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[Forshaw, Kyrieleis, and Seymour ’06-’09]

Factorisation of amplitudes in the IR

3

H({sij})

S

soft� collinear : ↵n
sL

m
(m  2n)

hard� collinear : ↵n
sL

m
(m  n)

soft wide� angle : ↵n
sL

m
(m  n)

• Consider a IRC observable                               in the 
Born-like limit  
!

• In this limit radiative corrections are described 
exclusively by virtual corrections, and collinear and/or 
soft real emissions (singular limit) — QCD squared 
amplitudes factorise in these regimes w.r.t. the Born, 
up to regular corrections 
!

• Different observables are sensitive to different singular 
modes which determine the logarithmic structure of the 
perturbative expansion (e.g. (non) global, hard-collinear 
logarithms, …) 
!
!

• In the limit of large logarithms and all-order treatment is 
necessary - effects often propagate far from the singular 
limit

V = V ({p̃}, k1, ..., kn)  1

V ! 0

Cases of collinear factorisation breaking 
due to exchange of Glauber modes 

 found at high orders in multi-leg 
squared amplitudes

[Catani, de Florian, and Rodrigo ’12]

[Angeles-Martinez, Forshaw, and Seymour ’15-‘16]
[Forshaw, Seymour, and Siodmok ’12]

colourless system



Two-emitter processes
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H({sij})

S
• The strong angular separation between different modes 

ensures they evolve independently at late times after the 
collision 
!
!

• The structure of the coherent soft radiation at large 
angles (interference between emitters) gets increasingly 
complex with the number of emitting legs



Two-emitter processes
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H({sij})

S
• The strong angular separation between different modes 

ensures they evolve independently at late times after the 
collision 
!
!

• The structure of the coherent soft radiation at large 
angles (interference between emitters) gets increasingly 
complex with the number of emitting legs 
!
!

• For continuously global observables in processes with 
two emitters, colour coherence forces the effect of soft 
modes exchanged with large angles to vanish 
!
• Only collinear (soft/hard) modes effectively remain 
!

• Soft modes can be absent in specific cases



Non-Global observables
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H({sij})

S
• The strong angular separation between different modes 

ensures they evolve independently at late times after the 
collision 
!
!

• The structure of the coherent soft radiation at large 
angles (interference between emitters) gets increasingly 
complex with the number of emitting legs 
!
!

• For non-global observables one is always sensitive to 
the full evolution of the soft radiation outside of the 
resolved phase-space region 
!
• In general both soft and collinear modes are present 
!

• Collinear modes are absent for some observables

[Dasgupta, Salam ’01; Banfi, Marchesini, Smye ’02]
[Caron-Huot ’15-‘16; Larkoski, Moult, Neill ’15; Becher, Neubert, Rothen, Shao ’15-‘16]



IRC safety

• Parametrisation for single emission and collinear splitting 
!
!
!

• The standard requirement of IRC safety implies that
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V ({p̃},i(⇣i)) = ⇣i ; i(⇣) ! {ia,ib}(⇣, µ) , µ2 = (ia + ib)
2/2

ti

lim
⇣m+1!0

V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m),m+1(v̄⇣m+1))

= V ({p̃},1(v̄⇣1), . . . ,m(v̄⇣m))

lim
µ!0

V ({p̃},1(v̄⇣1), . . . , {ia,ib}(v̄⇣i, µ), . . .m(v̄⇣m))

=
1

v̄
V ({p̃},1(v̄⇣1), . . . ,i(v̄⇣i), . . .m(v̄⇣m))



• Parametrisation for single emission and collinear splitting 
!
!
!

• Impose the following conditions, known as recursive IRC (rIRC) 
safety
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1

v̄
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1

v̄
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1

v̄
V ({p̃},1(v̄⇣1), . . . ,i(v̄⇣i), . . .m(v̄⇣m)) (2.b)

!
• The above limit must be well defined and non-zero (except possibly in 

a phase space region of zero measure) 
!

!
!
!

V ({p̃},i(⇣i)) = ⇣i ; i(⇣) ! {ia,ib}(⇣, µ) , µ2 = (ia + ib)
2/2

ti

rIRC safety
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• Parametrisation for single emission and collinear splitting 
!
!
!

• Impose the following conditions, known as recursive IRC (rIRC) 
safety
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• These conditions imply the existence of an observable-independent 
cutoff below which emissions are unresolved. They lead to: 
!
• the exponentiation of the IRC divergences and allow one to subtract 

them at all orders at once 
• the existence of a logarithmic ordering in the real-emission squared 

amplitudes that allows one to devise a resummation machinery

V ({p̃},i(⇣i)) = ⇣i ; i(⇣) ! {ia,ib}(⇣, µ) , µ2 = (ia + ib)
2/2

ti

rIRC safety



Integral over v1 evaluated 
analytically 

(neglect any subleading effects) 

• A generic cumulative cross section can be parametrised as 
!
!
!
!
!

• Assume that the integral is dominated by v1~v (true for most observables) 
!
!
!
!
!
!

• rIRC safety guarantees: 
• the cancellation of IRC singularities at all orders in the probability  
• all leading logarithms                          exponentiate   

• the multiple-emission function               is at most NLL 
• a logarithmic hierarchy in the real emission probability (e.g. see 

backup) —> At NLL only independent emissions contribute to  

Probability of emitting the 
hardest parton v1 = v(k1)
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Higher-order corrections

Resummation of global observables

⌃(v) = �0

Z
dv1
v1

D(v1)P (v|v1), D(v1) = e�R(v1)R0(v1)

Probability of secondary radiation 
given the first emission, and the 

observable’s value v

P (v|v1)
(↵n

s lnn+1(1/v)) ! e�R(v)

FNLL(v)

FNLL(v)

⌃(v) ' �0e
�R(v)

Z
dv1
v1

R0(v)
⇣v1
v

⌘R0(v)
P (v|v1) = �0e

�R(v) (FNLL(v) + . . . ) , P (v|v1) = f

✓
ln

v

v1

◆



• NLL general answer: ensemble of soft-collinear gluons independently 
emitted and widely separated in rapidity  
!
!
!
!
!
!
!
!
!
!

• Structure of NNLL corrections more involved: probe less singular 
kinematic configurations in the amplitudes and phase space
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...

FNLL(v) = h⇥(1� lim
v!0

Vsc({p̃}, {ki})
v

)i

[Banfi, Salam, Zanderighi ’01-‘04]

Resummation of global observables

⌃(v) = �
0

e�R(v)
h
F

NLL

+
↵s

⇡
(�F

rap

+ �F
wa

+ �F
hc

+ �F
rec

+ �F
clust

+ �F
correl

)
i

[Banfi, McAslan, PM, Zanderighi ’14-‘16]



• (at most) one collinear emission can carry a significant fraction of 
the energy of the hard emitter (which recoils against it) 

• correction to the amplitude: hard-collinear corrections 
• correction to the observable: recoil corrections !!!!!!!!!

• (at most) one soft-collinear emission is allowed to get arbitrarily 
close in rapidity to any other of the ensemble (relax strong 
angular ordering) 
• sensitive to the exact rapidity bounds: rapidity corrections 
• different clustering history if a jet algorithm is used: 

clustering corrections !!!!!!!

• (at most) one soft-collinear gluon is allowed to branch in the real 
radiation, and the branching is resolved (correction to the CMW 
scheme for the running coupling) !
• correlated corrections !!!!!!!!!!

• (at most) one soft emission is allowed to propagate at small 
rapidities !
• soft-wide-angle corrections !!

• Non-trivial abelian correction (~Cf^n, Ca^n) for processes with two 
emitting legs at the Born level (it simply amounts to accounting for 
the correct rapidity dependence for one emission) - non-abelian 
contribution entirely absorbed into running coupling !

• Non-abelian structure more involved in the multi leg case due to 
quantum interference between hard emitters (general formulation 
at NLL, still unknown at NNLL) !!

14

General structure of NNLL
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General structure of NNLL

• use strategy of regions on amplitudes and observable to single out each 
contribution avoiding double-counting 

• all corrections finite in four dimensions -> subtraction of IRC singularities local 
• Fast numerical implementation and natural automation for any rIRC safe 
observable  

• Extension to processes with more than 2 legs requires a more general treatment 
of the soft-wide-angle region



• Some observables vanish even if the real radiation is not completely 
unresolved (event not Born-like) due to kinematic cancellations; i.e. pT, 
phi* in DY, azimuthal decorrelation in pp->2 jets, oblateness in e+e-, etc. 
!

• In this limit one of the assumptions made earlier is violated 
!
• Instead one has:
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Away from the Sudakov limit

v1/v � 1, P (v|v1) 6= 0 for v1 > v

vs = v1

e.g. Thrust Major vs. Oblateness: [Banfi, Salam, Zanderighi 0112156]

This diverges as v1->0 ?! 

⌃(v) ' �0e
�R(v)

Z
dv1
v1

R0(v)
⇣v1
v

⌘R0(v)
P (v|v1)



• Toy model: consider ensemble of independent emissions; PDFs 
independent of energy scale 
!
!
!
!
!
!

• By expanding               , and neglecting effects beyond NLL one gets 
!
!
!
!
!
!

• The cross section features a geometric singularity at finite values of the 
transverse momentum if subleading effects are neglected 

• However, at each order in the coupling the above treatment reproduces 
the correct logarithms —> non-logarithmic effect missing ?
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A case study: Higgs transverse momentum

[dk]M2(k) =
dkt
kt

d�

2⇡
R0(kt) ⌘ hdkiR0(kt)

⌃(pH
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Z 1

0
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1X
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1

n!

n+1Y

i=2

Z kt,1

✏kt,1
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⇣
pH

t � |~qn+1|
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~qn+1 = ~kt,1 + · · ·+ ~kt,n+1
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�R(pH
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0
hdk1iR0(pH
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✓
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t
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1X
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1

n!

n+1Y
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hdkiiR0(pH
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⇣
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= �0e
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t )e��ER0(pH
t )� (1�R0(pH
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� (1 +R0(pH
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2�R0(pH
t )

Resummation performed in impact-parameter space up to NNLL: 
[Bozzi, Catani, de Florian, Grazzini ’03-‘05; Becher, Neubert ‘10]

[Parisi, Petronzio ’78] 
[Frixione, Nason, Ridolfi ’98] 
[Dasgupta, Salam ’01]



• The            limit is approached with two different kinematic mechanisms: 
• individual               for all emissions: —> Exponential suppression 

!
!

• finite       which cancel against each other —> Power-law suppression 
!
!

• Below a given pt the latter mechanism becomes the dominant one, 
therefore in this pt region it makes no sense to neglect logarithmically 
subleading effects 

• Solution:the scale of the real radiation is set by the first emission     instead 
of      —> Resum logarithms of              then integrate over 
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Physical interpretation of the divergence

mH/kt,1

kt,1
pH

t

pH

t ! 0
kt,i ! 0

kt,i

In the Sudakov limit 
!

 this corresponds to including 
subleading logarithmic terms 

kt,1  pH

t

In the limit where cancellations kick in 
!

the real radiation is described correctly
kt,1 � pH

t

⌃(pH

t ) ⇠ �0

Z Q

⇤QCD

dkt,1
kt,1

e�R(kt,1)

✓
pH
t

kt,1

◆2

= �0 (p
H

t )
2 R0(Q

2) + · · ·
[Parisi, Petronzio Nuclear Physics B154 (1979) 427-440]

kt,1

|~kti| generatedw/ Sudakov probability

~kti/|~kti| generatedw/ uniformprobability

[PM, Re, Torrielli ‘16]

e.g. ET =
X

i

|~kti|

�� cancellationswith
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ET

pT vs. ET: dependence on the first emission

Transverse Energy: single 
(Sudakov) suppression 

mechanism for all values of kt1

Transverse Momentum: 
!
!
!

At some value of      a transition 
takes place and the more likely 
way to get pT->0 becomes the 

second mechanism

R0
(kt1) ⌧ 1 : few emissions ! pT ⇠ kt1

R0
(kt1) � 2 : many emissions ! azimuthal cancel.

R0(kt1)



• NNLL corrections to the logarithmic structure can be obtained by means 
of the aforementioned approach 
• In this case the observable is very inclusive, therefore just two NNLL 

corrections are non-trivial 
!
!
!
!
!
!
!
!
!
!
!
!
!

• N3LL corrections to the real emissions can be included systematically. 
Only missing ingredients are the Sudakov anomalous dimensions

19

NNLL cross section

B3 in [Li, Zhu ‘16]

O(as^2) coefficient functions from  [Catani, Grazzini ’11, Gehrmann, Luebbert, Yang ‘14]

Radiator from [Grazzini, de Florian ’01; Becher, Neubert ‘10]

[HCC]gg;ij = HH
g (↵s(µR), µR, Q,mH)

⇥
Cgi(z1;↵s(kt,1), µR, µF , Q)Cgj(z2;↵s(kt,1), µR, µF , Q)

+Ggi(z1;↵s(kt,1), µR, µF )Ggj(z2;↵s(kt,1), µR, µF )
⇤
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R
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⌧
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z1
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⌧/x1

dz2
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[HCC]
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�
x1/z1, e

�Lµ
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�
f
j
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⌧/x1/z2, e

�Lµ
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�
, L = ln

Q

k
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• Master formula can be evaluated with fast MC methods (~5 mins for 500 bins), 
no integral transforms required (luminosity in momentum space) 

• Sizeable effects of NNLL resummation at small pt (~20% at 20 GeV), uncertainty 
reduced from 15-20% to 10% 

• Below this accuracy heavy-quark effects matter, comparable to N3LL corrections
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Spectrum at NNLL+NNLO

[PM, Re, Torrielli ‘16]

Fixed-order obtained combining N3LO cross section and H+1 jet @ NNLO
[Anastasiou et al. ’15-‘16] [Caola et al. ‘15; Boughezal et al. ‘15; Chen et al. ‘16] 



• multi-differential distributions 
(matching to fixed order more 
involved) 

 e.g. pt distribution in 0-jet bin  
  

• Access to Sudakov shoulders 
!

• Study of correlations between 
observables

• The approach extends the treatment to all rIRC-safe observables featuring 
this type of cancellations:                       as a reference 
!

• Observables with the same Sudakov radiator (i.e. same soft-collinear 
approximation for a single emission) can be resumed simultaneously:
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Generalisation and joint resummations

[Catani, Webber 9710333]

kt,1 ! Vsc({p̃}, k1)
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Light-quark Yukawa couplings  
from differential distributions

22



[CMS: 1412.8662; ATLAS-CONF-2015-007]
• Yukawa couplings to third-generation quarks compatible with SM values 
!
!
!

• No direct measurements for first and second 
generation yet. Possible methods: 
!
• Exclusive decays  
!
!
!
!
!

• Recasting of                (c-tagging):  
!

• Constraints from total width (mass):  
!

•     associated production (c-tagging):  
!

• Global fit of signal strengths (very model dependent): 
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Probing light-quark Yukawa couplings

�mf

v
hf̄f ! �mf

v
hf̄ (f + ĩf�5) f

h ! J/ � ;⌥� ;�� ; ⇢0� ;!�

ySMf =
p
2
mf

v

V h(! bb̄)

h c

|c| < 234 (Run I)

|c| < 429 (Run I)

|c| < 120� 140 (Run I)

|c| < 6.2 (Run I)

(expectO(few) at 3 ab�1)

(expectO(few) at 3 ab�1)

[Bodwin, Petriello, Stoynev, Velasco ’13] 
[Kagan et al. ’14] 
[Koenig, Neubert ’15]

[Perez, Soreq, Stamou, Tobioka ‘15]

[Perez, Soreq, Stamou, Tobioka ‘15]

[Brivio, Goertz, Isidori ’15]

[Perez, Soreq, Stamou, Tobioka ‘15]
[Delaunay, Golling, Perez, Soreq ‘13]



• Interplay between different production modes in the region  
!
!
!
!
!
!
!
!
!

• Quark-induced production dominates for large Yukawa modifications (can 
be used for 1st generation) - no interference with gluon fusion 
!

• Interference with heavy new physics suppressed (can be resolved by 
exploiting sensitivity in the tail) 
!

• Modifications can be probed through shape distortions 
!
• considering normalised distributions also divides out NP effects on the 

BR (Higgs width constraints require a global fit)
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Differential distributions in H+jet

⇠ 2
q ⇠ 2

q ⇠ q
m2

q

m2
h

ln

2

✓
p2?
m2

q

◆
(interferencew/ top)

[Bishara, Haisch, PM, Re ‘16]

[Soreq, Zhu, Zupan ’16]

see e.g. [Banfi, Martin, Sanz ’13] 
[Buschmann, Goncalves, Kuttimalai, Schoenherr, Krauss, Plehn ’14] 
[Buschmann, Englert, Goncalves, Plehn, Spannowsky ’14] …

mq  p?  mH



• Differential distributions measured at Run I and Run II for  
• Experimental uncertainties dominated by statistical errors; systematics ~ 2%
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Experimental sensitivity

h ! ��, 4`, 2`2⌫

[data from ATLAS 1504.05833 (gamma gamma + ZZ combination)]



• Run II and High-Luminosity projections expect few-% systematics on 
unnormalised distribution - further reduced for the (normalised) shape 

• Theory precision will become the limiting factor

26

Experimental sensitivity

[H -> ZZ, M. Vidal’s talk at ECFA 2016]



!
!
!
!
!
!
!
!
!
!

• Achievable precision via perturbation theory: 
• quark-initiated spectrum (i.e. non-ggF mediated) known at NN(N)LL+NLO in 

5FS 
!

• ggF spectrum known at NN(N)LL (              )+LO in the full SM 
• NLO mass effects necessary for ~5% precision in this pT region 
• light-quark mass logarithms        might not require resummation for 

bottom and charm quarks 
• coupling uncertainty at most ~ 2% for gluon fusion 
• PDFs uncertainty relevant for b and c quarks, but much reduced in the shape 
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Theory sensitivity
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(Similar for ptH)

ln(mH/pt)

ln(pt/mq)
[gg->h g  in Melnikov, Tancredi, Wever ‘16]

[Melnikov, Penin ‘16]

[Campbell, Ellis, Maltoni, Willenbrock ’02] [Harlander, Ozeren, Wiesemann ’10] 
[Harlander, Tripathi, Wiesemann ’14] [Harlander, Kilgore ’03] 

[Buehler, Herzog, Lazopoulos, Mueller ’12]

[Ellis, Hinchliffe, Soldate, van der Bij ’88] 
[Baur, Glover ’90]
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Non-Perturbative effects in distributions

[Banfi, Salam, Zanderighi ‘12]

• Jet pt more sensitive to NP radiation: 
• in-to-out (hadronisation) 
• out-to-in (und. events + pile-up) 

• Sensitivity to Yukawa modifications 
similar to the Higgs pt, but hard to get 
a very robust theory control with a 
first bin finer than 20 GeV 

• JES uncertainty might be a problem too

[https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2016-010/]
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Non-Perturbative effects in distributions
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• Higgs pt only feels the recoil from 
low pt (non perturbative) emissions 

• This effects is comparable to the 
one due to intrinsic transverse 
momentum of initial-state partons 

• Moderate impact  2%



• Use all bins in the range [0,100] GeV and experimental correlations  
• Predictions:  

• ggF at NNLL+NLO (full mass to LO, NLO corr. in HEFT) 
• quark-initiated processes with MG5_aMC@NLO

pjetj
pht

[data from ATLAS 1504.05833 (gamma gamma + ZZ combination)]
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Run I bounds
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Future perspectives

pht Two future scenarios (data SM like): 
• Run II (300 fb^-1, 5 GeV bins):  

• syst (exp) 3%; theory 5% 
• HL-LHC (3000 fb^-1, 5 GeV bins):  

• syst (exp) 1.5%; theory 2.5% 
!
• Important impact of correlations 
!

• It might be useful to study the 
complementar i ty w i t h ot her 
strategies for an optimal bound 
(different directions in the plane) 

!
• It can be used to set bounds on 
the strange Yukawa of O(30) 
(although harder to get a good 
theory control)

assume combination of h ! ��, 4`, 2`2⌫



Conclusions
• I discussed a general method for the resummation of global rIRC 

observables at NNLL: 
!

• formulation complete for two-scale problems in reactions with 2 hard Born 
emitters 
!

• It can handle complex non-factorising observables - in principle extendable 
to higher orders 
!

!
• Treatment of observables with cancellations away from the Born-like limit  

!
• First hints on how to handle joint resummations at NNLL and problems with 

more than two scales 
!
!

• ptH distribution is sensitive to modifications of the hcc coupling due to 
the different functional dependence of different production modes 

!
• Sensible deviations can be probed already at Run II with very little model 

dependence  
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Thank you for your attention
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• It is useful to decompose the matrix element for n soft / collinear 
emissions as a sum of terms with an increasing number of 
colour-correlated emissions (i.e. non-abelian contributions) 
!
!
!
!
!
!
!
!
!
!
!
!

• Which diagrams do we need to achieve NLL, i.e. neglect terms 
of order            ?
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• It is useful to decompose the matrix element for n soft / collinear 
emissions as a sum of terms with an increasing number of 
colour-correlated emissions (i.e. non-abelian contributions) 
!
!
!
!
!
!
!
!
!
!
!
!

• At NLL only independent soft emissions in the multiple-emission function 
• With two real emitters the non-abelian contribution is fully inclusive in the 

secondary branchings (contributing to the radiator)
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• At NLL real radiation is soft and collinear, therefore there’s no overlapping with 
the DGLAP evolution (hard collinear radiation -> larger rapidities) 
!

• At NNLL a single real hard-collinear emission is allowed; need to resolve the last 
step of DGLAP evolution explicitly 
!
!
!
!
!
!
!
!
!
!
!
!
!
!

• i.e. expand around the IR cutoff of the last resolved emission
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Treatment of initial state radiation

ln kt/Q

⌘

z(1) < 1z(2) < 1

ln(kt,1/Q)

ln(✏kt,1/Q)
ln(1/✏)

D
G
LA

P

[PM, Re, Torrielli in preparation]

q(x, ✏kt,1) = q(x, kt,1)� ↵s(kt,1)

⇡

P (z)⌦ q(x, kt,1) ln
1

✏

+O(N3LL)
cutoff dependence cancels 
against the real counterpart

real emissions

Sudakov suppression
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Extrapolation strategy for future scenarios
[M. Vidal’s talk at ECFA 2016]


