IR divergences

in the real and virtual diagrams which contribute to these quantities. Given that the

coefficients Hm are fixed-multiplicity QCD amplitudes squared, integrated over energy, it

is clear that the matrix ZH
lm({n}, Q, δ, ϵ, µ) cannot be diagonal: lower-multiplicity virtual

diagrams are needed to cancel the divergences of real-emission diagrams. In order to achieve

this cancellation, the renormalization matrix must have the form

Z
H({n}, Q, δ, ϵ, µ) ∼

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 αs α2
s α3

s . . .

0 1 αs α2
s . . .

0 0 1 αs . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.36)

where we indicate the perturbative order of each element. At each higher order in per-

turbation theory, more off-diagonal contributions fill in. We have anticipated the upper

diagonal structure of the matrix in (2.35) by restricting the sum to l ≤ m. Note that

ZH
lm({n}, Q, δ, ϵ, µ) has logarithmic Q dependence, because the fixed-multiplicity ampli-

tudes involve both soft and collinear divergences. This dependence is a familiar feature of

Sudakov-type processes.

By consistency, the matrix ZH must render the soft functions finite, i.e. we must find

that the functions

S l({n}, Qβ, δ, µ) =
∞∑

m=l

Z
H
lm({n}, Q, δ, ϵ, µ) ⊗̂Sm({n}, Qβ, δ, ϵ) (2.37)

are finite for ϵ → 0. The structure of this result is at first sight quite surprising, since

Wilson-line matrix elements can usually be renormalized multiplicatively. However, in the
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present case additional UV divergences in the real-emission diagrams arise because the

soft radiation is not constrained inside the jet. It is precisely those types of divergences

which lead to NGLs. Furthermore, the upper triangular form of ZH
lm implies that higher-

multiplicity soft functions are needed to absorb the divergences of matrix elements with

fewer Wilson lines. The symbol ⊗̂ indicates that in (2.37) one has to integrate over the

(m − l) additional directions of the unresolved partons on which the bare function Sm

depends.

The scale dependence of the renormalized hard and soft functions is governed by the

RG equations

d

d lnµ
Hm({n}, Q, δ, µ) = −

m∑

l=2

Hl({n}, Q, δ, µ)ΓH
lm({n}, Q, δ, µ) , (2.38)

d

d lnµ
S l({n}, Qβ, δ, µ) =

∞∑

m=l

ΓH
lm({n}, Q, δ, µ) ⊗̂Sm({n}, Qβ, δ, µ) , (2.39)

which ensure that the cross section (2.15) is scale independent. The anomalous-dimension

matrix is obtained from the standard relation

d

d lnµ
Z

H
km({n}, Q, δ, ϵ, µ) =

m∑

l=k

Z
H
kl ({n}, Q, δ, ϵ, µ) ⊗̂ΓH

lm ({n}, Q, δ, µ) , (2.40)

and it has linear dependence on ln(Q/µ) as is familiar from Sudakov-type problems. How-

ever, the wide-angle cross section we consider only contain only a single large logarithm at

each order. The Sudakov double logarithms must cancel in the sum over multiplicities in

(2.15). A related observation is that the RG equation (2.39) for the soft functions is only

consistent if the Q-dependence of the anomalous dimension drops out after the integrals

over the unresolved partons have been performed, since the expression on the left-hand

side only involves the soft scale Qβ. This implies a set of highly nontrivial consistency

relations among the entries of the anomalous-dimension matrix. At one-loop order this

will be studied in Section 5.

Solving the RG equations (2.38) and (2.39) one can resum all large logarithms in

the wide-angle jet cross section (2.15). At the soft scale µs ≈ Qβ the soft functions do

not involve large logarithms, and hence they can be calculated in a perturbative series in

powers of αs(µs). Likewise, at the hard scale µh ≈ Q the hard functions do not involve

large logarithms, and hence they can be calculated in a perturbative series in powers of

αs(µh). The large logarithms of the scale ratio µh/µs are resummed by evolving the soft

functions up to the hard scale (or vice versa),

Sl({n}, Qβ, δ, µh) =
∑

m≥l

U
S
lm({n}, δ, µs, µh) ⊗̂Sm({n}, Qβ, δ, µs) , (2.41)

with an evolution matrix of the form

U
S({n}, δ, µs, µh) = P exp

[ ∫ µh

µs

dµ

µ
ΓH({n}, δ, µ)

]
. (2.42)
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Resummation by RG evolution
Wilson coefficients fulfill renormalization 
group (RG) equations 

  
1. Compute Hm at a characteristic high 

scale µh ~ Q  

2. Evolve Hm to the scale of low energy 
physics µl ~ Qβ  

Avoids large logarithms αsn lnn(β) of scale 
ratios which can spoil convergence of 
perturbation theory.

R
G

 evolution

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z t

0
dt0Hn�1(t

0
)Rn�1(t

0
)e�(t0�t)Vn

(13)

�LL =

1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H
lm({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H
lm(Q,µ) (16)

2

Q

Qβ



RG = Parton Shower
• Ingredients for LL 

• RG 

• Equivalent to parton shower equation
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divergence from the lower end of the energy integration, the total result for the divergent

part becomes

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

= − αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) . (5.8)

Since the color factors are contracted with the trivial tree-level soft function, we do not need

to distinguish the left and right color generators. Note that inside the cone the real and

virtual corrections have cancelled, so that the net result only gets contributions from out-

of-cone radiation and precisely cancels against the divergence of the soft function. We see

that the renormalization indeed works at the one-loop level. We have repeated the same

exercise also for the narrow-jet case, see Appendix C. In this case, we can give explicit

expressions for the angular integrals. Again, we find that the divergences cancel as they

should.

5.2 Renormalization-group evolution at leading logarithmic level

We now discuss the anomalous-dimension matrix ΓH defined in (2.40), which governs the

RG evolution of the hard (2.38) and soft functions (2.39), and verify the agreement between

the perturbative expansion of the BMS equation and our RG-based resummation method.

In order to resum the leading logarithmic terms, the anomalous-dimension matrix is needed

up to O(αs). It can be expressed as

ΓH ({n}, Q, δ, µ) =
αs

4π
Γ(1) ({n}, Q, δ, µ) +O(α2

s) , (5.9)

where

Γ(1) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (5.10)

It follows from the discussion in the previous section that, in the soft approximation, the

corresponding matrix elements are given by

Vm = Γ(1)
m,m = −2

∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k

ij

[
Θnn̄

in (k) +Θnn̄
out(k)

]
,

Rm = Γ
(1)
m,m+1 = 4

∑

(ij)

Ti,L · Tj,RWm+1
ij Θnn̄

in (nm+1) . (5.11)

The anomalous dimensions Vm and Rm depend on the directions {n} = {n1, . . . , nm} and

colors of the hard partons, and the indices i, j in the sum run from 1 to m. The quantities

Rm also depend on the additional direction nm+1 of the real emission. The integration over

this direction is performed after the multiplication with the soft function. At first sight,
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1-loop anomalous dimension

• Contain dipoles → dipole shower 

• Trivial color structure at large Nc : 
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must find that
∑

l≥m

Z
H
ml({n}, Q, δ, ϵ, µ) ⊗̂S l({n}, Qβ, δ, ϵ) = Sm({n}, Qβ, δ, µ) = finite . (5.2)

Due to the structure of the matrix, only the diagonal terms zm,m, and the terms zm,m+1

above the diagonal can contribute to the renormalization of Sm at the one-loop-level.

Explicitly, the finiteness condition at one-loop order reads

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

+ Sm({n}, Qβ, δ, ϵ) = finite , (5.3)

where we have used Sm = 1+ O(αs), so that the Z-factors multiply the identity matrix.

In the second term we integrate over the angle of the additional emission.

One can easily obtain the divergent part of the one-loop soft functions, since it is given

by a sum of exchanges between two legs. A sample Feynman diagram is shown in Figure 10.

We get

Sm({n}, Qβ, δ, ϵ) = 1+
αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) , (5.4)

where we have introduced the dipole radiator

W k
ij =

ni · nj

ni · nk nj · nk
. (5.5)

The function Θnn̄
out(nk) = 1 − Θnn̄

in (nk) ensures that the gluon is outside the two jet cones

around the n and n̄ directions. Note that the angular integral does not suffer from collinear

divergences, since the vectors ni and nj lie inside the jet cones, while the direction nk

associated with the soft emission points outside the cone. (The soft radiation can also be

emitted inside the cone, but as mentioned earlier this contribution is scaleless, since it does

not have an upper limit on the energy of the emission.)

In (5.3), the quantity zm,m represents the divergences of the virtual corrections to

the amplitude with m legs, while zm,m+1 gives the divergences from an additional real

emission. Let us now consider the real and virtual corrections together, since all collinear

divergences drop out and only a single soft divergence remains. The leading divergence can

be obtained by using the soft approximation for the emitted (real or virtual) gluon. In the

soft approximation, the real-emission contribution factorizes as

g2s
∑

(ij)

∫
dd−1k

2Ek(2π)d−1

1

E2
k

W k
ij Ti,L · Tj,RΘ

nn̄
in (k)Hm({n}, Q− Ek) . (5.6)

In this approximation, one can write the virtual correction in the same form as the real-

emission contribution, because the principal-value part of the propagator of the emission

does not contribute. The virtual correction then reads

−g2s
∑

(ij)

∫
dd−1k

2Ek(2π)d−1

1

E2
k

W k
ij
1

2
(Ti,L·Tj,L+Ti,R·Tj,R)Hm({n}, Q−Ek)

[
Θnn̄

in (k) +Θnn̄
out(k)

]
.

(5.7)
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A(β, δ) = CF

[
− 8 ln δ lnβ − 1 + 6 ln 2− 6 ln δ − 6δ2 +

(
9

2
− 6 ln 2

)
δ4 + 4Li2(δ

2)− 4 Li2(−δ2)
]
. (20)

B(β, δ) = C2
FBF + CFCABA + CFTFnfBf , (21)

with

BF =32 ln2 δ ln2 β +
8

3

[

4 ln3 δ + 12 ln 2 ln2 δ + 9 ln2 δ − 6 ln2
(
1 + δ2

)
ln δ − π2 ln

(
1 + δ2

)

+ 12 ln2 2 ln δ − 18 ln 2 ln δ −
5

2
π2 ln δ + 24 ln δ − 9 Li2

(
−δ2

)
+ 24 ln δ Li2

(
−δ2

)

− 12 ln
(
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)
Li2

(
−δ2

)
+ 12 ln2 Li2

(
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+ 6Li3

(
δ2
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− 6 Li3
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1
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−
3π2

4
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3

16
M

[1]
F (δ)
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3
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2
+ 3Li2(δ

4)

]
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4

3
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1
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16
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[
1

1− δ4
+

4δ4 ln δ

(1− δ4)2
+ 4 ln(1− δ4) ln δ + 2 ln2 δ −

10

3
ln δ

+ 6Li2(−δ2) + 4Li2(δ
2)−

π2
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−

1

2
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lnβ + cf2 (δ) . (22)

W j
kl =

nk · nl

nk · nj nl · nj
. (23)

W k
ij =

ni · nj

ni · nk nj · nk
. (24)

Vm = Γ
(1)
m,m = −2

∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k

ij ,

Rm = Γ
(1)
m,m+1 = 4

∑

(ij)

Ti,L · Tj,R Wm+1
ij Θnn̄

in (nm+1) . (25)

Ti · Tj → −
Nc

2
δj,i±1 . (26)



Compari

• Equivalent to the dipole shower used by Dasgupta 
and Salam ’02.
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MC numerical results
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NGL parton shower
• Not a general-purpose parton shower! Produces 

leading NGLs in this type of observables. Nothing 
more, nothing less. 

• Since it derives from RG, we know exactly what 
needs to be added to go to NLL 

1. Hard functions H2(1)  and H3(1)  

2. One-loop soft functions Sm(1) 

3. Two-loop anomalous dimension Γnm(2). Can be 
extracted from Caron-Huot ’15.   

• Need to Monte-Carlo NLL corrections to be efficient.
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Summary and Outlook
• Resummation = factorization + fixed order + evolution. 
• Have obtained factorization formulas for non-global 

observables 
• wide and narrow cone jets, light-jet mass, hemisphere soft 

function  
• computed all logs at NNLO, verified against fixed order 

• Key features 
• Multi-Wilson line structure of soft radiation 
• Resummation of NGLs from RG evolution 

• Are developing MC formalism for higher-log resummation 
• Applications … 
• Interplay with Glauber gluons? Superleading logs?
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Extra slides
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Action of Γ  on Hn
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Figure 14. The action of the operator Vm on an amplitude in the large-Nc limit.

suppressed at large Nc. At large Nc, emissions arise only between nearest-neighbour legs,

since all other attachments would lead to non-planar contributions which are suppressed.

Based on the above simplification, the effect of Rm in the large-Nc limit is shown diagram-

matically in Figure 13. The action of Vm simplifies analogously, as shown in Figure 14.

The large-Nc color factor from squaring the amplitudes is simply a factor of Nc for each

color loop, and the number of additional color loops is equal to the number of powers of

αs, so that the color factor is obtained by switching to the ’t Hooft coupling λ = Nc αs.

We now plug the explicit results (5.11) for the anomalous-dimension coefficients Vm

and Rm into the expressions (5.17). For the coefficients of the expansion in t, we then

obtain

S
(1)
2 = −4Nc

∫

Ω
3OutW

3
12 ,

S
(2)
2 =

(4Nc)
2

2!

∫

Ω

[
− 3In 4Out

(
P 34
12 −W 3

12 W
4
12

)
+ 3Out 4OutW

3
12 W

4
12

]
,

S
(3)
2 =

(4Nc)
3

3!

∫

Ω

[
3In 4Out 5Out

[
P 34
12

(
W 5

13 +W 5
32 +W 5

12

)
− 2W 3

12 W
4
12 W

5
12

]

− 3In 4In 5OutW
3
12

[(
P 45
13 −W 4

13 W
5
13

)
+

(
P 45
32 −W 4

32 W
5
32

)
−

(
P 45
12 −W 4

12 W
5
12

)]

− 3Out 4Out 5OutW
3
12 W

4
12 W

5
12

]
, (5.20)

where
∫
Ω 3Out =

∫ dΩ(n3)
4π Θnn̄

out(n3), and we have used the abbreviation

P kl
ij = W k

ij

(
W l

ik +W l
kj

)
. (5.21)

The above expressions include all leading logarithms, i.e. the global and non-global loga-

rithmic terms appear together.

Let us now relate the above expressions to the leading logarithmic resummation of

NGLs at large Nc, which can be obtained by solving the BMS equation [26]

∂L̂Gkl(L̂) =

∫
dΩ(nj)

4π
W j

kl

[
Θnn̄

in (j)Gkj(L̂)Gjl(L̂)−Gkl(L̂)
]
, (5.22)

with boundary condition Gkl(0) = 1. The function Gkl(L̂) depends on two light-like refer-

ence vectors nk and nl. After solving the equation, the resummed soft function is obtained

as S({n}, Qβ, µ) = G12(L̂) with L̂ = 4Nc t. While the non-linear integral equation (5.22)
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Figure 14. The action of the operator Vm on an amplitude in the large-Nc limit.

suppressed at large Nc. At large Nc, emissions arise only between nearest-neighbour legs,

since all other attachments would lead to non-planar contributions which are suppressed.

Based on the above simplification, the effect of Rm in the large-Nc limit is shown diagram-

matically in Figure 13. The action of Vm simplifies analogously, as shown in Figure 14.

The large-Nc color factor from squaring the amplitudes is simply a factor of Nc for each

color loop, and the number of additional color loops is equal to the number of powers of

αs, so that the color factor is obtained by switching to the ’t Hooft coupling λ = Nc αs.
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and Rm into the expressions (5.17). For the coefficients of the expansion in t, we then

obtain

S
(1)
2 = −4Nc

∫

Ω
3OutW

3
12 ,

S
(2)
2 =

(4Nc)
2

2!

∫

Ω

[
− 3In 4Out

(
P 34
12 −W 3

12 W
4
12

)
+ 3Out 4OutW

3
12 W

4
12

]
,

S
(3)
2 =

(4Nc)
3

3!

∫

Ω

[
3In 4Out 5Out

[
P 34
12

(
W 5

13 +W 5
32 +W 5

12

)
− 2W 3

12 W
4
12 W

5
12

]

− 3In 4In 5OutW
3
12

[(
P 45
13 −W 4

13 W
5
13

)
+

(
P 45
32 −W 4

32 W
5
32

)
−

(
P 45
12 −W 4

12 W
5
12

)]

− 3Out 4Out 5OutW
3
12 W

4
12 W

5
12

]
, (5.20)

where
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The above expressions include all leading logarithms, i.e. the global and non-global loga-

rithmic terms appear together.

Let us now relate the above expressions to the leading logarithmic resummation of

NGLs at large Nc, which can be obtained by solving the BMS equation [26]

∂L̂Gkl(L̂) =

∫
dΩ(nj)
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[
Θnn̄

in (j)Gkj(L̂)Gjl(L̂)−Gkl(L̂)
]
, (5.22)

with boundary condition Gkl(0) = 1. The function Gkl(L̂) depends on two light-like refer-

ence vectors nk and nl. After solving the equation, the resummed soft function is obtained

as S({n}, Qβ, µ) = G12(L̂) with L̂ = 4Nc t. While the non-linear integral equation (5.22)
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Figure 13. The action of the operator Rm on an amplitude in the large-Nc limit, where
(i3, i4, · · · , im) is a permutation of {3, 4, · · · ,m}. The double and single lines represent gluons
and quarks, respectively. The sum on the right-hand side represents all the contributions from the
planar diagrams.

as our expansion parameter, we automatically include running coupling effects. Using the

structure of (5.10) and expanding the exponential in (2.42), we find for the first three

coefficients of the expansion in t

S
(1)
2 =R2 + V2,

S
(2)
2 =R2 (R3 + V3) + V2 (R2 + V2) , (5.17)

S
(3)
2 =R2 [R3(R4 + V4) + V3(R3 + V3)] + V2 [R2(R3 + V3) + V2(R2 + V2)] .

As explained after (5.14), we have to integrate over the directions of the additional emis-

sions but for brevity, suppress the integrations in the above expressions. Including the

integration, the one-loop term reads

S
(1)
2 = V2 +R2 ⊗̂1 = V2 +

∫
dΩ(n3)

4π
R2 . (5.18)

The structure of the result (5.17) is very simple. To obtain the result at the next order,

one takes the existing result and adds an additional real emission plus a virtual correction

to each term. This type of iterative structure is reminiscent of a parton shower, and it

should therefore be possible to solve the evolution equation numerically, using Monte Carlo

methods. Indeed such Monte Carlo methods have been used to perform resummations of

NGLs, see e.g. [24, 59].

One nontrivial complication is that the anomalous dimensions are matrices in color

space and that the color algebra becomes nontrivial for high multiplicities. This difficulty

can be avoided by taking the large-Nc limit, which is also useful to compare (5.17) to the

result obtained using the BMS equation. To take the large-Nc limit, it is simplest to adopt

the trace basis (see for example [60]), i.e. to write the color structure of the m-particle

amplitudes in the form

|Mm({p})⟩ =
∑

σ∈P (m−2)

(tiσ(1)tiσ(2) · · · tiσ(m−2))baAσ({p}) + . . . , (5.19)

with color-ordered amplitudes Aσ({p}). The indices a and b are the color indices of the

q̄q pair. We only include single trace terms, since contributions with multiple traces are
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Split momenta into light-cone components 

Scaling of the momentum components (β ~ δ2) 

Note: every component of coft mode is smaller than the 
corresponding collinear one. Different than SCETI , SCETII, 
SCET1.5, SCETn , SCET+, …

Momentum modes again (for experts) 
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Method of regions expansion
To isolate the different contributions, one expands the 
amplitudes as well as the phase-space constraints in each 
momentum region. 

• Generic soft mode has O(1) angle: after expansion, it is 
always outside the jet. 

• Collinear mode has large energy E ≫ βQ. Can never go 
outside the jet. 

• Coft mode can be inside or outside, but its contribution to 
the momentum inside the jet is negligible. 

Expansion is performed on the integrand level: the full result is 
obtained after combining the contributions from the different 
regions.



Computation of γr / d3 / B3 
Easiest to extract coefficient from a three-loop 
soft function 

Same matrix element as H production near 
threshold Anastasiou et al., Li et al. ’14,  but 
constraint on pX,T instead of EX. 

• pX,T  function needs additional regulator
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Computation of γr / d3 / B3 
• Interesting to consider double differential 

soft function in EX and pX,T. Li, Neill, Zhu ‘16 

• EX regularizes rapidity divergences 

• intriguing relations among threshold and 
qT soft functions  

• Li and Zhu ’16 have computed three-loop 
double differential soft function 
• make general ansatz, fix coefficients using  

Taylor expansion 
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Butenschoen et al. compute NNLL resummed result for thrust 
event shape in               

• Exclusive observable, sensitive to mt 
• Compare to MC predictions at different Q and relate 

Pythia  parameter mtMC to mtpole  

• Universality? Initial state effects at hadron colliders?

Top mass in Pythia?
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FIG. 2. Comparison of Pythia samples with 107 events and mMC

t = 173 GeV (red dots) to the theoretical prediction in the
MSR scheme at N2LL for mMSR

t (1 GeV) = 172.81GeV and ⌦
1

= 0.44GeV. The blue band shows the perturbative uncertainty
from a random scan over 500 profile functions. Vertical error bars on the Pythia points are obtained by a global rescaling of
Pythia statistical uncertainties such that the average �2

min

/dof = 1 and roughly indicate the incompatibility uncertainties on
the cross sections. Horizontal error bars are related to the N2LL incompatibility uncertainty in the MSR mass shown in Tab. I.

mMC

t = 173GeV

�
⌧e

+e�
2

�

mass order central perturb. incompatibility total

mMSR

t,1GeV

NLL 172.80 0.26 0.14 0.29

mMSR

t,1GeV

N2LL 172.82 0.19 0.11 0.22

mpole

t NLL 172.10 0.34 0.16 0.38

mpole

t N2LL 172.43 0.18 0.22 0.28

TABLE I. Results of the calibration for mMC

t = 173GeV in
Pythia, combining results from all Q sets and bin ranges.
Shown are central values, perturbative and incompatibility
uncertainties, and the total uncertainty, all in GeV.

ferences can be associated to the level of incompatibility
of the MC event generator results to the QCD predic-
tions, and unlike the perturbative uncertainties these dif-
ferences need not necessarily decrease when going from
NLL to N2LL. We will use the di↵erences from the 21
fits to assign an additional incompatibility uncertainty

between QCD and the MC generator for the calibration.

To quote final results we use the following procedure:
(1) Take the average of the highest and lowest central
values from the 21 sets as the final central value of our
calibration. (2) Take the average of the scale uncertain-
ties of these sets as our final estimate for the perturba-
tive uncertainty. (3) Take the half of the di↵erence of the
largest and smallest central values from the sets as the
incompatibility uncertainty between QCD and the MC.
(4) Quadratically add the perturbative, and incompati-
bility errors to obtain a final uncertainty.

Using ↵s values within the uncertainty of the world av-
erage ↵s(mZ) = 0.1181(13) gives an additional paramet-
ric uncertainty of ' 20 MeV for mMSR

t (1 GeV) and mpole

t

at N2LL order. This is an order of magnitude smaller
than the other uncertainties and we therefore neglect it.

Table I shows our final results for the MSR mass
mMSR

t (1 GeV) and mpole

t at NLL and N2LL order, uti-

lizing the mMC

t = 173GeV dataset. For mMSR

t (1 GeV)
we observe a reduction of perturbative uncertainties from
260 MeV at NLL to 190 MeV at N2LL. The correspond-
ing incompatibility uncertainties are 140 and 110 MeV.
The corresponding fit results for the first shape function
moment are ⌦PY

1

= 0.42 ± 0.07 ± 0.03 GeV at N2LL and
⌦PY

1

= 0.41 ± 0.07 ± 0.02 GeV at NLL order with the
first uncertainty coming from scale variation and second
from incompatibility. The result agrees nicely with the
expectation that ⌦

1

⇠ ⇤
QCD

. For mpole

t there is a signif-
icant di↵erence to mMC

t , and we observe that the central
value shifts by 330 MeV between NLL and N2LL order.
There is a reduction of perturbative uncertainties like
in the MSR scheme, however the incompatibility uncer-
tainty increases at N2LL order. These results may not
be unexpected, since the pole mass often leads to poor
convergence of perturbative series.

Figure 3, shows the outcome of our fits for the MSR
mass mMSR

t (1 GeV) at N2LL order with six di↵erent in-
put values for mMC

t , and error bars with the total un-
certainties. We see the expected strong correlation be-
tween these masses. This calibration results in Tab. I
and Fig. 3 should be independently determined for each
MC and generator setting (such as di↵erent tunes).

To the extent that the treatment of the top in MC
generators and QCD factorizes for di↵erent kinemati-
cally sensitive observables and from whether one consid-
ers e+e� or pp collisions, our method can be used to cal-
ibrate mMC

t in current experimental reconstruction anal-
yses. pp collisions introduce initial state radiation, color
reconnection, and additional hadronization and multi-
parton interaction e↵ects, not present in e+e�. In the
future our method can be extended to use a pp observ-
able to directly study these e↵ects. Prior to this, we
believe that applying our e+e� calibration to mMC

t from
a typical pp reconstruction analysis will give a more ac-
curate result than assuming mMC

t = mpole

t . When corre-

e+e� ! tt̄

Butenschoen, Dehnadi, Hoang, Mateu, Preisser and Stewart ‘16

3

ues. For a given profile and value of ↵s(mZ) we fit the
parameters mt and ⌦i of the hadron level QCD predic-
tions to this MC dataset. We fit for integrals over bins in
⌧
2

of size ' 0.13 GeV/Q. For each Q value the distribu-
tion is normalized over the fit range, and multiple Qs are
needed simultaneously to break degeneracies. This pro-
cedure is carried out for the MC output and the QCD
predictions. We then construct the �2 using the statis-
tical uncertainties in the MC datasets. We do the fit by
first, for a given value of mt, minimizing �2 with respect
to the ⌦i parameters. The resulting marginalized �2 is
then minimized with respect to mt used in the QCD pre-
dictions. Uncertainties obtained for the QCD parameters
from this �2 simply reflect the MC statistical uncertain-
ties used to construct the �2. When fitting for mpole

t or
mMSR

t (1 GeV) we find that the resulting �2 is no longer
sensitive to ↵s(mZ). Therefore we fix ↵s(mZ) to the
world average, and do not consider it as a fit parameter.

To estimate the perturbative uncertainty in the QCD
predictions we take 500 random points in the profile-
function parameter space and perform a fit for each of
them. The 500 sets of best-fit values provide an ensem-
ble from which we remove the upper and lower 1.5% in
the mass values to eliminate potential numerical outliers.
From the ensemble we determine central values from the
average of the largest and smallest values and perturba-
tive uncertainties from half the covered interval.

To illustrate the calibration procedure we use
Pythia 8.205 [33, 34] with the e+e� default tune 7
(the Monash 2013 tune [35] for which ⇤c = 0.5 GeV)
for top mass parameter values mMC

t = 170, 171, 172,
173, 174 and 175 GeV. We use a fixed top quark width
�t = 1.4 GeV which is independent of mMC

t . (Final
calibration results for a mMC

t -dependent top width dif-
fer by less than 25 MeV). No other changes are made
to the default settings. To minimize statistical uncer-
tainties we generate each distribution with 107 events.
We have carried out fits for the following seven Q sets
(in GeV units): (600, 1000, 1400), (700, 1000, 1400),
(800, 1000, 1400), (600 – 900), (600 – 1400), (700 – 1000)
and (700 – 1400), where the ranges refer to steps of 100.
For each one of these sets we have considered three ranges
of ⌧

2

in the peak region: (60%, 80%), (70%, 80%) and
(80%, 80%), where (x%, y%) means that we include re-
gions of the spectra whose ⌧

2

< ⌧peak

2

having cross-section

values larger than x% of the peak height, and ⌧
2

> ⌧peak

2

with cross sections larger than y% of the peak height,
where ⌧peak

2

is the peak position. This makes a total of
21 fit settings each of which give central values and scale
uncertainties for the top mass and the ⌦i.

Numerical Results of the Calibration: To visu-
alize the stability of our fits we display in Fig. 1 the
distribution of best-fit mass values obtained for 500 ran-
dom profile functions for mMC

t = 173 GeV based on the
Q set (600 � 1400) and the bin range (60%, 80%). Re-
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FIG. 1. Distribution of best-fit mass values from the scan
over parameters describing perturbative uncertainties. Re-
sults are shown for cross sections employing the MSR mass
mMSR

t (1GeV) (top two panels) and the pole mass mpole

t

(bottom two panels), both at N2LL and NLL. The Pythia
datasets use mMC

t = 173GeV as an input (vertical red lines).

sults are shown for mMSR

t (1 GeV) and mpole

t at NLL
and N2LL order, exhibiting good convergence, with the
higher order result having a smaller perturbative scale
uncertainty. The results for mMSR

t (1 GeV) are stable and
about 200MeV below mMC

t confirming the close relation
of mMSR

t (1 GeV) and mMC

t suggested in Ref. [4, 5]. We
observe that mpole

t is about 1.1 GeV (NLL) and 0.7 GeV
(N2LL) lower than mMC

t , demonstrating that corrections
here are bigger, and that the MC mass can not sim-

ply be identified with the pole mass. These fit results
are compatible with converting mMSR

t with R ' µB '
µSQ/mt ' 10 GeV to mpole

t using Eq. (4), where µB is
the renormalization scale of the jet function JB,⌧2 which
governs the dominant mass sensitivity. In Fig. 2 we see
the level of agreement between the MC and theory re-
sults in the MSR scheme at N2LL order for this fit. The
bands show the N2LL perturbative uncertainty from the
profile variations.

The results from the fits to the 21 di↵erent Q sets and
bin ranges mentioned above are quite similar. The dif-



N-jettiness subtraction

Use event shape τN to separate out most singular region of NNLO 
computations 

• Use SCET to compute σ  in singular region 
• Use existing NLO code away from end-point. 

Extension of qT subtraction Catani, Grazzini ’07 to processes with jets in 
the final state.
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4

N jettiness slicing 

The idea is to use the event shape variable N-jettiness (Stewart, 
Tackmann, Waalewijn 09) to separate the phase space into two regions 
(Boughezal, Liu, Petreillo 15’, Gaunt, Stahlhofen, Tackmann Walsh 15) which 
separates the doubly-from singly unresolved regions. 


Small N-jettiness, use 
factorization theorem. 

Doubly unresolved Singly  unresolved
“Large” N-jettiness, is an NLO 
calculation. Can use existing 
tools, like MCFM 

4

N jettiness slicing 

The idea is to use the event shape variable N-jettiness (Stewart, 
Tackmann, Waalewijn 09) to separate the phase space into two regions 
(Boughezal, Liu, Petreillo 15’, Gaunt, Stahlhofen, Tackmann Walsh 15) which 
separates the doubly-from singly unresolved regions. 


Small N-jettiness, use 
factorization theorem. 

Doubly unresolved Singly  unresolved
“Large” N-jettiness, is an NLO 
calculation. Can use existing 
tools, like MCFM 

Two-loop graphs 
Soft and collinear 

emissions: factorization
NLO

qT or τN

Boughezal, Liu, Petreillo 15, Gaunt, Stahlhofen, Tackmann Walsh 15



N-jettiness subtraction
• Advantage: can use existing NLO codes to 

obtain NNLO results 
• Already an impressive list of applications H, 

Z, W, W+j, H+j, Z+j, HZ, HW, γγ, … 
• MCFM 8 includes NNLO for color neutral 

final states Boughezal, Campbell, Ellis, 
Focke, Giele, Liu, Petriello and Williams ‘16 

• Challenge: independence of slicing parameter 
qT or τN. Parameter needs to be small, but 
numerical problems if too small.
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Jet radius logarithms
A lot of work during the past year 

• Inclusive jet cross section Chien, Kang, Ringer 
and Vitev ’16; Idilbi, Kim ’16; Dai, Kim, Leibovich ‘16 

• based on jet fragmentation function 
• Exclusive jet cross sections Chien, Hornig, Lee 

’15, Kolodrubetz, Hornig, Makris and Mehen ’16 
Pietrulewicz, Stewart, Tackmann and Waalewijn ‘16 

• non-global logarithms are not resummed
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