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(7 Challenges for loop integrals (@]

® Algebraic structure of polylogarithms & differential equations.

= How does this generalise to elliptic functions?

= Coproducts, symbols, etc. for elliptic functions?

® Construct integrands from unitarity approaches at two loops.

= Use cuts to ‘project out’ master integrals from amplitudes.

= Technically, need to find a ‘master contour’ for each integral.
= Many open questions:
— Are there enough master contours? Uniqueness?

— Why do integrals over master contours satisfy IBPs (but
leading singularities do not)?



(7 Challenges for loop integrals (@]

® Aim of this talk:

= [)iscuss some possible avenues to address these 1ssues.

= Argue that the 2 questions (special functions & unitarity)
may be connected!

= Take first steps towards a better understanding of the
analytic & algebraic structure of Feynman integrals.

= Maybe physics intuition may help to clarity some open
questions 1n pure mathematics..?

® Disclaimer: Many of the i1deas are new and under development!
= Will discuss mostly one-loop integrals.

= General picture emerges, but still a lot to do to go to two
loops!



G Outline

® Quick review of polylogarithms and their coproduct.

® Cutintegrals & homology theory.

® The coproduct of one-loop integrals.

® Outlook & Conjectures.



Quick review of
polylogarithms

and their coproduct




& Polylogarithms @)

® Large classes of loop integrals can be expressed in terms of

polylogarithms.
z G(a1;2) = log (1 — i)
G(al,...,an;z):/ dt Glas, ..., an;t) aq
o T a1 G(0,1; 2) = —Lis(2)
® Polylogarithms form a Hopf algebra. [Goncharov; Brown]

= Allows one to ‘break’ polylogarithms into smaller pieces:

A(logz) =1 ®logz+logz® 1

.
A(Lin(2)) = 1 ® Lin(z Z Li, 4 ( Oi' ©

® The two factors encode dlscontmultles & differential equations:

ADisc = (Disc ® id)A Ad, = (id® 0,)A



@ The coproduct @

a4

® General formula:

a1

=) G(b;2) ® Gg(a; 2) 0 y o

bCa

Integral over a contour that “

> les the sinoularitios i b - ‘Cut Integral’ as
encircles the siIngu arities in a 4100304 b= asazay



@ The coproduct @

a4

® General formula:

A(G(d;2)) =Y  G(b;z) ® Gg(d; 2)

a1

0 e 2
bCa .
Inte.:grlal ox}zler a conltOL.uj th.at . - ‘Cut Integral 3 -
encircles the singularities 1n 0= 1020304 b = ayasay
® Does this picture generalise to other functions?
= Answeris Yes [Brown]:
m
Ay, w]™) = [y wi]™ @ [w], W] W™~ /w
. v
(/

Master Cut

Sum over Mls integrals

® Goal: Make this formula precise!

= [irst step towards understanding mathematical structure of
functions that appear in loops and are more polylogarithms.
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@ Cut integrals @

® Traditional definition: replace propagators by delta functions:

1
P2 —m?2 4+ ic

> 27101 (p2 — m2) [ Cutkosky; 't Hooft, Veltmann]
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® Folklore:
= ‘Cuts compute discontinuities’ - Which ones..?
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encircles the poles of some propagators” - Which contour..?



@ Cut integrals @

® Traditional definition: replace propagators by delta functions:

! : > 21 04 (p2 — m2) [ Cutkosky; 't Hooft, Veltmann]
P2 —m?2 4+ ic
® Folklore:
= ‘Cuts compute discontinuities’ - Which ones..?

11

= ‘Cuts are computed by Integrating over a contour that
encircles the poles of some propagators” - Which contour..?

= ‘Leading singularities do not satisty IBPs... but some linear

combinations do! - What about reverse-unitarity..?



@ Cut integrals @

® Which contours..?

= Turns the problem into a problem in homology theory!

O Homology groups: ~ all inequivalent Integration contours we
can define 1n our space. R

o

® Example: The plane minus the origin: C\ {0}



@ Cut integrals @

® Which contours..?
= Turns the problem into a problem in homology theory!

O Homology groups: ~ all inequivalent Integration contours we
can define 1n our space. N

o

® Example: The plane minus the origin: C\ {0}

O Homology groups associated to Feynman integrals have been

studied in the 60s. [ Fotiadi, Pham; Teplitz, Hwa; Federbusch;
Landshof, Polkinghorne, ...]

= (Contours for cuts can be unambiguously defined.

= [very cut integrals computes a discontinuity, associated to

some Landau singularity (1st & 2nd kind)

= Cut integrals always satisty the same IBP relations and
ditferential equations as uncut integrals.



@ Homology groups @

® At one-loop: interesting contours ‘encircle’ propagator poles

and/or pinch singularity at infinity:

F@, FOO! Fl, Fz,... F12,... FQQlQ,...



@ Homology groups @

® At one-loop: interesting contours ‘encircle’ propagator poles

and/or pinch singularity at infinity:

F@, FOO! Fl, Fz,... F12,... FQQ12,...

® Homology theory: Contours that do not encircle oo form a basis:

'oco = —21'¢c + Z(_l)LICI/2J+{|X|/21FX CC{1,2...}
X

O] odd [ Fotiadi, Pham]
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@ Homology groups @

® At one-loop: interesting contours ‘encircle’ propagator poles

and/or pinch singularity at infinity:

F@, FOO! Fl, Fz,... F12,... FOO12,...

® Homology theory: Contours that do not encircle oo form a basis:

CCi{l,2...
oo = —2T¢ + Z(_l)HCVQH—HXVﬂ | 5% ‘C|_O{dd } [ Fotiadi, Pham]
X
O Alternate basis: FQ) c . FoolQB ,F1234 c e
= Master contours at one loop! [ Britto, Cachazo, Feng; Forde; ...]

® There is two-loop literature on the homology groups of the
double box! | Federbusch]

= Does this provide two-loop master contours?!



& Master contours @

® Consequence: Cut integrals always satisty IBPs!

= (Contradiction with literature...?

® [et’slook at the quadruple cut at one-loop:

t @53 Poles of quadruple cut

>

@ Homology groups contains linear

combination that gives the box coefficient!



& Master contours @

® Consequence: Cut integrals always satisty IBPs!

= (Contradiction with literature...?

® [et’slook at the quadruple cut at one-loop:

t @55 Poles of quadruple cut

>

@ Homology groups contains linear

combination that gives the box coethcient!

= [ndividual residues do not satishies IBPs, but the integral
over 65 does!

® Conclusion: Master contours should not be seen as leading
singularities, but as discontinuities!

= These contours are dictated by homology theory.



The coproduct
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@ The diagrammatic coaction @

Al w]™) =D lswl™ @ ], w]™

MI Cut

Sum over MlIs

® It us analyse the triangle with massless propagators:

€9 2
A | —
€3




@ The diagrammatic coaction @

Ay wl™) = S wl™ © Wl W]

1

MI Cut

Sum over MlIs

® [etus analyse the triangle with massless propagators:

. .
1 1 1 2 2 1
A _< p— O ® S 63 —|— O ® - -
1 €3
el ¢ 3 €2 €1 3
.

= Checked up to terms of weight 4.

= Requires highly non-trivial conspiracy of terms!



@ The diagrammatic coaction @

® Bubble with massive propagators:
A{_O_} — —O— ® —O—
+ () ® —C— + () —O—
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@ The diagrammatic coaction @

® Bubble with massive propagators:

€1

A -] <o <>
+,®—€<:>€2—+®—Q—

= This relation i1s incorrect...

® ... but the following relation holds!

€1

€2

A

Q> ) Qo> >



es
A{ )

€3

€1

€2

€3

1
1
€3 .

< > @ €4
e
, ) e I
1 1
€1 . —|_ 5
€4
S
€3 63
€1 -
€2
_—64 _I_ { ——
€3 - I
1 64
- €3 e
- - Iel \ -
€9 E - I€1
€9 :
€4 > ® I
€1
t
/
€2
_I_




@ The diagrammatic coaction @

® What is the meaning of the 1/2 term..?

S| -S>

€2

A

0 1) O )



@ The diagrammatic coaction @

® What is the meaning of the 1/2 term..?

€

€2

O 1) Qo <)

® Using the ‘homological relation’ 'y = —2I'1 — T'15, we find

el i 1 el _ 1
®( >~ 5 <) _/""1®</F1“’2+§/F12“2>




@ The diagrammatic coaction @

® What is the meaning of the 1/2 term..?
_O_} — —O— ® —@—

® Using the ‘homological relation’ 'y = —2I'1 — T'15, we find
1 1 el 1
e
.
2 Jp

e 1ntegrands M
aster
_O_ W & W2
= contours

A

= 1 X
Master
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& The Master formula

, [} ) °
® Brown's motivic coaction:

Ayl =Dt o ol felm~ [

Master Cut

Sum over Mls integrals

® Conjecture:

A ( / w) — Z / w; & / W [Abreu, Britto, CD, Gardi]
8 ' 8 i

1

ndia’ 1s the master contour of the master integrand W;.

® Works for multiple polylogs and one-loop integrals.
= Does it have any predictive power?

= Does predict the correct results?



() Hypergeometric functions @

® Consider the integrals

n;,o; € 4
OAZ#O

1
T(ay,a2,a3;2) = / drz® (1 —x)* (1 —2x)"  a; =n; + qse
O A\ _J/

N

=w(ai,az,a2)

= Closely connected to hypergeometric 2F1.



() Hypergeometric functions @

® Consider the integrals

1
T(a1,az,as;z) = / drz® (1 —x)* (1 — zx)*3 a; = 1; + oue N, O
0 -~ . o # O

=w(ai,az,a2)

= Closely connected to hypergeometric 2F1.

® Using [BPs, we find two master integrands.

w1 = w(aqe, —1 + age, aze)  wa = w(age, age, —1 + aze)



() Hypergeometric functions @

® Consider the integrals

1
T(a1,az,as;z) = / drz® (1 —x)* (1 — zx)*3 a; = 1; + oue N, O
0 _ o 75 0

N

=w(ai,az,a2)

= Closely connected to hypergeometric 2F1.

® Using [BPs, we find two master integrands.

w1 = w(aqe, —1 + age, aze)  wa = w(age, age, —1 + aze)

® Associated Geometry: straight lines connecting 0,1,1/z, 00

> = Homology theory: Only two of
. these segments are independent!

[ Vassiliev]




() Hypergeometric functions @

® Master contours:

/1 1 _I_ /]. O 1/2 1/2 1
0 a9€ 0 /0 1 0 w2 agze—l_

= [ots indicate higher-weights terms.

n;, o; € 4

C\KZ#O

a; = N; + Q€



() Hypergeometric functions @

® Master contours:

/1 1 _I_ /1 O 1/2 1/2 1
0 a9€ 0 /0 1 0 w2 agze—l_

= [ots indicate higher-weights terms.

® Master formula: A (/w) :Z/wz@/@

ni, o; € 4

C\KZ#O

a; = N; + Q€



() Hypergeometric functions @

® Master contours:

/1 1 _I_ /1 O 1/2 1/2 1
0 a9€ 0 /0 1 0 w2 agze—l_

= [ots indicate higher-weights terms.

® Master formula: A ( / w) = Z / w; ® / W
8 i 8 Vi
1 1 1 1 1/2
A(/ w(a17a27a3)> :/W1®€CL2/ w(a17a27a3)+/w2®€a’3z/ W(Cbl,ag,ag)
0 0 0 0 0

= Checked explicitly up to weight 5 in € expansion!

ni, o; € 4

C\KZ#O

a; = N; + Q€



() Hypergeometric functions @

® Master contours:

/1 1 _I_ /1 O 1/2 1/2 1
0 a9€ 0 /0 1 0 w2 agze—l_

= [ots indicate higher-weights terms.

® Master formula: A ( / w) = Z / w; ® / W
8 i 8 Vi
1 1 1 1 1/2
A(/ w(a17a27a3)> :/W1®ECL2/ w(al,ag,a3)+/w2®ea32/ W(Cbl,ag,ag)
0 0 0 0 0

= Checked explicitly up to weight 5 in € expansion!

® Can do the same for Appell F; function:
Ng, O € 7,

1
/ dexz®t (1 —2)? (1 —yx)* (1 — zx)* a; = N; + Q€
0 07 # 0

= Master formula was checked up to weight 5!



& Conclusion @

® New mathematical ideas and homology theory may be able

to tell us something about multi-loop integrals.

= Rigorous way to define and investigate cuts!

= Two-loop master contours from homology groups?

= New way to look at unitarity techniques?

® Conjectured ‘master formula’ for coproduct.

= Shown to work for polylogarithms, one-loop integrals,
(some classes of) hypergeometric and Appell functions.

= Hidden algebraic structure of loop integrals?

® Expansion of some hypergeometric functions cannot be
expressed 1n terms of polylogarithms.

= (Gives hints of how mathematics of polylogarithms extends
elliptic functions?



& Multi-variate residues @

® If Sis a surface given by s(z) = 0, a differential form w (integrand)
has a pole on S, then

w:@A@He Y, 0 regular on S
5
® The residue of w 1s Resg[w] = 5.

® Generalisation to several singular surfaces 1s straightforward.



& Multi-variate residues @

® If Sis a surface given by s(z) = 0, a differential form w (integrand)
has a pole on S, then

w:ﬁmwe Y, 0 regular on S
5
® The residue of w 1s Resg[w] = 5.

® Generalisation to several singular surfaces 1s straightforward.

® Residue Theorem: It 1s a contour contained in S, then

/ w = 2T /Ress[w]
07y Y

= § 1s the Leray coboundary operator.

[ Picture from Hwa & Teplitz]



@ Cut integrals @

® Using this language we can make all the cut-folklore precise.

® Lt S; denote the surface where the 1-th propagator 1s on shell.

= Fach S;1s a sphere, and so 1s their intersection S.

= Cut integral = integrating the residue over the sphere S.

In — /wn — Csl...SkIn — / Ressl...sk [wn] — (QWZ)—k/ Wn
S 0S



@ Cut integrals @

® Using this language we can make all the cut-folklore precise.
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@ Cut integrals @

® Using this language we can make all the cut-folklore precise.

® Lt S; denote the surface where the 1-th propagator 1s on shell.

= Fach S;1s a sphere, and so 1s their intersection S.

= Cut integral = integrating the residue over the sphere S.

In — /wn — Csl...SkIn — / Ressl...sk [wn] — (QWZ)—k/ Wn
S oS

Contour that encircles propagator poles

® FEach such integral computes a discontinuity, associated to some
pinch singularity (cf. Landau conditions).

= Picard-Lefschetz theorem and homology theory.

® Works also for Landau singularities of second type.



@ The diagrammatic coaction @

€1

A

€2

Q> <) Qe <)

® The coproduct is consistent with the action of discontinuities:
ADisc = (Disc ® id)A

= (Stronger version of) First entry condition [Gaiotto, Maldacena,
Sever, Vieira ] bllllt lIl

= Analytic continuation can be read of from coproduct.

® The coproduct is consistent with the action of derivatives:
AD, = (id® 0,)A

= (Can read off differential equations from cuts!



@ The diagrammatic coaction @

® Example:

€9 €2 €9 ‘62
) 1 1 1 1
A es — ® - - _|— _O_ ® e
e3 = el
el €1 . ’
€9 \ €2
—+ - 3 & ! PR
&) €3
€1 ’




@ The diagrammatic coaction @

® Example:

Finite Divergent

_ - €
€9 €2 €9 N z
" 1 1 1 1
A es — X -- + _Q_ X e
, e3 ) €1
1 €1 ’
€9 \ €2
—+ - 3 & ! PR
&) €3
€1 ’




@ The diagrammatic coaction @

O Example:

Finite Divergent

§ ] e
62 62 62 \ 2
1 1 1 1 1
A s |=We s == © ;
e “3 €1 €1
) €1 .
€9 \62
NI 6 R -t L
&) €3
e ’

® Poles cancel due to ‘homological identity’: 'y =T's + 12 + ...

e
€2 €2 . ;
1 1 1 e
— e3 — - - 3
€ 3 ST TS
€1 €1 ‘




& The Master formula @)
NEEIEuE

g Coproduct = ‘Insert a complete set of states’1 = Z wi) @ (Vi

® Magic formula:

= Knows about analytic continuation: ADisc = (Disc ® id)A

= Knows about differential equations: A9, = (id ® 9,)A

= Knows about master integrands and master contours.

= Works in DimReg.
® Works in ‘all known cases’ (MPLs & one-loop integrals).

® Does it make (correct!) predictions?

= Beyond one loop? Elliptic functions?



