Higgs boson production in association with jets: NLO corrections vs mass effects.

Gionata Luisoni

gionata.luisoni@cern.ch

CERN

Future challenges for precision QCD

IPPP, Durham

25.10.2016

In collaboration with:

Nicolas Greiner, Stefan Höche, Marek Schönherr, Jan-Christopher Winter and Valery Yundin

Future challenges for precision QCD, IPPP, Durham

Outline

- Introduction
- H+1,2 and 3 jets at LHC:
 - NLO effective theory predictions compared to LO in the full SM at 13 TeV
 - The case of massless bottom quarks
- Impact of VBF selection cuts
- Excursus: what changes at a 100 TeV collider?
- Conclusions and outlook

H+jets in gluon-gluon fusion at NLO

- LHC Run II is collecting data very fast. This will soon allow for precise Higgs boson studies at 13 TeV
- Higher order corrections are particularly sizable in Higgs boson production in gluon-gluon fusion
- For a precise determination of the most important observables (e.g. the Higgs transverse momentum spectrum) a good control over higher multiplicities is relevant
- Furthermore:
 - How large are finite mass corrections?
 - Which observables are most affected?

[Les Houches 2015 comparative study: 1605.04692]

New results at 13 TeV

• Statistics for distributions still limited, but growing fast ...

State of the art of the theoretical predictions

• Gluon fusion calculations in effective and full theory:

••• NLO effective theory vs mass effects

Computational setup

- Amplitudes in HEFT computed with GoSam+Sherpa via BLHA [Cullen, v. Deurzen, Greiner, Heinrich, Mastrolia, Mirabella, Ossola, Peraro, Schlenk, v. Soden-Fraunhofer, Tramontano, GL, '14] [Gleisberg, Höche, Krauss, Schönherr, Schumann]
 - Virtual amplitudes: GoSam with Ninja [v. Deurzen, Mastrolia, Mirabella, Ossola, Peraro, GL, '14]
 - -> scalar loop integrals evaluated using OneLoop
 - Tree amplitudes and integration: Sherpa with Comix
- Phenomenological analysis via generation of ROOT Ntuple files:
 - Events for: H+1 / 2 / 3 jets ----- ~ 2 TB per CM energy set
 - Available for 8, 13, 14 and 100 TeV
 - ✓ For kt/anti-kt algorithm and R=0.1, ... , 1.0
 - Allow for fast analysis, change of scale, pdf, cuts, jet-tagging
- Full theory result generated by reweighting the Born HEFT Ntuples with the amplitude carrying the full quark mass dependence.

25/10/2016 - Gionata Luisoni

Future challenges for precision QCD, IPPP, Durham

[Gleisberg, Höche]

[v. Hameren, '11]

Root Ntuples and timing

• Ntuples allow for fast analysis, change of scale, pdf, cuts, jet radius

> on average 50 CPU hours per analysis for H+3 jets

Investigating different scale choices, performing the scale variation, varying the radii and changing selection cuts takes time:

> If we would run from scratch every time:

(3 scale variations) x (4 scales) x (5 jet radii) x (2 cuts) = 120

> which means approx. 4 million CPU hours (4.6 years on 100 cores)

NOW: Publicly available on:

eos.web.cern.ch

Large Disk Storage at CERN

https://eospublic.cern.ch/eos/theory/project/GoSam

(only within CERN)

For both 13 and 100 TeV:

• scale choice:
$$\mu_F = \mu_R = \frac{\hat{H}'_T}{2} = \frac{1}{2} \left(\sqrt{m_{\mathrm{H}}^2 + p_{T,\mathrm{H}}^2} + \sum_i |p_{T,i}| \right)$$

- PDFs: CT14nlo
- masses: $m_H = 125.0 \text{ GeV}, \quad m_t = 172.3 \text{ GeV}, \quad m_b(m_H) = 3.38 \text{ GeV}$

- Baseline cuts: anti-kt with $p_T > 30 \text{ GeV}, |\eta| < 4.4$
- Additional VBF cuts: $m_{j_1 j_2} > 400 \text{ GeV}, |\Delta y_{j_1, j_2}| > 2.8$
- <u>Remark</u>: basic Ntuples sets have events with $p_T > 25$ GeV, $|\eta| < 4.5$ for the jets at the generation level

Total cross section: 13 TeV

Total inclusive cross section with gluon fusion cuts at 13 TeV

Total cross section: 13 TeV

- Reduction of the size of NLO corrections for higher multiplicity
- Relative difference due to bottom-quark O(1%)
- Sign flip in corrections due to bottom-top quark interference (more later)
- Possibility to estimate NLO cross section with full mass dependence from K-factors

 Transverse momentum related observables known to receive significant corrections

- Transverse momentum related observables known to receive significant corrections
- Effective theory starts to break down at $p_{T, H} \approx 200 \text{ GeV}$ and NLO corrections start to become subdominant compared to mass effects.

Interludio: Effective vs. Full theory scaling

- Breakdown of effective theory can be understood comparing the high energy limit of a pointlike ggH interaction with that of a loop-mediated one:
 - Consider the transverse momentum behaviour of the gg --> H amplitude when gluons are off shell [Catani, Ciafaloni, Hautmann, '91] [Hautmann, '02] [Pasechnik, Teryaev, Szczurek, '06] [Marzani, Ball, Del Duca, Forte, Vicini, '08]

Transverse momenta can reach kinematic limit given by CM energy

Contribution from large transverse momenta suppressed by massive quark loop

$$\hat{\sigma} \underset{\hat{s} \to \infty}{\sim} \begin{cases} \sum_{k=1}^{\infty} \alpha_s^k \ln^{2k-1} \left(\frac{\hat{s}}{m_H^2} \right) & \text{pointlike: } m_t \to \infty \\ \\ \sum_{k=1}^{\infty} \alpha_s^k \ln^{k-1} \left(\frac{\hat{s}}{m_H^2} \right) & \text{resolved: finite } m_t \end{cases}$$

Corresponding scaling in Higgs pT computed recently:

▶ as $p_{T,H} \rightarrow \infty$ differential cross section (in p_T^2):

drops like $(p_{T,H}^2)^{-1}$

[Forte Muselli, '15] [Caola, Forte, Marzani, Muselli, Vita, '16]

drops like $(p_{T,H}^2)^{-2}$

- Transverse momentum related observables known to receive significant corrections
- Effective theory starts to break down at $p_{T, H} \approx 200 \text{ GeV}$ and NLO corrections start to become subdominant compared to mass effects.

- Transverse momentum related observables known to receive significant corrections
- Effective theory starts to break down at $p_{T, H} \approx 200 \text{ GeV}$ and NLO corrections start to become subdominant compared to mass effects.
- Rough scaling behaviour from plots:

$$\frac{\frac{\mathrm{d}\sigma}{\mathrm{d}p_{T,H}} (p_{T,H} = 1.0 \text{ TeV})}{\frac{\mathrm{d}\sigma}{\mathrm{d}p_{T,H}} (p_{T,H} = 0.4 \text{ TeV})} \approx \frac{10\%}{60\%} = \frac{1}{6}$$

high-energy limit prediction:

$$\left(\frac{400 \text{ GeV}}{1000 \text{ GeV}}\right)^2 = \frac{4}{25}$$

• Very similar behaviour for the three different multiplicities

CERN

25/10/2016 - Gionata Luisoni Future challenges for precision QCD, IPPP, Durham

 Ratios of successive differential cross sections:

$$R_n(O) = \frac{\frac{\mathrm{d}\sigma}{\mathrm{d}O} (\mathrm{H}+n\,\mathrm{jets})}{\frac{\mathrm{d}\sigma}{\mathrm{d}O} (\mathrm{H}+(n-1)\,\mathrm{jets})}$$

- relative importance of higher multiplicities remains stable under mass corrections
- suggests that the different scaling of effective and full theory also holds for higher multiplicities

Leading jet p_T

- For H+1j: $p_{T, H} = p_{T, j_1}$
- However a very similar behaviour is observed also for the higher multiplicities
- We can compare them directly ...

Seems to support the hypothesis that

×10)

÷10)

 GeV

1000

600

800

The resolution of the effective vertex is driven by a quantity, which is strongly correlated with the event's hardest single particle p_{T} .

Inner structure of ggH vertex probed with any interaction where the leading particle- p_{T} exceeds the top-quark mass (here Higgs or leading jet).

 10^{2}

 10^{1}

 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-1}

 10^{-5}

 10^{-6}

 $d\sigma/dp_{T,H}$ [pb/GeV]

Higgs boson rapidity

- Mass corrections small over full kinematical range:
- Regions of phase space where quark-loop is resolved are smeared over the entire range
- For the bulk of the cross sections mass effects are small

Massless bottom quarks

- Comparison between top- and bottom-quark predictions and top-quark only results:
- b difference is well below scale uncertainty and never exceeds 5%
- primarely concerns soft region
- is multiplicity dependent
- destructive interference observed in the total H+1j cross section stems from the soft region, whereas net contribution becomes positive in regions where the bottom quark can be considered as massless.

Higgs p_T

Massless bottom quarks

- Comparison between top- and bottom-quark predictions and top-quark only results:
- > difference is well below scale uncertainty and never exceeds 5%
- primarely concerns soft region
- is multiplicity dependent
- destructive interference observed in the total H+1j cross section stems from the soft region, whereas net contribution becomes positive in regions where the bottom quark can be considered as massless.
- Leading jet p_T

Higgs plus jets in GGF with VBF selection cuts

• In order to estimate the size of the GGF contribution in the presence of VBF selection cuts, add the following requirements to the baseline set:

 $m_{j_1j_2} > 400 \text{ GeV}, \quad |\Delta y_{j_1,j_2}| > 2.8$ • Effects of these cuts on phase space: LO H+2 $m_{t,b}$ (×10) LO H+2 (×10) LO H+2 $m_{t,b}$ (×10) NLO H+2 (×10 10^{2} LO H+2 (×10) NLO H+2 (×10) 10^{0} LO H+3 $m_{t,b}$ LO H+3 — NLO H+3 LO H+3 LO H+3 m_{Lh} NLO H+3 GoSam + Sherpa 10^{-} $pp \rightarrow H + 2, 3$ jets at 13 TeV 10° CT14nlo, R = 0.4 anti-kT, $|\eta_{iet}| < 4.4$, $p_{T,iet} = 30 \text{ GeV}$ $\frac{\mathrm{d}\sigma/\mathrm{d}m_{j_1j_2}}{0} \, [\mathrm{pb/GeV}]$ $\mathrm{d}\sigma/\mathrm{d}\Delta y_{j_1,j_2}~[\mathrm{pb}]$ 10^{-2} 10^{0} 10^{-} 10^{-2} 10^{-5} GoSam + Sherpa $pp \rightarrow H + 2, 3$ jets at 13 TeV CT14nlo, R = 0.4 anti-kT, $|\eta_{iet}| < 4.4$, $p_{T,iet} = 30 \text{ GeV}$ 10^{-6} 10^{-} Ratio wrt. LO using $m_t \rightarrow \infty$ approximation Ratio wrt. LO using $m_t \to \infty$ approximation X / LO H+2 $\overset{\rm C+H}{\times} 10^0$ Ratio wrt. LO using $m_t
ightarrow \infty$ approximation. Ratio wrt. LO using $m_t \rightarrow \infty$ approximation X / LO H+3 X / LO H+3 10^{0} 10^{0} ly H+3 nly H4 1500 2 3 5001000 200025003000 0 Tagging jet rapidity separation: $\Delta y_{i_1, i_2}$ Leading dijet mass: $m_{i_1 i_2}$ [GeV]

Higgs plus jets in GGF with VBF selection cuts

• In order to estimate the size of the GGF contribution in the presence of VBF selection cuts, add the following requirements to the baseline set:

 $m_{j_1 j_2} > 400 \text{ GeV}, \quad |\Delta y_{j_1, j_2}| > 2.8$

Total cross section:

Numbers in [pb]	H+2 jets	H+3 jets
$\sigma_{ m LO, eff.}$	$0.397^{+64\%}_{-36\%}$	$0.166^{+82\%}_{-42\%}$
$\sigma_{ m NLO, eff.}$	$0.584^{+10\%}_{-19\%}$	$0.231^{+5\%}_{-22\%}$
$\sigma_{{ m LO},m_{t,b}}$	$0.404^{+65\%}_{-37\%}$	$0.167^{+82\%}_{-42\%}$
$\sigma_{{ m LO},m_t}$	$0.398^{+65\%}_{-37\%}$	$0.165^{+82\%}_{-42\%}$

- Similar pattern as without VBF-type cuts
- Same conclusions hold also for many differential observables like for example $\Delta\phi_{j_1,j_2}$

Radial distance between tagging jets

• Effects of VBF selection cuts wrt. baseline cuts:

What changes at a 100 TeV collider?

• • •

Total cross section: 13 vs 100 TeV

• At 100 TeV run with two different minimal transverse momenta:

ightarrow Anti-kt with $p_T > 30 \text{ GeV}$ and $p_T > 100 \text{ GeV}$

• Comparison with 13 TeV:

Total cross section: 13 vs 100 TeV

• At 100 TeV run with two different minimal transverse momenta:

ightarrow Anti-kt with $p_T > 30 \,\, {
m GeV}$ and $p_T > 100 \,\, {
m GeV}$

• Comparison with 13 TeV:

Regime in which effective theory breaks down is clearly reached more easily when a harder pT cut is imposed. Mass effects therefore become much more important!

Higgs boson rapidity at 100 TeV

CERI

Conclusions and Outlook

- Higher order QCD corrections to Higgs boson production in association with jets in ggf are large and therefore need to be considered in order to reach a reasonable theoretical accuracy
 - > A lot of work was put and is still put in improving these predictions

- Depending on the kinematical cuts (especially p_T requirements), mass effects will play a major role in differential distributions
 - Even if this may not be highly relevant for LHC Run II, future runs and future colliders will be very sensitive to this (FCC is the extreme case)
 - Main driver for the break down of the effective theory seems to be the transverse momentum of the hardest particle in the event
 - Lots of effort lately are put into improving the accuracy of finite mass corrections (NLO will be needed in future)

•• Backup

Total cross sections in number

Numbers in [pb]	$p_{T, \text{jet}} > 30 \text{ GeV}$		$p_{T, \text{jet}} > 100 \text{ GeV}$	
\sqrt{s}	$13\mathrm{TeV}$	$100{\rm TeV}$	$100{\rm TeV}$	
H+1 jet				
$\sigma_{ m LO,eff.}$	$8.06^{+38\%}_{-26\%}$	$196^{+21\%}_{-17\%}$	$55.7^{+24\%}_{-19\%}$	
$\sigma_{ m NLO, eff.}$	$13.3^{+15\%}_{-15\%}$	$315^{+11\%}_{-10\%}$	$88.8^{+11\%}_{-11\%}$	
$\sigma_{{ m LO},m_{t,b}}$	$8.35^{+38\%}_{-26\%}$	$200^{+20\%}_{-17\%}$	$52.3^{+24\%}_{-19\%}$	
$\sigma_{{ m LO},m_t}$	$8.40^{+38\%}_{-26\%}$	$201^{+20\%}_{-17\%}$	$51.3^{+24\%}_{-18\%}$	
H+2 jets				
$\sigma_{ m LO,eff.}$	$2.99^{+58\%}_{-34\%}$	$124^{+39\%}_{-27\%}$	$16.5^{+41\%}_{-28\%}$	
$\sigma_{ m NLO, eff.}$	$4.55^{+13\%}_{-18\%}$	$156^{+3\%}_{-10\%}$	$23.3^{+9\%}_{-13\%}$	
$\sigma_{{ m LO},m_{t,b}}$	$3.08^{+58\%}_{-34\%}$	$121^{+39\%}_{-26\%}$	$13.2^{+41\%}_{-27\%}$	
$\sigma_{{ m LO},m_t}$	$3.05^{+58\%}_{-34\%}$	$120^{+39\%}_{-26\%}$	$13.0^{+41\%}_{-27\%}$	
H+3 jets				
$\sigma_{ m LO, eff.}$	$0.98^{+76\%}_{-41\%}$	$70.4^{+56\%}_{-34\%}$	$5.13^{+56\%}_{-34\%}$	
$\sigma_{ m NLO, eff.}$	$1.45^{+11\%}_{-22\%}$	$72.0^{-16\%}_{-7\%}$	$6.52^{+2\%}_{-14\%}$	
$\sigma_{{ m LO},m_{t,b}}$	$1.00^{+77\%}_{-41\%}$	$63.3^{+56\%}_{-34\%}$	$3.38^{+57\%}_{-34\%}$	
$\sigma_{{ m LO},m_t}$	$0.99^{+77\%}_{-41\%}$	$62.7^{+56\%}_{-34\%}$	$3.32^{+56\%}_{-34\%}$	

Future challenges for precision QCD, IPPP, Durham

Wimpiest jet p_T

- Full theory predictions start to deviate from effective one even earlier for H+2j and H+3j
- consequence of the pT ordering of the jets:
 - There hast to be 1 or 2 harder jets that drive the breakdown of the effective theory approach

Higgs transverse momentum spectrum: 8, 13 TeV

• Importance of exclusive H+2/3 jets contribution in Higgs p_T spectrum:

