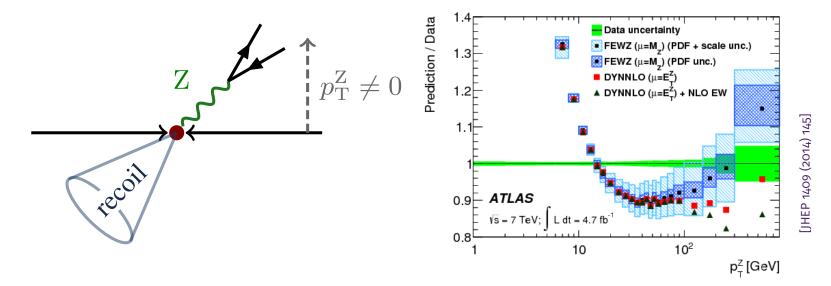


Transverse momentum distributions and jet cross sections at NNLO precision Future Challenges for Precision QCD, Durham, 26.10.2016

Thomas Gehrmann, Universität Zürich

Standard Model processes at the LHC


Benchmark processes: $2 \rightarrow 2$ reactions

Large cross sections

- Multiple-differential measurements
 - Di-jet production
 - Z+jet,W+jet
 - ▶ H+jet
- Detailed understanding of dynamics
 - Disentangle production processes
 - Probe parton distributions
- Transverse momentum distribution
 - Continuous transition from hard to soft region
 - Fixed order versus resummation

Z transverse momentum distribution

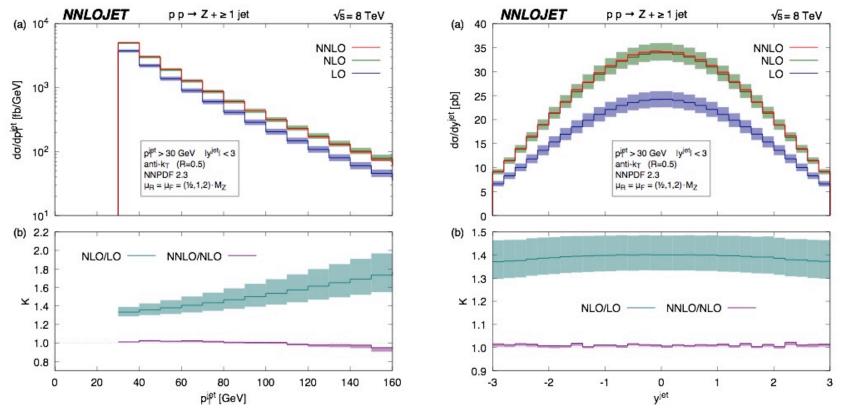
Transverse momentum requires partonic recoil

Mismatch of orders in perturbation theory

- NNLO for inclusive Z is only NLO for p_T -distribution
- Z+jet and Z p_T distribution closely related
- NLO fails to describe measurements in norm and shape

NNLOJET code

NNLO parton level event generator

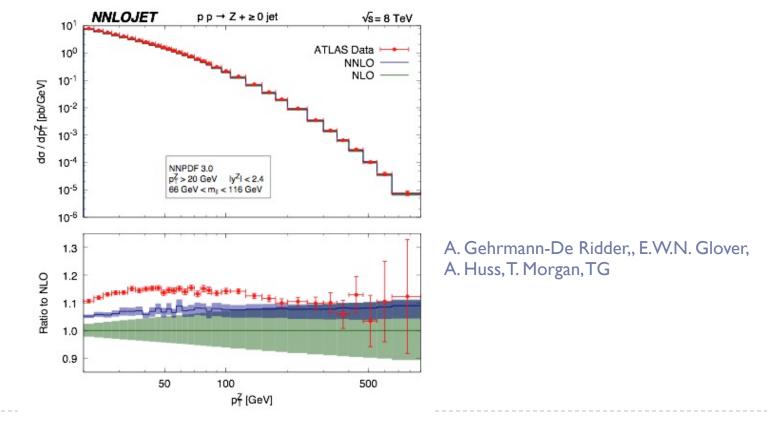

- Based on antenna subtraction
- Provides infrastructure
 - Process management
 - Phase space, histogram routines
 - Validation and testing
 - Parallel computing (MPI) support for warm-up and production
 - ApplGrid/fastNLO interfaces in development
- Processes implemented at NNLO
 - Z+(0,1)jet, H+(0,1)jet, W+0jet
 - DIS-2j, LHC-2j (ongoing)

NNLOJET project: X. Chen, J. Cruz-Martinez, J, Currie, A. Gehrmann-De Ridder, E.W.N. Glover, A. Huss, T. Morgan, J. Niehues, J. Pires, M. Sutton, D. Walker, TG

Z+jet at NNLO

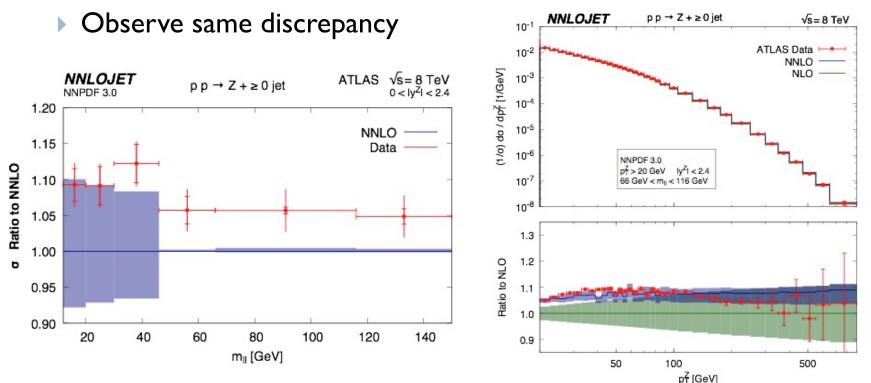
Calculation based on antenna subtraction

- In-depth validation of subsequent results (MCFM: R.Boughezal et al.)
- Uncovering various issues, finally in agreement


Using calculation for Z+jet inclusively on partons

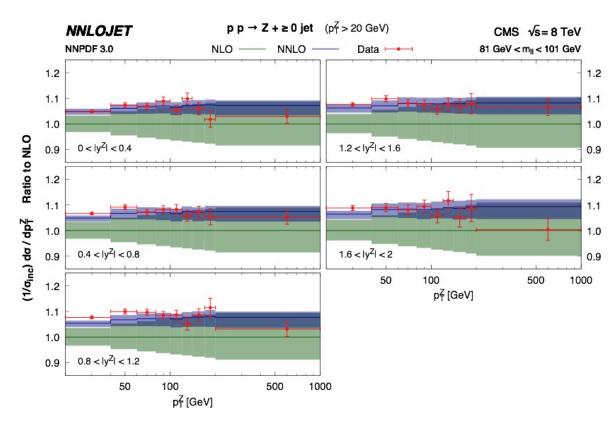
- No jet requirement
- Including leptonic Z-decay
- Lower cut on transverse momentum
- Compute fiducial cross sections

	ATLAS	CMS
leading lepton	$ \eta_{\ell_1} < 2.4$	$ \eta_{\ell_1} < 2.1$
	$p_T^{\ell_1} > 20 \mathrm{GeV}$	$p_T^{\ell_1} > 25 \mathrm{GeV}$
sub-leading lepton	$ \eta_{\ell_2} < 2.4$	$ \eta_{\ell_2} < 2.4$
	$p_T^{\ell_2} > 20 \mathrm{GeV}$	$p_{T,2}^{\ell_2} > 10 \text{ GeV}$

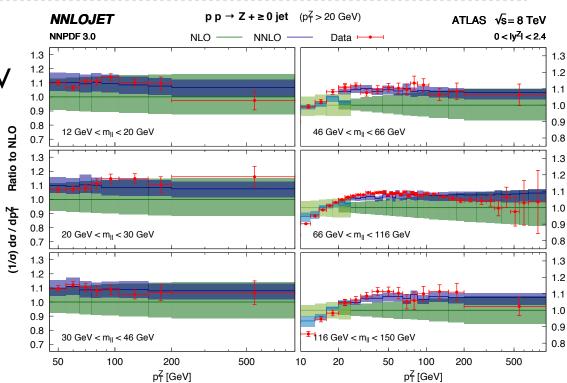

NNLO effects

- > Around 5% corrections, modify shape of p_T distribution
- Normalization of data not described correctly (both CMS/ATLAS)

Compute inclusive fiducial cross section at NNLO


Corresponds to Z+0j calculation

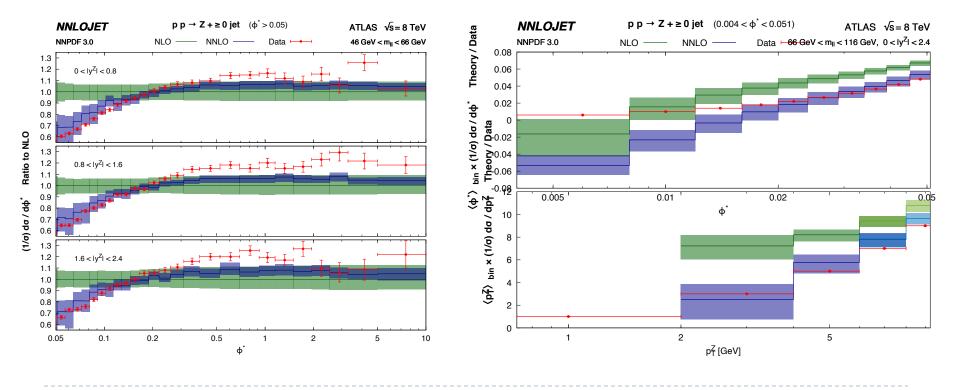
Consider normalized p_T distribution


Double differential distributions

- ▶ (p_T,m_{ll}), (p_T,y)
- Good agreement for normalized distributions
- Revisit ingredients
 - Luminosity
 - Parton distributions

► Low p_T

- measurements to I GeV
- Challenge for NNLO calculation: stability
- NNLO reliable to around 5 GeV


Related observable (purely from lepton directions)

$$\phi^* = \tan\left(\frac{\pi - \Delta\phi}{2}\right)\sin(\theta_{\eta}^*) \approx \frac{p_T^Z}{2m_{ll}}$$

Z ϕ^* -distribution at NNLO

• Leptonic variable ϕ^* allows higher resolution

- Observe breakdown of fixed order similar to p_T -distribution
- Eagerly awaiting matching to resummation

Higgs+jet at NNLO

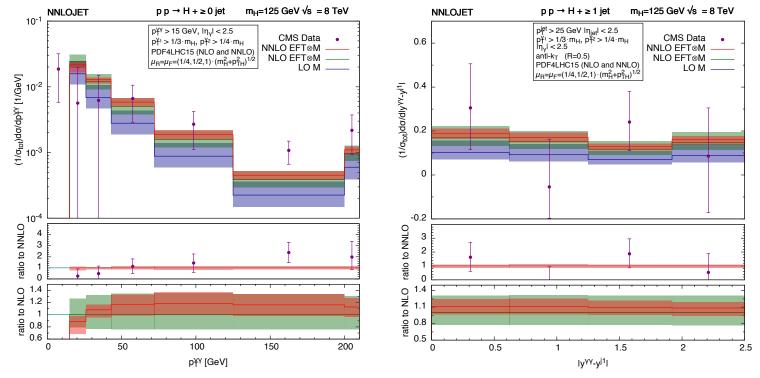
Calculation based on antenna subtraction

Agreement (0.4%) with residue-subtraction (F. Caola, K. Melnikov, M. Schulze)

ATT AC

CMG

Discrepancy with Njettiness (R. Boughezal, C. Focke, X. Liu, F. Petriello)

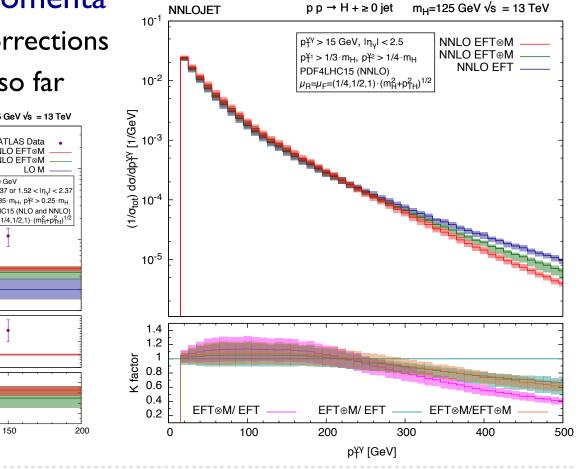

Fiducal cross sections

	AILAS	CMS
leading photon	$ \eta_{\gamma_1} < 2.37$	$ \eta_{\gamma_1} < 2.5$
	$p_T^{\gamma_1} > 0.35 m_H$	$p_T^{\gamma_1} > 0.33 m_H$
sub-leading photon	$ \eta_{\gamma_2} < 2.37$	$ \eta_{\gamma_2} < 2.5$
	$p_T^{\gamma_2} > 0.25 m_H$	$p_T^{\gamma_2} > 0.25 m_H$
photon isolation	$R_{\gamma} = 0.4$	$R_{\gamma} = 0.4$
	$\sum_{i} E_{Ti} < 14 \text{ GeV}$	$\sum_{i} E_{Ti} < 10 \text{ GeV}$
anti- k_T jets	R = 0.4	R = 0.5
	$ \eta_j < 4.4$	$ \eta_j < 2.5$
	$p_T^j > 30 { m ~GeV}$	$p_T^j > 25~{ m GeV}$

Consider normalization inclusive fiducal cross section
Input to HXSWG Yellow Report 4

Higgs p_T distribution at NNLO

Normalized results in good agreement with 8TeV data


Prepare for precision studies at higher energy

X. Chen, J. Cruz-Martinez, E.W.N. Glover, M. Jaquier, TG

Higgs p_T distribution at NNLO

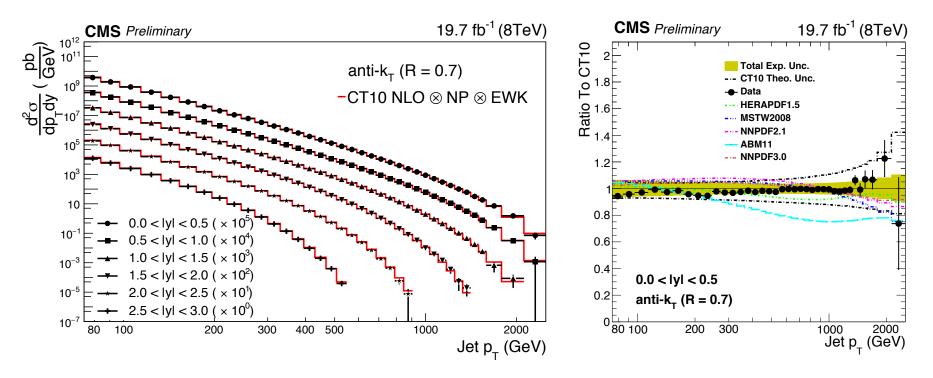
EFT description of Higgs-gluon coupling breaks down at large transverse momenta

10⁻¹ Need finite mass corrections Only known at LO so far 10⁻² (1/a_{tot}) da/dp^{ty} [1/GeV] 0 6 m_H=125 GeV √s = 13 TeV NNLOJET pp → H + ≥0 jet 10⁻³ ATLAS Data NNLO EFT⊗M NLO EFT⊗M 10⁰ LO M $p_{Y}^{Y} > 20 \text{ GeV}$ da/dpY^v [fb/GeV] 10. $p_{1}^{+1} > 0.35 \cdot m_{H}, p_{2}^{+2} > 0.25 \cdot m_{H}$ PDF4LHC15 (NLO and NNLO) $\mu_{\text{B}} = \mu_{\text{F}} = (1/4, 1/2, 1) \cdot (m_{\text{H}}^2 + p_{\text{TH}}^2)^{1/2}$ 10⁻⁵ 10-2 ratio to NNLO 3 1.4 2 1.2 1

0

0

50

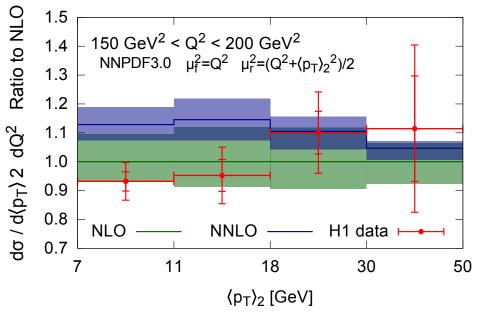

100

p^{¥Ŷ} [GeV]

Latio to NLO 0.9 0.7 0.5

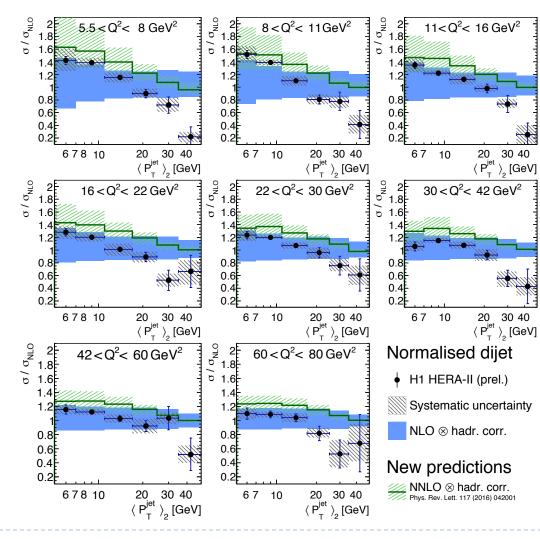
Jet cross sections at hadron colliders

CMS results: single jet inclusive



- uncertainty on NLO prediction larger than spread from partons
- need improved theory for precise extraction of parton distributions from jets

Jet cross sections at NNLO


NNLO corrections to di-jet production in DIS

- Recently completed (J. Currie, J. Niehues, TG)
- Implemented in NNLOJET
- Substantial NNLO effects
- Uncovered infrared-sensitive interplay of H1 event selection
 - Combination of jet-pT and di-jet mass restricts
 LO/NLO phase space
- Will become input to PDF fits
 - Require APPLGrid/FastNLO

NNLO corrections to di-jets at hadron colliders ongoing (J. Currie, E.W.N. Glover, J. Pires)

Jet cross sections in DIS

New HI measurement at low Q^2 (preliminary)

NNLO with NNPDF3.0

Conclusions and outlook

NNLO corrections to precision observables at LHC

- Various methods have been applied successfully
- Healthy competition between groups
- Dissemination of results remains a challenge (AppIGrid, fast[N]NLO)

• Current frontier: $2 \rightarrow 2$ QCD processes

- Substantial number of calculations completed in the past two years
- More results coming (require in part new two-loop amplitudes)

Precision phenomenology starting

- Parton distributions from multiple-differential measurements
- Transverse momentum distributions