PRECISION PREDICTIONS FOR HIGGS BOSON PHENOMENOLOGY

BERNHARD MISTLBERGER

- 4th of July 2012: The begin of the precision physics age of Higgs boson phenomenology
- Immediately after the discovery of the Higgs boson we started to ask questions about it's nature:

Couplings, spin, parity, mass, cross sections ...

- of nature is on the one side precise measurements that are sensitive to the Higgs boson properties.
- LHC provides the input! Run 2: Data, data, data

- Incredible agreement of data and theory
- Triumph of SM predictions
- Higgs production
 ~10 sigma observed

ATLAS:
$$H \to \gamma \gamma + H \to 4l$$

Cleanest channels

[2015]

Total cross section [pb]	7 TeV	8 TeV	13 TeV
$H \rightarrow \gamma \gamma$	35^{+13}_{-12}	$30.5^{+7.5}_{-7.4}$	40^{+31}_{-28}
$H \to ZZ^* \to 4\ell$	33^{+21}_{-16}	37 ⁺⁹ -8	12^{+25}_{-16}
Combination	34 ± 10 (stat.) $^{+4}_{-2}$ (syst.)	33.3 ^{+5.5} _{-5.3} (stat.) ^{+1.7} _{-1.3} (syst.)	24^{+20}_{-17} (stat.) $^{+7}_{-3}$ (syst.)
LHC-XS	17.5 ± 1.6	22.3 ± 2.0	50.9 ^{+4.5} -4.4

[ATLAS-CONF-2015-069]

ATLAS:
$$H \to \gamma \gamma + H \to 4l$$

Cleanest channels

[2016]

Decay channel	Total cross section $(pp \rightarrow H + X)$				
	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$		
$H \rightarrow \gamma \gamma$	35 ⁺¹³ ₋₁₂ pb	30.5 ^{+7.5} _{-7.4} pb	37 ⁺¹⁴ ₋₁₃ pb		
$H\to ZZ^\star\to 4\ell$	33 ⁺²¹ ₋₁₆ pb	37 ₋₈ pb	81 ⁺¹⁸ ₋₁₆ pb		
Combination	34 ± 10 (stat.) $^{+4}_{-2}$ (syst.) pb	33.3 ^{+5.5} _{-5.3} (stat.) ^{+1.7} _{-1.3} (syst.) pb	59.0 ^{+9.7} _{-9.2} (stat.) ^{+4.4} _{-3.5} (syst.) pb		
SM predictions [7]	$19.2 \pm 0.9 \text{ pb}$	24.5 ± 1.1 pb	55.5 ^{+2.4} _{-3.4} pb		

[ATLAS-CONF-2016-081]

- Currently statistical errors dominate
- $100 f b^{-1} \sim$ Factor of 3 better uncertainties!

4

GLUON FUSION – INCLUSIVE CROSS SECTION

$8.58\mathrm{pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(LO, rEFT)
	$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
	$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
	$+ 9.56 \mathrm{pb}$	(+19.7%)	(NNLO, rEFT)
	$+ 0.34 \mathrm{pb}$	(+0.7%)	(NNLO, $1/m_t$)
	$+ 2.40 \mathrm{pb}$	(+4.9%)	(EW, QCD-EW)
	+ 1.49 pb	(+3.1%)	$(N^{3}LO, rEFT)$

- LHC predictions demand effects beyond pure EFT
- Mass corrections & EWK effects

 $\sigma = 48.58 \, \mathrm{pb}_{-3.27 \, \mathrm{pb} \, (-6.72\%)}^{+2.22 \, \mathrm{pb} \, (+4.56\%)} \, (\mathrm{theory}) \pm 1.56 \, \mathrm{pb} \, (3.20\%) \, (\mathrm{PDF} + \alpha_s) \, .$

Many residual uncertainties of comparable importance

$\delta(ext{scale})$	$\delta(ext{trunc})$	$\delta(ext{PDF-TH})$	$\delta(\mathrm{EW})$	$\delta(t,b,c)$	$\delta(1/m_t)$
$^{+0.10}{}_{-1.15}{}_{ m pb}$	$\pm 0.18~{ m pb}$	$\pm 0.56~{ m pb}$	$\pm 0.49~{ m pb}$	$\pm 0.40~{ m pb}$	$\pm 0.49~{ m pb}$
$^{+0.21\%}_{-2.37\%}$	$\pm 0.37\%$	$\pm 1.16\%$	$\pm 1\%$	$\pm 0.83\%$	$\pm 1\%$

 $\sigma = 48.58 \, \mathrm{pb}_{-3.27 \, \mathrm{pb} \, (-6.72\%)}^{+2.22 \, \mathrm{pb} \, (+4.56\%)} \, (\mathrm{theory}) \pm 1.56 \, \mathrm{pb} \, (3.20\%) \, (\mathrm{PDF} + \alpha_s) \, .$

Many residual uncertainties of comparable importance

$\delta(ext{scale})$	$\delta(ext{trunc})$	$\delta(ext{PDF-TH})$	$\delta(\mathrm{EW})$	$\delta(t,b,c)$	$\delta(1/m_t)$	
$^{+0.10}_{-1.15} \text{ pb}$	± 0.18 pb	$\pm 0.56~{ m pb}$	$\pm 0.49~{ m pb}$	$\pm 0.40~{ m pb}$	$\pm 0.49~\mathrm{pb}$	
$^{+0.21\%}_{-2.37\%}$	$\pm 0.37\%$	$\pm 1.16\%$	$\pm 1\%$	$\pm 0.83\%$	$\pm 1\%$	

Addressable with an adequate level of fun

 $\sigma = 48.58 \, \text{pb}_{-3.27 \, \text{pb} \, (-6.72\%)}^{+2.22 \, \text{pb} \, (+4.56\%)} \text{ (theory)} \pm 1.56 \, \text{pb} \, (3.20\%) \, (\text{PDF} + \alpha_s) \, .$

Many residual uncertainties of comparable importance

j					Anna an air an	an an tha tha tha an an an tha tha tha an an an that an
	$\delta(ext{scale})$	$\delta(ext{trunc})$	$\delta(ext{PDF-TH})$	$\delta(\mathrm{EW})$	$\delta(t,b,c)$	$\delta(1/m_t)$
	$+0.10 \text{ pb} \\ -1.15 \text{ pb}$	$\pm 0.18~{ m pb}$	$\pm 0.56~{ m pb}$	$\pm 0.49~{ m pb}$	$\pm 0.40~{ m pb}$	$\pm 0.49~{ m pb}$
	$^{+0.21\%}_{-2.37\%}$	$\pm 0.37\%$	$\pm 1.16\%$	$\pm 1\%$	$\pm 0.83\%$	$\pm 1\%$
Ĩ						والمعارضة والمعارضة والمعارضة والمعارضة والمعارضة والمعارضة والمعارضة والمعارضة والمعارضة والمعارفة والمعارفة

Addressable with an adequate level of fun

Little bit harder

GLUON FUSION – ELECTROWEAK CORRECTIONS

Energy independent EWK corrections

 $\sigma = \sigma_{QCD} \times (1 + \delta_{EWK}) \quad \text{+~5\%}$

 $\mathcal{O}(lpha lpha_S)$ Approximation

[Actis,Passarino,Sturm,Uccirati;Degrassi,Maltoni; Anastasiou,Boughezal,Petriello,....]

Residual Error $\sim 1\%?$

Factorisation vs. Non-Factorisation Recently: Computation of LO through $\mathcal{O}(\epsilon^2)$ [Bonetti,Melnikov,Tancredi]

Corrections to H+J (Energy dependent) [Keung, Petriello]

Very small for inclusive Higgs production

GLUON FUSION – MASS CORRECTIONS

σ_{eft}^{NLO}	34.81[1]	
$\sigma_{eft;R}^{\check{N}LO}$	37.00[2]	+6.3%
$\sigma_{ex;t}^{\check{NLO}}$	36.76[1]	+5.6%
$\sigma^{NLO}_{ex:t+b}$	35.09[1]	+0.8%
$\sigma^{NLO}_{ex;t+b+c}$	34.91[1]	+0.3%

- Interference contributions with light quarks are large and negative!
- Exact mass corrections known up to NLO.
 (3-loop computation for NNLO)
- Interference effects turn positive when going to higher jet multiplicity -> Gionata's talk
- Recent progress and Real-Virtual diagrams

[Bonciani,DelDuca,Frellesvig,Henn,Moriello,Smirnov] [Melnikov,Tancredi,Wever]

GLUON FUSION – INCLUSIVE/EXCLUSIVE CROSS SECTION

- Real measurements happen in fiducial volumes
- Inclusive cross section: Derived quantity with input from many measurements
- We require high precision predictions for observables as close to experimental outcome as possible

 *€*¹⁰⁰
 CMS Preliminan

GLUON FUSION – INCLUSIVE JET BINS

Still very large statistics in one jet bin

 Some observables dependent on higher Jet multiplicity (VBF)

GLUON FUSION – LEADING JET PT

[Chen,Cruz-Martinez,Gehrmann,Glover,Jaquier]

- Still largely uncertainty dominated
- Worries: Systematics ~ NNLO scale!
- Impact of PDFs on differential predictions? (DY)
- Hopefully many more pheno studies to come

GLUON FUSION – HIGGS + JET AND MASSES

- NNLO EFT for small pT
- pT=400 GeV: 50 % uncertainty due to masses at LO
- full NLO H+J ?
- EFT works well for pT< ~200 GeV</p>

[Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier]

GLUON FUSION - HIGGS + JET AND MASSES

- Different behaviour
 $\sigma_{EFT} \sim \frac{1}{p_t^2}$ vs. $\sigma_{full} \sim \frac{1}{p_t^4}$ Start to probe the dynamics in the loop
- Full calculation: Very difficult.
 Many master integrals of many scales, elliptic functions etc.
- Planar Results:

[Bonciani, Del Duca, Frellesvig, Henn, Moriello, Smirnov]

Bottom quarks! Impact for low pT. [Melnikov,Tancredi,Wever]

[Neumann,Williams]

GLUON FUSION – HIGGS + MASSES

What is the actual experimental sensitivity?

At 300 fb^1: 1 fb ~ 300 events ~ 6 % uncertainty.

Sensitivity of selection cuts on mass effects Extrapolation uncertainty.

 $\sigma_{h \to 4l}(pt > \sim 50 GeV) = 1 \text{fb}$ [Higgs +3 Jets and masses -> Gionata]

PRECISION FOR HIGGS DIFFERENTIAL

- Successful treatment of double real radiation
- Applied to colored final state
- Big success for H+J
- Higgs +JJ: Complicated amplitudes Interesting for VBF
 [Papadopoulos,Tomasini,Wever]

- Sector decomposition
- Non-Linear Mappings
- qT
 FKS+
 N-Jettiness
 Antenna
 Colourful
 - Projection-To-Born

[Chen,Gehrmann,Glover,Jaquier]

[Boughezal, Caola, Melnikov, Petriello, Schulze]

PRECISION FOR HIGGS DIFFERENTIAL

- Missing for N3LO H+0 Jets
- Precision predictions for fiducial volumes
- Jet-Veto cross sections (H->WW)

Ideally: Compute fully differential N3LO corrections

 Complications: Integration over three unresolved parton phase space, subtraction, stability, speed

But let's start with a bit of differential

work with Babis Anastasiou, Falko Dulat, Simone Lionetti, Andrea Pelloni, Caterina Specchia

GENERAL IDEA – HIGGS DIFFERENTIAL

Master-Formula for differential cross section

$$\frac{d\sigma}{d\mathcal{O}} \sim \int d^d p_h dx dy f(x) f(y) \frac{\partial \hat{\sigma}}{\partial p_h} \mathcal{J}_{\mathcal{O}}(p_h)$$

Measurement Function

Observable depending on Higgs momentum

For Example

$$\mathcal{J}_{\mathcal{O}}(p_h) = \theta(p_T < 50 GeV)$$

Parametrize:

$$(m_h^2, p_T, Y) \to (z, x, \lambda)$$

More convenient for computation

$$\int d\Phi_n \sim \int_0^1 d\lambda dx \, (\lambda(1-\lambda))^{\frac{d}{2}-1} \, (1-x)^{\frac{d}{2}-2} \, (1-x\bar{z}\lambda)^{-\frac{d}{2}} \times \int d\Phi_n^{0-m}$$

Phase-space singularities at the boundaries

INTEGRATE RADIATION

- Perform analytic integration over real radiation: Reverse Unitarity
- Reduce to phase space master integrals
- Compute master integrals via direct integration or differential equations

$$d\vec{M} = A(z, x, \lambda, \epsilon)\vec{M}$$

Three variables for differential equations (z,x,λ)

$$\begin{aligned} \mathbf{Alphabet} \\ & \{1 - \bar{z}, \bar{z}, 1 - x\bar{z}, 1 - \lambda x\bar{z}, \lambda^2 (-(x-1))x\bar{z}^2 - \bar{z} + 1, \lambda^2 x\bar{z}^2 + \bar{z}(-2\lambda x + x - 1) + 1, \\ & \lambda^2 x^2 \bar{z} (-4\lambda + \lambda^2 \bar{z} + 4) - 2\lambda x (\lambda(\bar{z} - 2) + 2) + 1, 2\lambda^2 x^2 \bar{z} - \sqrt{\lambda^2 x^2 \bar{z} (-4\lambda + \lambda^2 \bar{z} + 4) - 2\lambda x (\lambda(\bar{z} - 2) + 2) + 1} - \end{aligned}$$

CURRENT STATUS

- Analytically computed all partonic cross sections for all channels at NNLO
- Subtraction of singularities and numerical integration work
- Computed $\mathcal{O}(\epsilon)$ cross section coefficient required for N3LO computation
- Numerical implementations

DIFFERENTIAL HIGGS + 0 JETS

NNLO RAPIDITY DISTRIBUTION

NNLO PT DISTRIBUTION

|Y|< 2.5

NNLO PT DISTRIBUTION

0.1 GeV < pT < 1 GeV

- QCD precision predictions for Higgs boson physics are inseparably intertwined with the success of Higgs boson phenomenology at the LHC
- Progress towards precision measurement
- Few select observables deserve our absolute best
- Number of non-negligible effects increases as we strife for higher precision
- Demand for new methods and ideas: Progress towards differential N3LO