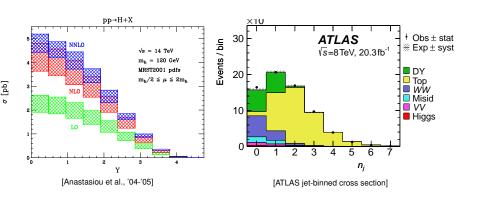
NNLO+PS with POWHEG + MiNLO

Emanuele Re

CERN & LAPTh Annecy

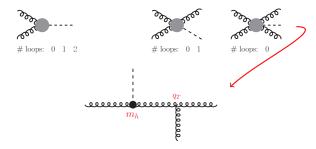


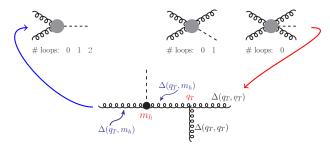
Future challenges for precision QCD IPPP, Durham, 26 October 2016

Why NNLO? Why NNLO+PS?

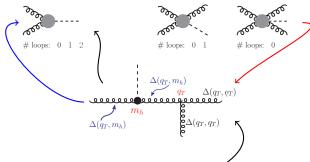
- NNLO when very-high precision required [DY] or large NLO/LO K-factor [Higgs].
- PS do a good job for differential distributions (limited formal accuracy wrt resummation, but "more flexible" and fully differential).

aim: build an event generator that is NNLO accurate (NNLOPS)


Higgs at NNLO:



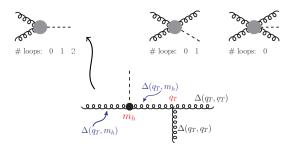
Higgs at NNLO:


(a) 1 and 2 jets: POWHEG H+1j

Higgs at NNLO:

- (b) integrate down to $q_T=0$ with MiNLO "Improved MiNLO" allows to build a H-HJ @ NLOPS generator
- (a) 1 and 2 jets: POWHEG H+1j

Higgs at NNLO:



(c) 2 loops missing: from exact fixed-order NNLO

$$W(y) = \frac{d\sigma(y)_{\text{NNLO}}}{d\sigma(y)_{\text{MiNLO}}}$$

- (b) integrate down to $q_T=0$ with MiNLO "Improved MiNLO" allows to build a H-HJ @ NLOPS generator
- (a) 1 and 2 jets: POWHEG H+1j

Higgs at NNLO:

- method presented here was used so far for
 - Higgs production
 - neutral & charged Drell-Yan
 - associated WH production

[Hamilton,Nason,ER,Zanderighi, 1309.0017] [Karlberg,ER,Zanderighi, 1407.2940] [Astill,Bizon,ER,Zanderighi, 1603.01620]

as is, it can in principle be used for generic colour-singlet production

NNLO+PS

what do we need and what do we already have?

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
H @ NLOPS	NLO	LO	shower
HJ @ NLOPS	/	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

NNLO+PS

what do we need and what do we already have?

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
H @ NLOPS	NLO	LO	shower
HJ @ NLOPS	/	NLO	LO
H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

a merged H-HJ generator is almost OK

NNLO+PS

what do we need and what do we already have?

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
H @ NLOPS	NLO	LO	shower
HJ @ NLOPS	/	NLO	LO
H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

a merged H-HJ generator is almost OK

- there are several multijet NLO+PS merging approaches; typically they combine 2 (or more) NLO+PS generators, often introducing a merging scale
- POWHEG + Minlo: does not need a merging scale. It extends the validity of an NLO computation with jets in the final state in regions where jets become unresolved

MiNLO

Multiscale Improved NLO

[Hamilton, Nason, Zanderighi, 1206.3572]

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

MiNLO

Multiscale Improved NLO

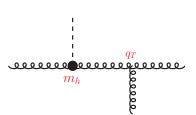
[Hamilton, Nason, Zanderighi, 1206.3572]

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)
 - for each point sampled, build the "more-likely" shower history that would have produced that kinematics (can be done by clustering kinematics with k_T -algo, then, by undoing the clustering, build "skeleton")
 - correct original NLO: $\alpha_{\rm S}$ evaluated at nodal scales and Sudakov FFs
 - "without spoiling formal NLO accuracy":
 - 1. Scale dependence shows up at NNLO ["scale compensation"]:

$$O(\mu') - O(\mu) = \mathcal{O}(\alpha_S^{n+2})$$
 if $O \sim \alpha_S^n$ at LO

2. Away from soft-collinear regions, exact NLO recovered:

$$O_{\rm MiNLO} = O_{\rm NLO} + \mathcal{O}(\alpha_{\rm S}^{n+2}) \hspace{1cm} [~i.e.~\alpha_{\rm S}^{n}~\&~\alpha_{\rm S}^{n+1}~{\rm reproduce~plain~NLO}~]$$


MiNLO

Multiscale Improved NLO

[Hamilton, Nason, Zanderighi, 1206.3572]

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$\bar{B}_{\rm NLO} = \alpha_{\rm S}^3(\mu_R) \Big[B + \alpha_{\rm S} V(\mu_R) + \alpha_{\rm S} \int d\Phi_{\rm r} R \Big]$$

Multiscale Improved NLO

[Hamilton, Nason, Zanderighi, 1206.3572]

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$\begin{split} \bar{B}_{\text{NLO}} &= \alpha_{\text{S}}^{3}(\mu_{R}) \Big[B + \alpha_{\text{S}} V(\mu_{R}) + \alpha_{\text{S}} \int d\Phi_{\text{r}} R \Big] \\ \bar{B}_{\text{MiNLO}} &= \alpha_{\text{S}}^{2}(m_{h}) \alpha_{\text{S}}(q_{T}) \Delta_{g}^{2}(q_{T}, m_{h}) \Big[B \left(1 - 2\Delta_{g}^{(1)}(q_{T}, m_{h}) \right) + \alpha_{\text{S}} V(\bar{\mu}_{R}) + \alpha_{\text{S}} \int d\Phi_{\text{r}} R \Big] \\ & \qquad \qquad \cdot \bar{\mu}_{R} = (m_{h}^{2} q_{T})^{1/3} \\ & \qquad \qquad \cdot \left[\frac{\Delta(q_{T}, m_{h})}{q_{T}} \right] \cdot \log \Delta_{f}(q_{T}, m_{h}) = -\int_{q_{T}^{2}}^{m_{h}^{2}} \frac{dq^{2}}{q^{2}} \frac{\alpha_{\text{S}}(q^{2})}{2\pi} \Big[A_{f} \log \frac{m_{h}^{2}}{q^{2}} + B_{f} \Big] \\ & \qquad \qquad \cdot \Delta_{f}^{(1)}(q_{T}, m_{h}) = -\frac{\alpha_{\text{S}}}{2\pi} \Big[\frac{1}{2} A_{1,f} \log^{2} \frac{m_{h}^{2}}{q_{T}^{2}} + B_{1,f} \log \frac{m_{h}^{2}}{q_{T}^{2}} \Big] \\ & \qquad \qquad \cdot \mu_{F} = q_{T} \end{split}$$

Multiscale Improved NLO

[Hamilton, Nason, Zanderighi, 1206.3572]

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

Sudakov FF included on H+iBorn kinematics

- \blacktriangleright with Minlo, finite results from HJ also when 1st jet is unresolved $(q_T \to 0)$
- $ar{B}_{ ext{MiNLO}}$ ideal to extend validity of HJ-POWHEG [called "HJ-MINLO" hereafter]

"Improved" MiNLO & NLOPS merging

▶ formal accuracy of HJ-Minlo for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

- lacktriangle HJ-MiNLO describes inclusive observables at order $lpha_{
 m S}$
- but to reach genuine NLO when fully inclusive (NLO⁽⁰⁾), "spurious" terms must be of relative order $\alpha_{\rm S}^2$, *i.e.*

$$O_{\mathrm{HJ-MiNLO}} = O_{\mathrm{H@NLO}} + \mathcal{O}(\alpha_{\mathrm{S}}^{2+2})$$
 if O is inclusive

• "Original Minlo" contains ambiguous " $\mathcal{O}(lpha_{
m S}^{2+1.5})$ " terms

"Improved" MiNLO & NLOPS merging

▶ formal accuracy of HJ-Minlo for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

- lacktriangle HJ-MiNLO describes inclusive observables at order $lpha_{
 m S}$
- ▶ to reach genuine NLO when fully inclusive (NLO⁽⁰⁾), "spurious" terms must be of <u>relative</u> order α_S^2 , *i.e.*

$$O_{\mathrm{HJ-MiNLO}} = O_{\mathrm{H@NLO}} + \mathcal{O}(\alpha_{\mathrm{S}}^{2+2})$$
 if O is inclusive

- "Original Minlo" contains ambiguous " $\mathcal{O}(\alpha_{\mathrm{S}}^{2+1.5})$ " terms
- ▶ Possible to improve HJ-Minlo such that inclusive NLO is recovered (NLO⁽⁰⁾), without spoiling NLO accuracy of H+j (NLO⁽¹⁾).
- accurate control of subleading small- p_T logarithms is needed (scaling in low- p_T region is $\alpha_{\rm S}L^2\sim 1$, i.e. $L\sim 1/\sqrt{\alpha_{\rm S}}$!)

Effectively as if we merged NLO⁽⁰⁾ and NLO⁽¹⁾ samples, without merging different samples (no merging scale used: there is just one sample).

"Improved" MiNLO & NLOPS merging: details

Resummation formula can be written as

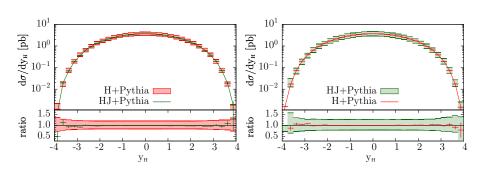
$$\frac{d\sigma}{dq_T^2 dy} = \sigma_0 \frac{d}{dq_T^2} \left\{ [C_{ga} \otimes f_a](x_A, q_T) \times [C_{gb} \otimes f_b](x_B, q_T) \times \exp S(q_T, Q) \right\} + R_f$$

$$S(q_T, Q) = -2 \int_{q_T^2}^{Q^2} \frac{dq^2}{q^2} \frac{\alpha_{\rm S}(q^2)}{2\pi} \left[A_f \log \frac{Q^2}{q^2} + B_f \right]$$

- If $C_{ij}^{(1)}$ included and R_f is LO⁽¹⁾, then upon integration we get NLO⁽⁰⁾
- ► Take derivative, then compare with MiNLO:

$$\sim \sigma_0 \frac{1}{q_T^2} [\alpha_{\rm S}, \alpha_{\rm S}^3, \alpha_{\rm S}^4, \alpha_{\rm S} L, \alpha_{\rm S}^2 L, \alpha_{\rm S}^3 L, \alpha_{\rm S}^4 L] \exp S(q_T, Q) + R_f \quad L = \log(Q^2/q_T^2)$$

highlighted terms are needed to reach NLO⁽⁰⁾:


$$\int^{Q^2} \frac{dq_T^2}{q_T^2} L^m \alpha_S^n(q_T) \exp S \sim (\alpha_S(Q^2))^{n - (m+1)/2}$$

(scaling in low- p_T region is $\alpha_{\rm S}L^2\sim 1!$)

- lacksquare if I don't include B_2 in <code>MiNLO</code> Δ_g , I miss a term $(1/q_T^2)$ $\left|lpha_{
 m S}^2
 ight|B_2\exp S$
- upon integration, violate NLO⁽⁰⁾ by a term of relative $\mathcal{O}(\alpha_{\mathrm{S}}^{3/2})$

MiNLO merging: results

[Hamilton et al., 1212.4504]

- lacktriangle "H+Pythia": standalone POWHEG (gg o H) + PYTHIA (PS level) [7pts band, $\mu = m_H$]
- ▶ "HJ+Pythia": HJ-Minlo* + PYTHIA (PS level) [7pts band, μ from Minlo]
- very good agreement (both value and band)

[**√**]

 $^{\square}$ Notice: band is $\sim 20-30\%$

► HJ-Minlo+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
✓ H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

► HJ-Minlo+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
✓ H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

lacktriangledown reweighting (differential on Φ_B) of "Minlo-generated" events:

$$W(\Phi_B) = \frac{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{NNLO}}}{\left(\frac{d\sigma}{d\Phi_B}\right)_{\text{HJ-MiNLO}^*}}$$

- lacktriangle by construction NNLO accuracy on fully inclusive observables $(\sigma_{
 m tot}, y_H; m_{\ell\ell}, ...)$ [$\sqrt{\ }$]
- ▶ to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region

► HJ-Minlo+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
✓ H-HJ @ NLOPS	NLO	NLO	LO
√H@NNLOPS	NNLO	NLO	LO

lacktriangledown reweighting (differential on Φ_B) of "MiNLO-generated" events:

$$W(\Phi_B) = \frac{\left(\frac{d\sigma}{d\Phi_B}\right)_{\mathrm{NNLO}}}{\left(\frac{d\sigma}{d\Phi_B}\right)_{\mathrm{HJ-MiNLO}^*}} = \frac{\alpha_{\mathrm{S}}^2 c_0 + c_1 \alpha_{\mathrm{S}}^3 + c_2 \alpha_{\mathrm{S}}^4}{\alpha_{\mathrm{S}}^2 c_0 + c_1 \alpha_{\mathrm{S}}^3 + d_2 \alpha_{\mathrm{S}}^4} \simeq 1 + \frac{c_2 - d_2}{c_0} \alpha_{\mathrm{S}}^2 + \mathcal{O}(\alpha_{\mathrm{S}}^3)$$

- **by** construction NNLO accuracy on fully inclusive observables $(\sigma_{\mathrm{tot}}, y_H; m_{\ell\ell}, ...)$ [\checkmark]
- ▶ to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region [√]

► HJ-Minlo+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
✓ H-HJ @ NLOPS	NLO	NLO	LO
√H@NNLOPS	NNLO	NLO	LO

lacktriangledown reweighting (differential on Φ_B) of "MiNLO-generated" events:

$$W(\Phi_B) = \frac{\left(\frac{d\sigma}{d\Phi_B}\right)_{\mathrm{NNLO}}}{\left(\frac{d\sigma}{d\Phi_B}\right)_{\mathrm{HJ-MiNLO}^*}} = \frac{\alpha_{\mathrm{S}}^2 c_0 + c_1 \alpha_{\mathrm{S}}^3 + c_2 \alpha_{\mathrm{S}}^4}{\alpha_{\mathrm{S}}^2 c_0 + c_1 \alpha_{\mathrm{S}}^3 + d_2 \alpha_{\mathrm{S}}^4} \simeq 1 + \frac{c_2 - d_2}{c_0} \alpha_{\mathrm{S}}^2 + \mathcal{O}(\alpha_{\mathrm{S}}^3)$$

- lacktriangle by construction NNLO accuracy on fully inclusive observables $(\sigma_{
 m tot},y_H;m_{\ell\ell},...)$ [$m{v}$]
- ▶ to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-Minlo in 1-jet region $\llbracket \checkmark \rrbracket$
- \blacktriangleright notice: formally works because no spurious $\mathcal{O}(\alpha_{\rm S}^{2+1.5})$ terms in H-HJ @ NLOPS

► HJ-Minlo+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	H+j (inclusive)	H+2j (inclusive)
✓ H-HJ @ NLOPS	NLO	NLO	LO
√H@NNLOPS	NNLO	NLO	LO

lacktriangledown reweighting (differential on Φ_B) of "MiNLO-generated" events:

$$W(\Phi_B) = \frac{\left(\frac{d\sigma}{d\Phi_B}\right)_{\mathrm{NNLO}}}{\left(\frac{d\sigma}{d\Phi_B}\right)_{\mathrm{HJ-MiNLO}^*}} = \frac{\alpha_{\mathrm{S}}^2 c_0 + c_1 \alpha_{\mathrm{S}}^3 + c_2 \alpha_{\mathrm{S}}^4}{\alpha_{\mathrm{S}}^2 c_0 + c_1 \alpha_{\mathrm{S}}^3 + d_2 \alpha_{\mathrm{S}}^4} \simeq 1 + \frac{c_2 - d_2}{c_0} \alpha_{\mathrm{S}}^2 + \mathcal{O}(\alpha_{\mathrm{S}}^3)$$

- **by** construction NNLO accuracy on fully inclusive observables $(\sigma_{\mathrm{tot}}, y_H; m_{\ell\ell}, ...)$ [\checkmark]
- ▶ to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region
 [√]
- ▶ notice: formally works because no spurious $\mathcal{O}(\alpha_{\mathrm{S}}^{2+1.5})$ terms in H-HJ @ NLOPS
- ightharpoonup the more computationally demanding the method will be

▶ Variants for reweighting $(W(y_H), W(\Phi_B))$ are also possible:

$$W(y, p_T) = h(p_T) \frac{\int d\sigma_A^{\text{NILO}} \delta(y - y(\mathbf{\Phi}))}{\int d\sigma_A^{\text{MiNLO}} \delta(y - y(\mathbf{\Phi}))} + (1 - h(p_T))$$
$$d\sigma_A = d\sigma \ h(p_T), \qquad d\sigma_B = d\sigma \ (1 - h(p_T)), \qquad h = \frac{(\beta m_H)^2}{(\beta m_H)^2 + p_T^2}$$

- freedom to distribute "NNLO/NLO K-factor" only over medium-small p_T region
- $h(p_T)$ controls where the NNLO/NLO K-factor is distributed (in the high- p_T region, there is no improvement in including it)
- β cannot be too small, otherwise resummation spoiled: for Higgs, chosen $\beta = 1/2$; for DY, $\beta = 1$
- in practice, we used

$$W(y, p_T) = h(p_T) \frac{\int d\sigma^{\text{NNLO}} \delta(y - y(\mathbf{\Phi})) - \int d\sigma_B^{\text{MiNLO}} \delta(y - y(\mathbf{\Phi}))}{\int d\sigma_A^{\text{MiNLO}} \delta(y - y(\mathbf{\Phi}))} + (1 - h(p_T))$$

- one gets exactly $(d\sigma/dy)_{\rm NNLOPS} = (d\sigma/dy)_{\rm NNLO}$ (no $\alpha_{\rm S}^5$ terms)
- chosen $h(p_T^{j_1})$

Settings

inputs for H@NNLOPS plots:

- results are for 8 TeV LHC
- scale choices: NNLO input with $\mu=m_H/2$, HJ-MiNLO "core scale" m_H (other powers are at q_T)
- PDF: everywhere MSTW2008 NNLO
- NNLO always from HNNLO

[Catani,Grazzini]

- 6M events reweighted at the LH level
- plots after $k_{\rm T}$ -ordered Pythia6 at the PS level (hadronization and MPI switched off)

for V@NNLOPS plots:

- similar choices as above
- NNLO always from DYNNLO

[Catani,Cieri,Ferrera,de Florian,Grazzini]

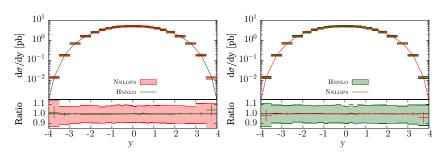
- used also Pythia8 at the PS level

for WH@NNLOPS plots:

- similar choices as above
- NNLO always from HVNNLO

- PDF: MMHT2014nnlo

[Ferrera, Grazzini, Tramontano]

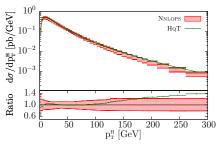

H@NNLOPS (fully incl.)

To reweight, use y_H

NNLO with $\mu=m_H/2$, HJ-MiNLO "core scale" m_H

[NNLO from HNNLO, Catani, Grazzini]

 $ightharpoonup (7_{Mi} imes 3_{NN})$ pts scale var. in NNLOPS, 7pts in NNLO

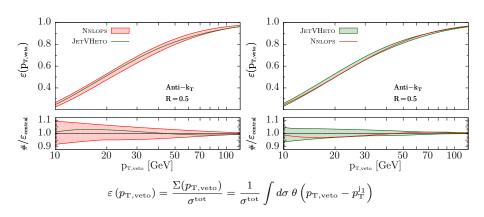

Notice: band is 10% (at NLO would be \sim 20-30%)


[**√**]

 $[\text{Until and including } \mathcal{O}(\alpha_S^4), \text{ PS effects don't affect } y_H \text{ (first 2 emissions controlled properly at } \mathcal{O}(\alpha_S^4) \text{ by MiNLO+POWHEG)}]$

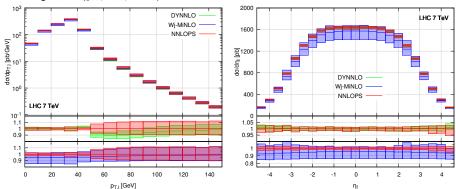
H@NNLOPS (p_T^H)

$$\beta = 1/2$$



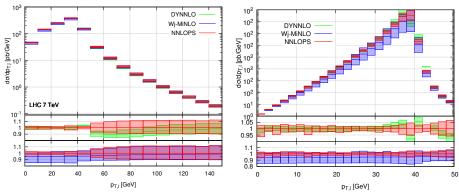
- lacktriangledown HqT: NNLL+NNLO, $\mu_R=\mu_F=m_H/2$ [7pts],
- $Q_{
 m res} \equiv m_H/2$
- [HqT, Bozzi et al.]

- \checkmark uncertainty bands of HqT contain NNLOPS at low-/moderate p_T
- ightharpoonup very good agreement with HqT resummation [" \sim expected", since $Q_{\rm res}\equiv m_H/2$, and $\beta=1/2$]
- ▶ HqT tail harder than NNLOPS tail ($\mu_{HqT} < \mu_{MiNLO}$)


NNLO+PS $(p_T^{j_1})$

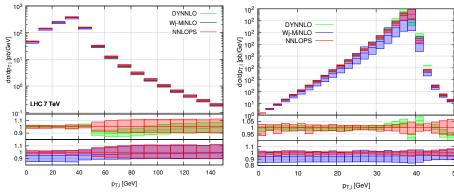
- lacktriangle JetVHeto: NNLL resum, $\mu_R=\mu_F=m_H/2$ [7pts], $Q_{
 m res}\equiv m_H/2$, (a)-scheme only [JetVHeto, Banfi et al.]
- nice agreement, differences never more than 5-6 %
- Separation of $H \to WW$ from $t\bar{t}$ bkg: x-sec binned in $N_{\rm jet}$ 0-jet bin \Leftrightarrow jet-veto accurate predictions needed !

W@NNLOPS, PS level

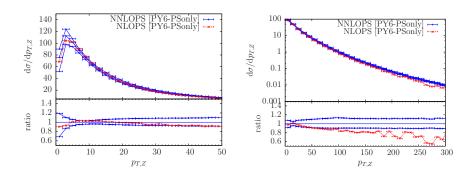

To reweight, use $(y_{\ell\ell}, m_{\ell\ell}, \cos\theta_{\ell})$

- not the observables we are using to do the NNLO reweighting
 - observe exactly what we expect: $p_{T,\ell}$ has NNLO uncertainty if $p_T < M_W/2,$ NLO if $p_T > M_W/2$
 - η_ℓ is NNLO everywhere

W@NNLOPS, PS level


To reweight, use $(y_{\ell\ell}, m_{\ell\ell}, \cos\theta_{\ell})$

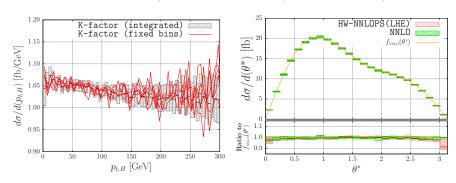
- not the observables we are using to do the NNLO reweighting
 - observe exactly what we expect: $p_{T,\ell}$ has NNLO uncertainty if $p_T < M_W/2$, NLO if $p_T > M_W/2$
 - smooth behaviour when close to Jacobian peak (also with small bins) (due to resummation of logs at small $p_{T,V}$)


W@NNLOPS, PS level

To reweight, use $(y_{\ell\ell}, m_{\ell\ell}, \cos\theta_{\ell})$

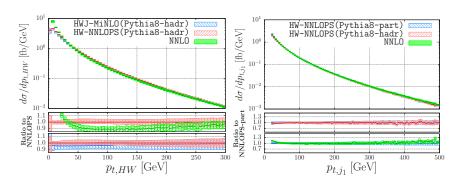
- not the observables we are using to do the NNLO reweighting
 - observe exactly what we expect: $p_{T,\ell}$ has NNLO uncertainty if $p_T < M_W/2$, NLO if $p_T > M_W/2$
 - smooth behaviour when close to Jacobian peak (also with small bins) (due to resummation of logs at small $p_{T,V}$)
- lacktriangleq just above peak, DYNNLO uses $\mu=M_W$, WJ-Minlo uses $\mu=p_{T,W}$
 - here $0 \lesssim p_{T,W} \lesssim M_W$ (so resummation region does contribute)

NNLOPS vs. NLOPS



- different terms in Sudakov, although both contain NLL terms in momentum space
 - in NLOPS: $\alpha_{\rm S}$ in radiation scheme; in NNLOPS: MiNLO Sudakov
- formally they have the same logarithmic accuracy (as supported by above plot)
- ightharpoonup at large p_T , difference as expected

WH@NNLOPS

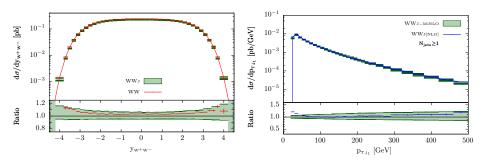

To reweight, use $(y_{\rm HW}, \Delta y_{\rm HW}, p_{t, \rm H})$ + Collins-Soper angles (assuming, and validating, that dependence upon $m_{\ell \nu}$ is negligible)

$$\begin{array}{lcl} \frac{d\sigma}{d\Phi_B} & = & \frac{d\sigma}{dy_{\mathrm{HW}} \, d\Delta y_{\mathrm{HW}} \, dp_{t,\mathrm{H}} \, d\cos\theta^* d\phi^*} \\ & = & \frac{3}{16\pi} \left(\frac{d\sigma}{d\Phi_{\mathrm{HW}^*}} (1 + \cos^2\theta^*) + \sum_{i=0}^7 A_i(\Phi_{\mathrm{HW}^*}) f_i(\theta^*, \phi^*) \right) \end{array}$$

- left plot: K-factor for $p_{T,H}$, in different slices of $m_{\ell\nu}$
- right plot: angular dependence in slice of y_{HW}

WH@NNLOPS

- left plot: standard behaviour
 - resummation effects at small $p_{T,WH}$
 - at high $p_T\colon \mathtt{NNLOPS} o \mathtt{MiNLO}$
- right plot: hardest-jet spectrum


"Improved" MiNLO: from Drell-Yan to WW

[Hamilton, Melia, Monni, ER, Zanderighi '16]

In 1606.07062 we presented a MiNLO' generator for WW and WW + 1 jet:

- . POWHEG WWJ generator obtained using interfaces to Madgraph and Gosam
- . starting from the Drell-Yan case, we extracted the B_2 term from the virtual (V) and Born (B) contributions of $pp \to WW$
- . for Drell-Yan, V and B are proportional, hence B_2 is just a number
- . in $pp \to WW$, this is no longer true: $B_2 = B_2(\Phi_{WW})$
- . process-dependent part of B_2 extracted on an event-by-event basis

"Improved" MiNLO: from Drell-Yan to WW

- ▶ left: total cross-section agrees at the level of 4% (although MiNLO uncertainty bands are wider than the WW ones)
- ▶ right: plot shows that MiNLO mantains the formal NLO accuracy in the "1-jet" region
 - small differences can be explained by Sudakov effects, and use of different scale choices

conclusions

- Minlo-improved POWHEG generator allows to reach NNLOPS accuracy for simple processes
- ▶ the (improved) Minlo idea is central
- shown results for Higgs, Drell-Yan and associated WH production
- predictions and theoretical uncertainties match NNLO where they have to
- typically, quite good agreement with analytic resummation
 - good news, but more work need to be done here

What next?

conclusions

- Minlo-improved POWHEG generator allows to reach NNLOPS accuracy for simple processes
- ▶ the (improved) MiNLO idea is central
- shown results for Higgs, Drell-Yan and associated WH production
- predictions and theoretical uncertainties match NNLO where they have to
- typically, quite good agreement with analytic resummation
 - good news, but more work need to be done here

What next?

- other approaches appeared (UNNLOPS, Geneva): will be interesting to compare
- NLOPS merging for higher multiplicity

[Frederix,Hamilton '15]

- NNLOPS for more complicated processes (color-singlet in principle doable, in practice a more analytic-based approach might be needed)
- Real phenomenology in experimental analyses

conclusions

- Minlo-improved POWHEG generator allows to reach NNLOPS accuracy for simple processes
- ▶ the (improved) MiNLO idea is central
- shown results for Higgs, Drell-Yan and associated WH production
- predictions and theoretical uncertainties match NNLO where they have to
- typically, quite good agreement with analytic resummation
 - good news, but more work need to be done here

What next?

- other approaches appeared (UNNLOPS, Geneva): will be interesting to compare
- NLOPS merging for higher multiplicity

[Frederix, Hamilton '15]

- NNLOPS for more complicated processes (color-singlet in principle doable, in practice a more analytic-based approach might be needed)
- Real phenomenology in experimental analyses