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Challenges for loop integrals
• Algebraic structure of polylogarithms & differential equations.

➡ How does this generalise to elliptic functions?

• Construct integrands from unitarity approaches at two loops.
➡ Use cuts to ‘project out’ master integrals from amplitudes.

➡ Technically, need to find a ‘master contour’ for each integral.
➡ Many open questions: 

-Are there enough master contours? Uniqueness?

-Why do integrals over master contours satisfy IBPs (but 
leading singularities do not)?

➡ Coproducts, symbols, etc. for elliptic functions?



Challenges for loop integrals
• Aim of this talk:

➡ Argue that the 2 questions (special functions & unitarity) 
may be connected!

➡ Take first steps towards a better understanding of the 
analytic & algebraic structure of Feynman integrals.

➡ Discuss some possible avenues to address these issues.

➡ Maybe physics intuition may help to clarify some open 
questions in pure mathematics..?

• Disclaimer: Many of the ideas are new and under development!
➡ Will discuss mostly one-loop integrals.
➡ General picture emerges, but still a lot to do to go to two 

loops!



Outline

• Quick review of polylogarithms and their coproduct.

• Cut integrals & homology theory.

• The coproduct of one-loop integrals.

• Outlook & Conjectures.



Quick review of 
polylogarithms 

and their coproduct



Polylogarithms
• Large classes of loop integrals can be expressed in terms of 

polylogarithms.

G(a1, . . . , an; z) =

Z z

0

dt

t� a1
G(a2, . . . , an; t)

G(a1; z) = log

✓
1� z

a1

◆

G(0, 1; z) = �Li2(z)

• Polylogarithms form a Hopf algebra. [Goncharov; Brown]

➡ Allows one to ‘break’ polylogarithms into smaller pieces:

�(log z) = 1⌦ log z + log z ⌦ 1

�(Lin(z)) = 1⌦ Lin(z) +
n�1X

k=0

Lin�k(z)⌦
log

k z

k!

• The two factors encode discontinuities & differential equations:
�Disc = (Disc⌦ id)� �@z = (id⌦ @z)�



The coproduct
• General formula:

�(G(~a; z)) =
X

~b⇢~a

G(~b; z)⌦G~b(~a; z)

Integral over a contour that 
encircles the singularities in ~b
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Figure 1: (a) The integration path for G(a1, a2, a3, a4; z). (b) The integration path for

G

�

C

(a1, a2, a3, a4; z) for C = {2, 3, 4}. The path �

C

encircles each of the singularities

a

i

2 C counter-clockwise.

be written in the following suggestive way, at least in the generic case where the arguments

take generic values,

�MPL(G(~a; z)) =
X

C✓{1,...,n}

G(~a
C

; z)⌦ (2⇡i)�|C|
G

�

C

(~a; z) , (2.20)

where the sum runs over all order-preserving subsets of {1, . . . , n}, including the empty

set, and where ~a

C

is the vector formed by the a

i

, i 2 C. G

�

C

(~a; z) denotes the iterated

integral with the same integrand as G(~a; z), but where the integration contour encircles

the singularities at the points z = a

i

, i 2 C, which is equivalent to taking the residues at

these points (see fig. 1). We see that the coaction of MPLs has a very simple combinatorial

interpretation: the di↵erent terms in this sum correspond to the tensor product of the

MPL with this restricted set of poles and the integral over the di↵erential form obtained

by taking the residues at these poles.

The operation of taking residues has a direct analogue in terms of Feynman integrals.

The residues at the propagators of a Feynman integral are naturally identified with the

cuts of the integral, where some of the propagators have been put on-shell. Since all one-

loop Feynman integrals are expressible in terms of MPLs order-by-order in the dimensional

regulator, it is natural to ask whether the coaction of one-loop Feynman integrals admits a

similarly simple combinatorial description. In the rest of this paper we give evidence that

this is indeed the case, and we conjecture a formula for the coaction of one-loop Feynman

integrals which is purely diagrammatic in nature and very reminiscent of eq. (2.20). Before

stating this conjecture in Section 4, we introduce and motivate our construction in the next

section using some simple examples of one-loop integrals.

3 First examples of the diagrammatic representation of the coaction

In this section, we present some simple examples which serve as a motivation for the

main conjecture of the next section. We investigate some one-loop Feynman integrals with

up to three propagators, and we show that, empirically, we can rearrange the terms in the
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~a = a1a2a3a4 ~b = a2a3a4

= ‘Cut Integral’



The coproduct

➡ Answer is ‘Yes’ [Brown]:
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Z

�
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�(G(~a; z)) =

X

~b⇢~a

G(~b; z)⌦G~b(~a; z)

Integral over a contour that 
encircles the singularities in ~b

• Does this picture generalise to other functions?
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be written in the following suggestive way, at least in the generic case where the arguments
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where the sum runs over all order-preserving subsets of {1, . . . , n}, including the empty

set, and where ~a

C

is the vector formed by the a
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, i 2 C. G

�
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(~a; z) denotes the iterated

integral with the same integrand as G(~a; z), but where the integration contour encircles

the singularities at the points z = a

i

, i 2 C, which is equivalent to taking the residues at

these points (see fig. 1). We see that the coaction of MPLs has a very simple combinatorial

interpretation: the di↵erent terms in this sum correspond to the tensor product of the

MPL with this restricted set of poles and the integral over the di↵erential form obtained

by taking the residues at these poles.

The operation of taking residues has a direct analogue in terms of Feynman integrals.

The residues at the propagators of a Feynman integral are naturally identified with the

cuts of the integral, where some of the propagators have been put on-shell. Since all one-

loop Feynman integrals are expressible in terms of MPLs order-by-order in the dimensional

regulator, it is natural to ask whether the coaction of one-loop Feynman integrals admits a

similarly simple combinatorial description. In the rest of this paper we give evidence that

this is indeed the case, and we conjecture a formula for the coaction of one-loop Feynman

integrals which is purely diagrammatic in nature and very reminiscent of eq. (2.20). Before

stating this conjecture in Section 4, we introduce and motivate our construction in the next

section using some simple examples of one-loop integrals.

3 First examples of the diagrammatic representation of the coaction

In this section, we present some simple examples which serve as a motivation for the

main conjecture of the next section. We investigate some one-loop Feynman integrals with

up to three propagators, and we show that, empirically, we can rearrange the terms in the
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~a = a1a2a3a4 ~b = a2a3a4

= ‘Cut Integral’

• Goal: Make this formula precise!

➡ First step towards understanding mathematical structure of 
functions that appear in loops and are more polylogarithms.



Cuts integrals 
&

homology theory



Cut integrals
• Traditional definition: replace propagators by delta functions:

1

p2 �m2 + i"
�! 2⇡i �+(p

2 �m2) [Cutkosky; ’t Hooft, Veltmann]



Cut integrals
• Traditional definition: replace propagators by delta functions:

1

p2 �m2 + i"
�! 2⇡i �+(p

2 �m2) [Cutkosky; ’t Hooft, Veltmann]

• Folklore:
➡ ‘Cuts compute discontinuities’ - Which ones..?

For graphs with four edges, we have
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Cut integrals
• Traditional definition: replace propagators by delta functions:

1

p2 �m2 + i"
�! 2⇡i �+(p

2 �m2) [Cutkosky; ’t Hooft, Veltmann]

• Folklore:
➡ ‘Cuts compute discontinuities’ - Which ones..?

For graphs with four edges, we have
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➡ ‘Cuts are computed by integrating over a contour that 
encircles the poles of some propagators’ - Which contour..?



Cut integrals
• Traditional definition: replace propagators by delta functions:

1

p2 �m2 + i"
�! 2⇡i �+(p

2 �m2) [Cutkosky; ’t Hooft, Veltmann]

• Folklore:
➡ ‘Cuts compute discontinuities’ - Which ones..?
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For graphs with four edges, we have
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➡ ‘Cuts are computed by integrating over a contour that 
encircles the poles of some propagators’ - Which contour..?

➡ ‘Leading singularities do not satisfy IBPs… but some linear 
combinations do!’ - What about reverse-unitarity..?



Cut integrals
• Which contours..?

➡ Turns the problem into a problem in homology theory!

• Homology groups: ~ all inequivalent integration contours we 
can define in our space.

• Example: The plane minus the origin: C \ {0}



Cut integrals
• Which contours..?

➡ Turns the problem into a problem in homology theory!

• Homology groups: ~ all inequivalent integration contours we 
can define in our space.

• Example: The plane minus the origin: C \ {0}

• Homology groups associated to Feynman integrals have been 
studied in the 60s.

➡ Contours for cuts can be unambiguously defined.

➡ Every cut integrals computes a discontinuity, associated to 
some Landau singularity (1st & 2nd kind)

➡ Cut integrals always satisfy the same IBP relations and 
differential equations as uncut integrals.

[Fotiadi, Pham; Teplitz, Hwa; Federbusch; 
Landshof, Polkinghorne, …]



Homology groups
• At one-loop: interesting contours ‘encircle’ propagator poles 

and/or pinch singularity at infinity:

�; , �1, �1, �2,… �12 ,… �112,…



Homology groups
• At one-loop: interesting contours ‘encircle’ propagator poles 

and/or pinch singularity at infinity:

�; , �1, �1, �2,… �12 ,… �112,…

• Homology theory: Contours that do not encircle     form a basis:1

�1C = �2�C +
X

X

(�1)b|C|/2c+d|X|/2e�X |C| odd
[Fotiadi, Pham]

C ✓ {1, 2 . . .}



Homology groups
• At one-loop: interesting contours ‘encircle’ propagator poles 

and/or pinch singularity at infinity:

➡ Master contours at one loop!

�; , �1, �1, �2,… �12 ,… �112,…

• Homology theory: Contours that do not encircle     form a basis:1

�1C = �2�C +
X

X

(�1)b|C|/2c+d|X|/2e�X |C| odd

• Alternate basis: �; . . .�1123 ,�1234 . . .

[Britto, Cachazo, Feng; Forde; …]

• There is two-loop literature on the homology groups of the 
double box!

➡ Does this provide two-loop master contours?!

[Federbusch]

[Fotiadi, Pham]
C ✓ {1, 2 . . .}



Master contours
• Consequence: Cut integrals always satisfy IBPs!

Poles of quadruple cut�S

• Let’s look at the quadruple cut at one-loop:
➡ Contradiction with literature…?

Homology groups contains linear 
combination that gives the box coefficient!



Master contours
• Consequence: Cut integrals always satisfy IBPs!

Poles of quadruple cut�S

• Let’s look at the quadruple cut at one-loop:
➡ Contradiction with literature…?

• Conclusion: Master contours should not be seen as leading 
singularities, but as discontinuities!

➡ Individual residues do not satisfies IBPs, but the integral 
over      does!�S

➡ These contours are dictated by homology theory.

Homology groups contains linear 
combination that gives the box coefficient!



The coproduct
of one-loop integrals



The diagrammatic coaction
�([�,!]m) =

X

i

[�,!i]
m ⌦ [!†

i ,!]
dr

Sum over MIs MI Cut

• Let us analyse the triangle with massless propagators:

where X|
✏

k

denotes the coe�cient of ✏k in the Laurent expansion of X.

Finally, let us turn to the interpretation of the term 1 ⌦ T (z, z̄) in eq. (3.23). So far,

all of our examples have had a Feynman integral in first factor and a cut integral in the

second, while 1⌦ T (z, z̄) appears to have an uncut Feynman integral in the second factor.

In order to see how this term arises, we rely on a result of ref. [39] which relates the result

of a Feynman integral to (a specific sum of) its cuts. [R: put crossref ] In the particular

case at hand, the relation reads
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The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,
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Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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or in terms of graphs,
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(3.34)

Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏

4),

and conjecture it holds to all orders.

– 13 –

�



The diagrammatic coaction
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• Let us analyse the triangle with massless propagators:
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Finally, let us turn to the interpretation of the term 1 ⌦ T (z, z̄) in eq. (3.23). So far,

all of our examples have had a Feynman integral in first factor and a cut integral in the

second, while 1⌦ T (z, z̄) appears to have an uncut Feynman integral in the second factor.

In order to see how this term arises, we rely on a result of ref. [39] which relates the result

of a Feynman integral to (a specific sum of) its cuts. [R: put crossref ] In the particular

case at hand, the relation reads
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The term 1⌦ T (z, z̄) is then reproduced from eq. (3.31) with n = 1,
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Note that at the same time we have cancelled the pole in the bubble integral (3.29), and

we see that pole in eq. (3.29) is actually essential to reproduce the correct term 1⌦T (z, z̄).

Putting everything together, we see that, at least through O(✏0), we can write
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or in terms of graphs,
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(3.34)

Let us make some comments about this equation. First, we note it has the same structure

as for the tadpole and bubble integrals, which is reminiscent of eq. (2.20). We sum over all

possible ways to select a subset of the propagators. The first factor in the coaction is then

the Feynman integral with this subset of propagators, while the second entry corresponds

to the cut of the original integral, where precisely the set of propagators that appear in

the first factor are cut. We can also check that eq. (3.34) correctly reproduces eq. (2.19)

and (2.18). We stress that, although we have only discussed eq. (3.34) through to finite

terms, we verified that it continues to hold at higher orders in the ✏ expansion (up to ✏

4),

and conjecture it holds to all orders.
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➡ Checked up to terms of weight 4. 

➡ Requires highly non-trivial conspiracy of terms!



The diagrammatic coaction

• Bubble with massive propagators:

From the three cases we have seen so far, a pattern emerges in the coaction on one-loop

integrals: in all cases the left factor is constructed by pinching all uncut propagators of

the right factor. One might wonder about the absence of single-propagator cuts in the

last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.

3.4 The bubble integral with massive propagators

Let us consider the bubble integral with two propagators with masses m

2
1 and m

2
2.

This integral is finite in D = 2� 2✏ dimensions. It is convenient to introduce the variables

w =
1 + µ1 � µ2 +

p

�(1, µ1, µ2)

2
, w̄ =

1 + µ1 � µ2 �
p

�(1, µ1, µ2)

2
, (3.35)

where µ

i

= m

2
i

/p

2. The bubble with massive propagators is finite in two dimensions, and

the coaction on the leading term in the ✏ expansion is (see eq. (B.11) and (B.15))
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If we apply the naive diagrammatic rule for the coaction stated at the end of the previous

section, then the coaction on the bubble with massive propagators should be given by (see

eq. (B.12), (B.13) and (B.14))
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and we see that this combination exhibits a pole in ✏, which is in contradiction with

eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.

4There is an alternative way to state this rule, where instead of adding graphs with pinched edges in the

first factor, we add graphs with additional cut propagators in the second entry. We return to this point in

section 4.
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For bubble graphs, we have
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For graphs with three edges, we have
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From the three cases we have seen so far, a pattern emerges in the coaction on one-loop

integrals: in all cases the left factor is constructed by pinching all uncut propagators of

the right factor. One might wonder about the absence of single-propagator cuts in the

last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.

3.4 The bubble integral with massive propagators

Let us consider the bubble integral with two propagators with masses m

2
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If we apply the naive diagrammatic rule for the coaction stated at the end of the previous

section, then the coaction on the bubble with massive propagators should be given by (see
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and we see that this combination exhibits a pole in ✏, which is in contradiction with

eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.
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last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.
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eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.

4There is an alternative way to state this rule, where instead of adding graphs with pinched edges in the

first factor, we add graphs with additional cut propagators in the second entry. We return to this point in
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integrals: in all cases the left factor is constructed by pinching all uncut propagators of

the right factor. One might wonder about the absence of single-propagator cuts in the

last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be
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by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.
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first factor, we add graphs with additional cut propagators in the second entry. We return to this point in
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a massless propagator and the corresponding pinched diagram, the massless tadpole, are
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• Example:
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The diagrammatic coaction
• What is the meaning of the 1/2 term..?
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From the three cases we have seen so far, a pattern emerges in the coaction on one-loop

integrals: in all cases the left factor is constructed by pinching all uncut propagators of

the right factor. One might wonder about the absence of single-propagator cuts in the

last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.

3.4 The bubble integral with massive propagators

Let us consider the bubble integral with two propagators with masses m
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1 and m

2
2.
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2. The bubble with massive propagators is finite in two dimensions, and

the coaction on the leading term in the ✏ expansion is (see eq. (B.11) and (B.15))
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If we apply the naive diagrammatic rule for the coaction stated at the end of the previous

section, then the coaction on the bubble with massive propagators should be given by (see

eq. (B.12), (B.13) and (B.14))
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and we see that this combination exhibits a pole in ✏, which is in contradiction with

eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.

4There is an alternative way to state this rule, where instead of adding graphs with pinched edges in the

first factor, we add graphs with additional cut propagators in the second entry. We return to this point in

section 4.
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• if the number of cut propagators is odd, then the first entry is the diagram obtained
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extended.
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0 1
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1 ➡ Homology theory: Only two of 
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↵i 6= 0

[Vassiliev]



Hypergeometric functions
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Conclusion
• New mathematical ideas and homology theory may be able 

to tell us something about multi-loop integrals.

➡ Two-loop master contours from homology groups?

• Conjectured ‘master formula’ for coproduct.

➡ Shown to work for polylogarithms, one-loop integrals, 
(some classes of) hypergeometric and Appell functions.

• Expansion of some hypergeometric functions cannot be 
expressed in terms of polylogarithms.

➡ Gives hints of how mathematics of polylogarithms extends 
elliptic functions?

➡ Hidden algebraic structure of loop integrals?

➡ New way to look at unitarity techniques?

➡ Rigorous way to define and investigate cuts!



Multi-variate residues
• If    is a surface given by             , a differential form     (integrand) 

has a pole on   , then
S

S
!s(z) = 0

! =
ds

s
^  + ✓  , ✓ regular on S

• The residue of     is                       .! ResS [!] =  |S

• Generalisation to several singular surfaces is straightforward.



Multi-variate residues
• If    is a surface given by             , a differential form     (integrand) 

has a pole on   , then
S

S
!s(z) = 0

! =
ds

s
^  + ✓  , ✓ regular on S

• The residue of     is                       .! ResS [!] =  |S

• Generalisation to several singular surfaces is straightforward.

• Residue Theorem: If    is a contour contained in   , thenS�

Z

��
! = 2⇡i

Z

�
ResS [!]

➡    is the Leray coboundary operator.�

[Picture from Hwa & Teplitz]



Cut integrals
• Using this language we can make all the cut-folklore precise.

• Let     denote the surface where the i-th propagator is on shell.Si

➡ Each     is a sphere, and so is their intersection    .Si S

➡ Cut integral = integrating the residue over the sphere   .S

In =

Z
!n �! CS1...SkIn =

Z

S
ResS1...Sk [!n] = (2⇡i)�k

Z

�S
!n
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Cut integrals
• Using this language we can make all the cut-folklore precise.

• Let     denote the surface where the i-th propagator is on shell.Si

➡ Each     is a sphere, and so is their intersection    .Si S

➡ Cut integral = integrating the residue over the sphere   .S

In =

Z
!n �! CS1...SkIn =

Z

S
ResS1...Sk [!n] = (2⇡i)�k

Z

�S
!n

Contour that encircles propagator poles

• Each such integral computes a discontinuity, associated to some 
pinch singularity (cf. Landau conditions).
➡ Picard-Lefschetz theorem and homology theory.

• Works also for Landau singularities of second type.



The diagrammatic coaction

• The coproduct is consistent with the action of discontinuities:
�Disc = (Disc⌦ id)�

�@z = (id⌦ @z)�

From the three cases we have seen so far, a pattern emerges in the coaction on one-loop

integrals: in all cases the left factor is constructed by pinching all uncut propagators of

the right factor. One might wonder about the absence of single-propagator cuts in the

last two examples, but this is easily explained by observing that both the single cut of

a massless propagator and the corresponding pinched diagram, the massless tadpole, are

zero in dimensional regularisation. Despite its validity in the above examples, it turns out

that this simple rule is not correct for general one-loop diagrams. In the next section we

show an example where it fails, and we explain how the rule for the coaction should be

extended.

3.4 The bubble integral with massive propagators

Let us consider the bubble integral with two propagators with masses m

2
1 and m

2
2.

This integral is finite in D = 2� 2✏ dimensions. It is convenient to introduce the variables

w =
1 + µ1 � µ2 +

p

�(1, µ1, µ2)

2
, w̄ =

1 + µ1 � µ2 �
p

�(1, µ1, µ2)

2
, (3.35)

where µ

i

= m

2
i

/p

2. The bubble with massive propagators is finite in two dimensions, and

the coaction on the leading term in the ✏ expansion is (see eq. (B.11) and (B.15))

�MPL [J2] =
1

2

✓

log
w(1� w̄)

w̄(1� w)
⌦ 1 + 1⌦ log

w(1� w̄)

w̄(1� w)

◆

+O(✏) . (3.36)

If we apply the naive diagrammatic rule for the coaction stated at the end of the previous

section, then the coaction on the bubble with massive propagators should be given by (see

eq. (B.12), (B.13) and (B.14))

e1

e2

⌦
e1

e2
+ e1 ⌦

e1

e2
+ e2 ⌦

e1

e2
=

=
1⌦ 1

✏

+O(✏0) ,

(3.37)

and we see that this combination exhibits a pole in ✏, which is in contradiction with

eq. (3.36).

We claim that the correct rule to obtain the coaction on a one-loop Feynman integral

is stated as follows: We first distinguish the cases where the second factor has an odd or

an even number of cut propagators. Then4,

• if the number of cut propagators is odd, then the first entry is the diagram obtained

by pinching the uncut propagators;

• if the number of cut propagators is even, then the first entry is the diagram obtained

by pinching the uncut propagators, plus one-half times the sum of all diagrams ob-

tained by pinching an extra propagator.

4There is an alternative way to state this rule, where instead of adding graphs with pinched edges in the

first factor, we add graphs with additional cut propagators in the second entry. We return to this point in

section 4.
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For bubble graphs, we have
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For graphs with three edges, we have
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zero in dimensional regularisation. Despite its validity in the above examples, it turns out
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➡ (Stronger version of) First entry condition [Gaiotto, Maldacena, 

Sever, Vieira] built in.
➡ Analytic continuation can be read of from coproduct.

• The coproduct is consistent with the action of derivatives:

➡ Can read off differential equations from cuts!
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As a final comment, we note these examples illustrate how the diagrammatic coaction is

well defined in dimensional regularization. They also provide an example of the discussion

below eq. (4.26) on how the conjecture applies to integrals that can be written as a linear

combination of our basis integrals.

5.4 Cancellation of poles

We now illustrate in a specific example of a finite integral how the cancellation of the

poles introduced by divergent bubbles and tadpoles can be explained by the surprising re-

lation eq. (4.36) between an uncut integral and its one- and two-propagator cuts. Consider

the triangle with one massive external leg and a single non-adjacent massive propagator,

J3(p21,m
2
3), whose integrated expression is given in eq. (B.26). Its diagrammatic coaction

is given by:
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As a final comment, we note these examples illustrate how the diagrammatic coaction is

well defined in dimensional regularization. They also provide an example of the discussion

below eq. (4.26) on how the conjecture applies to integrals that can be written as a linear

combination of our basis integrals.

5.4 Cancellation of poles

We now illustrate in a specific example of a finite integral how the cancellation of the

poles introduced by divergent bubbles and tadpoles can be explained by the surprising re-

lation eq. (4.36) between an uncut integral and its one- and two-propagator cuts. Consider

the triangle with one massive external leg and a single non-adjacent massive propagator,

J3(p21,m
2
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• Poles cancel due to ‘homological identity’: �1 = �3 + �12 + . . .
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The Master formula

• Magic formula:
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• Works in ‘all known cases’ (MPLs & one-loop integrals).

➡ Knows about analytic continuation: �Disc = (Disc⌦ id)�

�@z = (id⌦ @z)�➡ Knows about differential equations:
➡ Knows about master integrands and master contours.

➡ Works in DimReg.

• Does it make (correct!) predictions?
➡ Beyond one loop? Elliptic functions?

➡ Coproduct = ‘insert a complete set of states’ 1 =
X
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