Jets and Multijets in ATLAS

Gino Marceca

Universidad de Buenos Aires

JVMO Workshop, 19th September 2016

1. Inclusive-jet cross-section at 13 TeV

2. Four-jet cross-section at 8 TeV

Overview

- Introduction and Motivation
- Event Reconstruction and Selection
- Cross-section definitions
- Theoretical Predictions
- Uncertainties
- Results
- Conclusions

Measurement of the inclusive-jet cross section in $\sqrt{s} = 13$ TeV proton-proton collisions using the ATLAS detector

ATLAS-CONF-2016-092 (21 Aug 2016)

- Measurement of inclusive-jet cross section at 13 TeV with 2015 data (3.2fb⁻¹).
- Measured cross-section is compared to NLO QCD calculations corrected for non-perturbative and electroweak effects.
- ► The analysis follows the same techniques as the 7 TeV 2011 paper.
 - Inclusive-jet at 7 TeV publication: JHEP02(2015)153

Event Reconstruction and Selection

Jets:

- reconstructed using the anti-k_t algorithm, with radius parameter R=0.4
- calibrated using Monte Carlo simulation and data-driven methods

Phase-space Jets within the rapidity region |y| < 3.0 and $p_T > 100$ GeV.

Trigger Data is selected using several jet transverse energy thresholds. Trigger strategy Exclusive combination of single-jet triggers. arXiv:0901.4118

Jet Trigger Efficiency ATL-DAQ-PUB-2016-001

Dijet event in ATLAS

How is a di-jet event seen in ATLAS?

The **inclusive-jet** cross-section is measured as a function of the jet p_T and absolute jet rapidity |y|.

The full rapidity range is divided in six equidistant jet rapidity bins:

$$|y| < 0.5, \quad 0.5 \le |y| < 1.0, \quad 1.0 \le |y| < 1.5,$$

 $1.5 \le |y| < 2.0, \quad 2.0 \le |y| < 2.5, \quad 2.5 \le |y| < 3.0.$

Theoretical Predictions

- Simulated events using the Pythia 8.186 MC generator with NNPDF 2.3 LO PDFs and A14 tune are used to:
 - Deconvolute detector effects (unfolding).
 - Estimate experimental systematic uncertainties.
- QCD calculations to compare with data: NLOJET++ calculation + Non-perturbative and Electroweak corrections

Scale choice:

▶ p_T^{max} , leading jet p_T .

PDFs: CT10, CT14, NNPDF 3.0, MMHT14, HERAPDF, ABM12 Uncertainties in the NLO calculation:

- $(\mu_{\rm R}, \mu_{\rm F})$ scale variations (dominant at low $p_{\rm T}$).
- PDFs (dominant at high $p_{\rm T}$).
- α_s variation (mostly constant in all p_T and y ranges).

Uncertainties (ATLAS-CONF-2016-092)

Experimental Uncertainties

- The Jet Energy Scale, Jet Energy Resolution and Luminosity uncertainties were estimated and taken into account using MC and data-driven techniques.
- The JES is the dominating uncertainty.

Unfolding uncertainties

Takes into account shape differences between data and MC.

Results: Cross-section comparison (ATLAS-CONF-2016-092)

- ► The inclusive-jet cross-section at 13 TeV covers the jet p_T range from 100 GeV to ~ 3.2 TeV within |y| < 3.0.</p>
- Huge improvement in systematics and range compared with 7 TeV measurement.

Results: NLOJet++ vs Unfolded Data (ATLAS-CONF-2016-092)

NLO pQCD predictions describe the data within uncertainties.

▶ NNPDF 3.0 overestimates the cross-section for the last two |y| bins.

Results: NLOJet++ vs Unfolded Data (ATLAS-CONF-2016-092)

- NLO pQCD predictions describe the data within uncertainties.
- Disagreement with ABM12, consistent with 7 TeV measurement, observed for the first two |y| bins.

Conclusions

- ► The measurement of the inclusive jet cross-section in proton–proton collisions at $\sqrt{s} = 13$ TeV was presented.
- The measurement is based on the Data collected with the ATLAS detector during 2015 corresponding to an integrated luminosity of 3.2 fb⁻¹.
- ► The measurement extends up to 3.2 TeV in jet transverse momentum.
- NLO pQCD calculations, to which corrections for non-perturbative and electroweak effects are applied, are compared to the measurement.
- ▶ Predictions describe the data within uncertainties, confirming the validity of perturbative QCD at $\sqrt{s} = 13$ TeV *pp* collisions in the measured kinematic regions.

Measurements of four-jet differential cross sections in $\sqrt{s} = 8$ TeV proton-proton collisions using the ATLAS detector

JHEP12(2015)105 (16 Dec 2015)

Introduction and Motivation

Test of theoretical predictions at LO and NLO: the predictions are expected to display various levels of agreement with data in different kinematic regimes.

Data-MC comparisons were made in order to study how predictions describe:

- scale of multi-jet processes,
- angular variables sensitive to forward and nearby jets,
- range of energy scales relevant to QCD calculation,
- regimes sensitive to NLO effects,

Study of QCD background: several searches have many jets in the final state; it is thus crucial to understand the QCD contribution to this kind of events.

Event Reconstruction and Selection

Jets:

- reconstructed using the anti- k_t algorithm, with radius parameter R=0.4
- calibrated using Monte Carlo simulation and data-driven methods

A seven-jet event as seen in ATLAS

How is a multi-jet event seen in ATLAS?

Cross-section definitions

Probed multijet topologies by measuring the distributions of event variables:

Momentum

- $p_{T}^{(i)}$: p_{T} of the *i*-th jet, i = 1, 2, 3, 4
- $H_{\rm T}$: scalar sum of the $p_{\rm T}$ of the 4 jets
- $\Sigma p_T^{\text{central}}$: scalar sum of the p_T of the 2 central jets

Mass m_{4j}: invariant mass of the 4 jets
 m^{min}_{2j}/m_{4j}: ratio of the minimum invariant mass of 2 jets and m_{4j}

- Angular • $\Delta y_{2j}^{\min}, \Delta \phi_{3j}^{\min}$: minimum angular separation between 2 jets • $\Delta y_{3j}^{\min}, \Delta \phi_{3j}^{\min}$: minimum angular separation between 3 jets • Δy_{2j}^{\max} : maximum rapidity separation between 2 jets
- Only the 4 leading jets in p_T are used.
- Inclusive cuts were applied to the transverse momentum, rapidity and mass in order to probe different kinematic regimes.
- Distributions were unfolded using the Bayesian Iterative method.

Theoretical Predictions

Monte Carlo simulations are used to:

- estimate experimental systematic uncertainties,
- deconvolute detector effects,
- compare with data.

Name	Hard scattering + PS/UE	LO/NLO	PDF
Pythia 8	Pythia8+Pythia8	LO (2 \rightarrow 2)	CT10
Herwig++	Herwig+++Herwig++	LO (2 $ ightarrow$ 2)	CTEQ6L1
MadGraph	Madgraph+Pythia6	LO (2 $ ightarrow$ 4)	CTEQ6L1
HEJ	HEJ [†]		CT10
BlackHat	BlackHat/Sherpa	NLO (2 \rightarrow 4)	CT10
NJet	NJet/Sherpa	NLO (2 \rightarrow 4)	CT10

(†) The HEJ sample is based on an approximation to all orders in α_s .

- Pythia 8 is used for unfolding and to estimate systematic uncertainties.
- Herwig++ and Madgraph were used for cross checks and uncertainties.
- All predictions were compared to data.
- ▶ The LO and HEJ simulations were rescaled to facilitate comparison with the data.

Uncertainties (arXiv:1509.07335)

Experimental Uncertainties

- The Jet Energy Scale, Jet Energy Resolution, Jet Angular Resolution and Luminosity uncertainties were estimated and taken into account.
- The JES is the dominating uncertainty. Typical size is 4-15%.

Unfolding uncertainties Main component comes from the different MC descriptions of the particle- and reco-level association efficiency. Typical size is 2-10%

Theoretical uncertainties The scale and PDF uncertainties are obtained for $\tt NJet$ and <code>HEJ. (Only NJet's are shown.)</code>

Results: Momentum Variables (arXiv:1509.07335)

First leading jet p_T ($p_T^{(1)}$). Data compared to LO (left) and NLO and HEJ (right) predictions.

- All LO generators show a slope with respect to data, Madgraph being the only one with a positive slope in p_T⁽¹⁾.
- Madgraph is within experimental uncertainties above ~ 300 GeV.
- HEJ and NJet are very good for the leading jet.

Results: Momentum Variables (arXiv:1509.07335)

Fourth leading jet p_{T} ($p_{T}^{(4)}$).

Data compared to LO (left) and NLO and ${\rm HEJ}$ (right) predictions.

- Pythia gives a good description of the $p_T^{(4)}$ distribution.
- HEJ and Herwig++ overestimate the number of events with high p_T⁽⁴⁾.
- NJet / Sherpa shows a similar trend at high p_T⁽⁴⁾. Discrepancy mostly covered by uncertainties.

Results: Mass Variables (arXiv:1509.07335)

Invariant Mass of the 4 leading jets (m_{4j}) . Data compared to LO (left) and NLO and HEJ (right) predictions.

- Variable sensitive to the separation between jets.
- Pythia and Madgraph describe the data well, as does Herwig above 1 TeV.
- HEJ and NJet present a bump structure in the 1-2 TeV region; the difference is covered by the NLO uncertainties.

Results: Angular Variables - LO (arXiv:1509.07335)

Results: Angular Variables - NLO and HEJ (arXiv:1509.07335)

- HEJ provides a good description of all angular variables for p_T⁽¹⁾ > 400 GeV, but shows significant discrepancies in all variables for lower p_T⁽¹⁾ values.
- NJet describes the data well within uncertainties.

Event with small value of $\Delta \phi_{ijk}^{min}$

Results: $\Sigma \rho_T^{central}$ for $\Delta y_{2j}^{max} >$ 2 - LO (arXiv:1509.07335)

- All $2 \rightarrow 2$ predictions have issues describing this transition.
- The discrepancies worsen for larger Δy_{2i}^{max} and $p_T^{(1)}$ cuts.
- Madgraph provides the best description, especially at low $p_{T}^{(1)}$.

Results: $\Sigma p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 2$ - NLO and HEJ

(arXiv:1509.07335)

- Testing the HEJ framework, which is set to describe topologies with 2 jets significantly separated, and 2 additional high-p_T jets.
- HEJ describes better the high Σρ^{central} region, the lower part shows more shape differences.
- NJet overestimates the values for low Σρ_T^{central} but otherwise describes the data well.

Conclusions

 Four-jet differential cross sections were studied for various kinematic and topological variables

Performance of the predictions:

- The NLO predictions BlackHat/Sherpa and NJet/Sherpa are mostly compatible with data within theoretical uncertainties, which are found to be large (O(30%) at low momenta) and asymmetric.
- HEJ, BlackHat/Sherpa and NJet/Sherpa provide good descriptions of the leading jets but disagree with data for p_T⁽⁴⁾
- Madgraph provides a good description of all variables, although it shows a slope in the jet p_T's.
- Mass & angular variables: BlackHat/Sherpa, NJet/Sherpa, HEJ and Madgraph+Pythia do a remarkable job overall

These measurements expose the shortcomings of $2 \rightarrow 2$ plus parton shower predictions in a variety of scenarios and highlight the importance of the more sophisticated calculations.

Thank you!

BACK UP SLIDES

Inclusive-jet cross-section at 13 TeV

- IDS (bayesian iterative) method is used, using 1 iteration. http://arxiv.org/abs/0907.3791
- Based on the MC transfer matrix.
 - Matching criteria: Closest reco and truth jets within a $\Delta R = 0.3$ distance.
- Three steps of the unfolding procedure:
 - Multiply the raw spectra by the matching efficiency at reco level.
 - Unfold the spectrum using the TM.
 - Divide the unfolded spectra by the matching efficiency at truth level.

- Using the bootstrap method to determine the statistical uncertainty.
- MC contribution evaluated by building replicas of the Transfer Matrix.
- Data contribution evaluated by building detector level data replicas.

Non-Pertubative correction

Considers effects from underlying-event and hadronisation.

- $C_{NP} = \frac{MC(UE \text{ ON}, HAD \text{ ON})}{MC(UE \text{ OFF}, HAD \text{ OFF})}$
- Evaluation done using Pythia and Herwig with various tunes.
 - Central value: Pythia A14 NNPDF LO.
 - Envelope is uncertainty.
- The uncertainties in the non-perturbative corrections are [-8%, +2%] at low p_T over the whole rapidity range.
- At high p_T the uncertainties are [−2%, +0.4%] for the two outermost |y| bins and [−1%, +0.3%] for the remaining four bins.

Electroweak corrections

- NLO pQCD predictions are corrected for the effects of γ and W[±]/Z interactions at the tree and 1-loop level
- The correction is defined as the ratio

$$\frac{\sigma\left(2\rightarrow2,\mathsf{LO}^{(\mathsf{QCD})}+\mathsf{NLO}^{(\mathsf{EW})}\right)}{\sigma\left(2\rightarrow2,\mathsf{LO}^{(\mathsf{QCD})}\right)}$$

The correction is found to be negligible at low p_T, reaching 1.08 (0.95) for central (forward) jets for the highest p_T values covered by of the measurement.

Four-jet cross-section at 8 TeV

Cross-section definitions

Momentum

variable	definition	cuts
$\rho_{\mathrm{T}}^{(i)}$	transverse momentum	64/100 GeV - 2 TeV
H _T	$\sum_{i=1}^{4} \boldsymbol{\rho}_{T}^{(i)}$	290 GeV - 7 TeV
$\Sigma p_{\rm T}^{\rm central}$	$ p_T^c + p_T^d $	$\Delta y_{2j}^{max} > 1, 2, 3, 4, p_{T}^{(1)} > 100, 250, 400, 550$

Mass

m _{4j}	$\left(\left(\sum_{i=1}^{4} E_i\right)^2 - \left(\sum_{i=1}^{4} \mathbf{p}_i\right)^2\right)^{1/2}$	100 GeV - 7 TeV
$m_{2j}^{ m min}/m_{4j}$	$\min_{\substack{i,j \in [1,4] \\ i \neq j}} \left(\left(E_i + E_j \right)^2 - \left(\mathbf{p}_i + \mathbf{p}_j \right)^2 \right)^{1/2} / m_{4j}$	m _{4j} > 0.5, 1, 1.5, 2 TeV

Angular

$\Delta \phi^{ m min}_{ m 2j}$	$min_{\substack{i,j\in[1,4]\\i\neq j}}\left(\phi_i-\phi_j \right)$	$p_{\rm T}^{(1)}$ > 100, 400, 700, 1000 GeV
Δy_{2j}^{\min}	$\min_{\substack{i,j\in[1,4]\\i\neq j}} (y_i - y_j)$	<i>p</i> ⁽¹⁾ _T > 100, 400, 700, 1000 GeV
$\Delta \phi^{min}_{3j}$	$\min_{\substack{i,j,k\in[1,4]\\i\neq j\neq k}} \left(\phi_i - \phi_j + \phi_j - \phi_k \right)$	$p_{\rm T}^{(1)}$ > 100, 400, 700, 1000 GeV
Δy_{3j}^{\min}	$\min_{\substack{i,j,k\in[1,4]\\i\neq j\neq k}} \left(y_i - y_j + y_j - y_k \right)$	$p_{\rm T}^{(1)}$ > 100, 400, 700, 1000 GeV
Δy_{2j}^{\max}	$\Delta y_{ij}^{\max} = \max_{i,j \in [1,4]} \left(y_i - y_j \right)$	$p_{\rm T}^{(1)}$ > 100, 250, 400, 550

Unfolding Method

Bayesian Iterative method is used, using 2 iterations. This method corrects for:

- migrations between bins
- background events
- detector inefficiencies

Unfolding matrix built with Pythia, with event by event reco-level and particle-level matching. No jet-by-jet spatial matching is applied.

Binning was determined to get a bin by bin purity between 70 and 90%, and a statistical uncertainty in data below 10%

Results: $p_{T}^{(2)}$ and $p_{T}^{(3)}_{(arXiv:1509.07335)}$

Results: $p_{T}^{(4)}$ and m_{4j} (arXiv:1509.07335)

Results: Mass Variables - LO (arXiv:1509.07335)

- Mass variables are sensitive to the separation between the jets
- m_{4j} > 1 TeV is well described by the LO predictions, particularly Madgraph, but normalisation is off by 20-40%.
- Pythia and Herwig overestimate the events for low m^{min}_{2i}/m_{4i}, worse for higher m_{4i}.
- m^{min}_{2j}/m_{4j} is well described by Madgraph for all m_{4j} cuts, providing the best description for mass variables.

Results: Mass Variables - NLO and HEJ (arXiv:1509.07335)

- ▶ *m*_{4j} is well described by HEJ and NJet, though presenting a bump structure.
- m^{min}_{2j}/m_{4j} is well described by HEJ at low m_{4j}, differences are covered by the large theoretical uncertainties.
- NJet overestimates the first bin values, but otherwise agrees with data within uncertainties

Results: $\Delta \phi_{2i}^{min}$ - LO predictions (arXiv:1509.07335)

Results: $\Delta \phi_{2i}^{min}$ - NLO and HEJ (arXiv:1509.07335)

Results: Δy_{2i}^{min} - LO predictions (arXiv:1509.07335)

Results: Δy_{2i}^{min} - NLO and HEJ (arXiv:1509.07335)

Results: Δy_{3i}^{min} - LO predictions (arXiv:1509.07335)

Results: Δy_{3i}^{min} - NLO and HEJ (arXiv:1509.07335)

Results: Δy_{2i}^{max} (arXiv:1509.07335)

Results: Δy_{2i}^{max} - NLO and HEJ (arXiv:1509.07335)

Results: $\Sigma p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 1$ - LO predictions

(arXiv:1509.07335)

Results: $\Sigma p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 1$ - NLO and HEJ

(arXiv:1509.07335)

Results: $\sum p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 3$ - LO predictions (arXiv:1509.07335)

Results: $\sum p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 3$ - NLO and HEJ (arXiv:1509.07335)

Results: $\sum p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 4$ - LO predictions (arXiv:1509.07335)

Results: $\sum p_T^{\text{central}}$ for $\Delta y_{2j}^{\text{max}} > 4$ - NLO and HEJ (arXiv:1509.07335)

