Jet results in the ALICE experiment

ALICE THE UNIVERSITY OF TENNESSEE KNOXVILLE

Redmer Alexander Bertens - University of Tennessee, Knoxville on behalf of the ALICE Collaboration

Redmer Alexander Bertens - September 19, 2016 - slide 1 of 22

Jet results in the ALICE experiment

Jets in ALICE

Hard scattering (Q $^2 > 1 \ (GeV/c)^2$)

- Radiation of quarks and gluons
- Hadronization into colorless spray of particles: jets

Jets in ALICE

Hard scattering (Q $^2 > 1 \ ({\rm GeV}/c)^2$)

- Radiation of quarks and gluons
- Hadronization into colorless spray of particles: jets

The ALICE physics program is aimed primarily on studying the **strong** interaction via **heavy-ion** collisions

Pb-Pb collisions: scattered partons interact with medium \rightarrow jet quenching Large fluctuating background \rightarrow analyses are challenging Redmer Alexander Bertens - September 19, 2016 - slide 2 of 22 Jet results in the ALICE experiment

Jets in various systems

proton proton (pp)

- test of **pQCD** (constrain models)
- reference for **p-Pb Pb-Pb**

Jets in various systems

proton proton (pp)

- test of **pQCD** (constrain models)
- reference for **p-Pb Pb-Pb**

proton lead (p-Pb)

- **cold** nuclear matter effects (nPDFs, CGC)
- jet quenching in small systems?

Jets in various systems

proton proton (pp)

- test of **pQCD** (constrain models)
- reference for **p-Pb Pb-Pb**

proton lead (p–Pb)

- **cold** nuclear matter effects (nPDFs, CGC)
- jet quenching in small systems?

lead lead (Pb-Pb)

- medium-induced **parton energy loss** (scattering, gluon radiation)
- jets as perturbative probe of QGP

p

before starting with the results

jet analysis in a nutshell

proton proton collisions

jet spectra and shapes

Charged jet cross sections at $\sqrt{s} = 7$ TeV

Good agreement with **PYTHIA** and **HERWIG** for different cone radii

Redmer Alexander Bertens - September 19, 2016 - slide 7 of 22 Jet results in the ALICE experiment

Full jets at $\sqrt{s} = 2.76$ and (N)NLO QCD

Full jet cross section at measured up to low $p_{T, \text{ full}}^{\text{jet}}$, ratio to (N)NLO

Full jets at $\sqrt{s} = 2.76$ and (N)NLO QCD

Full jet cross section at measured up to low $p_{T, \text{ full}}^{\text{jet}}$, ratio to (N)NLO

Full jets at $\sqrt{s} = 2.76$ and (N)NLO QCD

Full jet cross section at measured up to low $p_{T, \text{ full}}^{\text{jet}}$, ratio to (N)NLO

Phys. Lett. B 722 (2013) 262-272 Important to constrain NNLO calculations especially at low jet energies

agreement between theory and experiment validates pQCD and justifies using pp spectra as reference for p-Pb and Pb-Pb

Redmer Alexander Bertens - September 19, 2016 - slide 8 of 22 Jet results in the ALICE experiment

proton lead

spectra and centrality nuclear modification factor di-jet imbalance

Pb

p–Pb charged jet spectra at $\sqrt{s_{NN}} = 5.02$ TeV TENNESSEE

p–Pb spectra measured in various **centrality** classes

• clear scaling with centrality

Jet results in the ALICE experiment

p–Pb charged jet spectra at $\sqrt{s_{\text{NN}}} = 5.02$ TeV TENNESSEE

Redmer Alexander Bertens - September 19, 2016 - slide 10 of 22

Jet results in the ALICE experiment

ICE

Jet quenching in small systems?

Nuclear modification factor

$$\begin{split} \mathsf{Q}_{\mathsf{pPb}}(p_\mathsf{T},\mathsf{cent}) &= \frac{\mathsf{d}\mathsf{N}_{\mathsf{cent}}^{\mathsf{pPb}}/\mathsf{d}p_\mathsf{T}}{\langle\mathsf{N}_{\mathsf{cent}}^{\mathsf{coll}}\rangle \cdot \mathsf{d}\mathsf{N}^{\mathsf{pp}}/\mathsf{d}p_\mathsf{T}} \\ &\approx \frac{\mathsf{medium}}{\mathsf{no medium}} \end{split}$$

Possible scenarios

- $Q_{pPb} > 1$ (enhancement)
- $Q_{pPb} = 1$ (no medium effect)
- $Q_{pPb} < 1$ (suppression)

Nuclear modification factor

 $Q_{\mathsf{p}\mathsf{P}\mathsf{b}}$ consistent with unity for all centrality classes

• no final state effect on jet spectra

Nuclear modification factor

 $\mathsf{Q}_{\mathsf{pPb}}$ consistent with unity for all centrality classes

- no final state effect on jet spectra
- in contrast to collective behavior at low p_T

Acoplanarity in p–Pb collisions: di-jet k_{T}

$$k_{\mathrm{T}} = p_{\mathrm{T, \ full}}^{\mathrm{jet}} \sin(\Delta arphi_{\mathrm{dijet}})$$

Imbalance in p-Pb is consistent with PYTHIA predictions

Centrality dependence of di-jet k_T in p–Pb

no centrality dependence of di-jet
$$k_{\rm T}$$
 consistent with $\mathbf{Q}_{\rm pPb}$ observation of **no modification** of jet spectra

Centrality dependence of di-jet k_T in p–Pb

ALICE

no centrality dependence of di-jet k_T consistent with \mathbf{Q}_{pPb} observation of **no modification** of jet spectra **no** evidence of **jet quenching** in p–Pb collisions

lead lead

jet quenching (R_{AA}, v₂^{ch jet}) jet shapes

Jets in Pb–Pb collisions are used to study the QGP via medium-induced energy loss

Two qualitative scenarios

Out-of-cone radiation: R_{AA} < 1, modification of jet spectra
 In-cone radiation: R_{AA} = 1, changes in jet shapes

Redmer Alexander Bertens - September 19, 2016 - slide 15 of 22 Jet results in the ALICE experiment

Out-of-cone radiation: R_{AA} of jets

Strong suppression in central and semi-central colisions

• Resonable model agreement (JEWEL¹, YaJEM²)

Indication of out-of-cone radiation

¹K.C.Zapp *et al.* JHEP 1303 080 Redmer Alexander Bertens - September 19, 2016 - slide 16 of 22 Jet results in the ALICE experiment

Semi-inclusive hadron-jet distributions

Semi-inclusive hadron-jet distributions

difference between semi-inclusive recoil jet yields in two intervals of hadron trigger p_T - powerful background jet subtraction

Semi-inclusive hadron jet distributions

 ΔI_{AA} : ratio of Δ_{recoil} measured in Pb-Pb collisions to Δ_{recoil} measured in **PYTHIA** events

 measurement to very low p_T, where energy loss is expected to be large (relative increase with decreasing p_T)

 $\Delta I_{AA} < 1$ indicates jet quenching

Jet shapes - distributions within the jet cone

 $1/N^{\text{lets}}$ dN/d g_{ω} ALICE Simulation $1/N^{\text{jets}} dN/dp_{T}$ 30 **PYTHIA Perugia 11** V9T 7 = 2√ ממ Anti- k_{τ} charged jets, R = 0.2< 60 GeV/c 15 10 83 0.04 0.06 0 1 0 12 0.08 g ALI-SIMUL-101651 ALI-SIMUL-101655

Radial moment $g \rightarrow$ 'jet width'

$$g = \sum_{i \in jet} \frac{p_{Ti}}{p_{T, ch}^{jet}} |r_i|$$

Dispersion $p_T D$ \rightarrow 'constituent **dispersion**'

04 05 06

$$p_{\rm T} {\rm D} = \frac{\sqrt{\sum_i p_{\rm T,i}^2}}{\sum_i p_{\rm T,i}}$$

ALICE Simulation

00 √s = 7 TeV

PYTHIA Perugia 11

Anti- $k_{\rm T}$ charged jets, R = 0.240 < $p^{\rm jet,ch} < 60 \, {\rm GeV}/c$

0.9

 $p_{T}D$

0.8

fully corrected (particle level) probes of jet fragmentation

Redmer Alexander Bertens - September 19, 2016 - slide 19 of 22 Jet results in the ALICE experiment

collimated jets have lower $\mathbf{g} \leftrightarrow \mathbf{less}$ constituents gives **higher** $p_{\mathsf{T}}\mathsf{D}$

g and $p_T D$ are sensitive to differences in fragmentation between **quark** and **gluon** jets

Redmer Alexander Bertens - September 19, 2016 - slide 20 of 22 Jet results in the ALICE experiment

Jet shapes in Pb-Pb collisions

g in Pb–Pb

- small R (=0.2)
- Jets more collimated
- Soft particles emitted at larger angles

Jet shapes in Pb-Pb collisions

- small R (=0.2)
- Jets more collimated
- Soft particles emitted at larger angles

 $p_{\rm T}$ D in Pb–Pb

- small R (=0.2)
- $p_{\rm T}$ D is larger than PYTHIA
- indicative of larger p_T
 dispersion in Pb–Pb

qualitative agreement with JEWEL (QCD in medium)

TENNESSEE TENNESSEE

Conclusion

proton proton (pp)

- test of **pQCD** (constrain models)
- reference for **p-Pb Pb-Pb**
- consistent with pQCD

TENNESSEE KNOXVILLE

Conclusion

proton proton (pp)

- test of **pQCD** (constrain models)
- reference for **p-Pb Pb-Pb**

• consistent with pQCD proton lead (p-Pb)

- CNM effects (nPDFs, CGC)
- jet quenching in small systems?
- no jet quenching

TENNESSEE KNOXVILLE

Conclusion

proton proton (pp)

- test of **pQCD** (constrain models)
- reference for **p-Pb Pb-Pb**

• consistent with pQCD proton lead (p-Pb)

- CNM effects (nPDFs, CGC)
- jet quenching in small systems?
- no jet quenching

lead lead (Pb-Pb)

- medium-induced **parton energy loss** (scattering, gluon radiation)
- jets as **perturbative** QGP probe

• significant changes in jet energy and fragmentation

BACKUP

in

Energy loss and medium geometry - $v_2^{ch jet}$

Different theoretical predictions on **path-length** (*L*) dependence of parton energy loss $(\Delta E)^{3,4,5}$

 $\underbrace{\Delta E \propto L}_{\text{collisional}} \leftrightarrow \underbrace{\Delta E \propto L^2}_{\text{radiative}} \leftrightarrow \underbrace{\Delta E \propto L^3}_{\text{AdS/CFT}}?$

 $v_2^{ch jet}$: direct connection between in-medium path-length and jet suppression

$$v_2^{\text{ch jet}} \approx 0$$
? $v_2^{\text{ch jet}} > 0$?

Hydrodynamic flow is suppressed on an event-by-event basis

³R.Baier *et al.* NPB484 265-282 (\propto *L*) ⁴R.Baier *et al.* NPB483 291-320 (\propto *L*²) Redmer Alexander Bertens - September 19, 2016 - slide 24 of 22 Jet results in the ALICE experiment

Energy loss and medium geometry - $v_2^{ch jet}$

Non-zero $v_2^{(...)}$ indicative of dependence on (effective) **path-length** what role do initial state **fluctuations** play?

Redmer Alexander Bertens - September 19, 2016 - slide 25 of 22 Jet results in the ALICE experiment

Experimentally, jets are tricky

Need to *define* jet in experiment *and* theory

Redmer Alexander Bertens - September 19, 2016 - slide 26 of 22 Jet results in the ALICE experiment

Jets and jet finding

For a rainy afternoon: (anti)- k_T jet finding: define for all protojets (tracks)

$$d_{i} = p_{T_{,i}}^{2p}$$

$$d_{i,j} = \min\left(p_{T_{,i}}^{2p}, p_{T}, j^{2p}\right) \frac{\Delta_{i,}^{2}}{R^{2}}$$

$$\Delta_{i,j}^{2} = (y_{i} - y_{j})^{2} + (\varphi_{i} - \varphi_{j})^{2}$$

- smallest $d_x = d_{i,j} \longrightarrow$ merge tracks
- smallest $d_x = d_i \longrightarrow d_i$ is a jet

... go back to the beginning

R: resolution parameter (maximum angular separation of tracks in η, φ)

Fast, infrared / collinear safe ... but all tracks get clustered

Jet reconstruction in Pb-Pb collisions

- ' ... all tracks get clustered '
 - Generally **not** so problematic in pp collisions ...
 - ... but in Pb–Pb this means including **overwhelming** energy from **uncorrelated emissions**

Jet reconstruction in Pb-Pb collisions

- ' ... all tracks get clustered '
 - Generally **not** so problematic in pp collisions ...
 - ... but in Pb–Pb this means including overwhelming energy from uncorrelated emissions

Challenge: inclusive measurement of jets while removing UE

- 'Background' (Underlying Event) large [1] compared to jet energy
- UE is not unifotext (e.g. flow [2]) and has large statistical fluctuations [3])

To get a feeling

Leading hadron cut removes fake jets At low p_T contribution from fake clusters is **overwhelming**

[1] UE energy $\langle \rho_{ch} \rangle$

Event-by-event estimate of energy density of UE

$$\left< \rho_{\rm ch} \right> = {\rm median} \left(\frac{p_{\rm T, \ ch}^{\rm jet}}{{\cal A}^{\rm jet}} \right)$$

- Linear dependence of $\langle \rho_{\rm ch} \rangle$ on multiplicity
- Quick example: 0–10% centrality
 - $\langle \rho_{\rm ch} \rangle \approx$ 140 GeV/c A^{-1} • $A \propto \pi R^2$

 \propto 70 GeV/c charged background for R = 0.4

2 Jet-by-jet UE subtraction

Adjust **jet-by-jet** for **UE** energy

$$p_{\mathsf{T, ch}}^{\mathsf{jet}} = p_{\mathsf{T, ch}}^{\mathsf{raw}} - \rho_{\mathsf{ch local}} A$$

using jet area A and UE energy density $\rho_{ch \ local}$

UE flow (v_2 and v_3 and ...) can be accounted for in $\rho_{ch local}$ event-by-event

$$\rho_{\mathsf{ch}}(\varphi) = \rho_0 \left(1 + 2\{ v_2 \cos[2(\varphi - \Psi_{\mathsf{EP}, 2}^{\mathsf{v}_0})] + v_3 \cos[3(\varphi - \Psi_{\mathsf{EP}, 3}^{\mathsf{v}_0})] + \dots \} \right)_{\mathsf{e}_{\mathsf{H}}(\varphi)}$$

Redmer Alexander Bertens - September 19, 2016 - slide 31 of 22 Jet results in the ALICE experiment

[3] Fluctuations of UE

UE fluctuations in φ , η around $\langle
ho_{\mathsf{ch}} \rangle$

- A jet of p_T = x sitting on an upward fluctuation of magnitude a will be reconstructed at p_T = x + a ...
- ... likewise a jet of $p_T = x$ sitting on a downward fluctuation of magnitude a will be reconstructed at $p_T = x a$

Use e.g. **random cone** procedure to determine magnitude of fluctuations

$$\delta p_{\rm T} = \underbrace{\sum p_{\rm T}^{\rm track}}_{\rm cone \ p_{\rm T}} - \underbrace{\rho \pi R^2}_{\rm expectation}$$

 $\delta p_{\rm T}$ distribution used to **unfold** jet spectra:

$$f_{\rm meas}(x) = \int R(x|y) f_{\rm true}(y) dy$$

[3] Fluctuations of UE

UE fluctuations in φ , η around $\langle \rho_{ch} \rangle$

- A jet of p_T = x sitting on an upward fluctuation of magnitude a will be reconstructed at p_T = x + a ...
- ... likewise a jet of $p_T = x$ sitting on a downward fluctuation of magnitude a will be reconstructed at $p_T = x a$

Use e.g. **random cone** procedure to determine magnitude of fluctuations

$$\delta p_{\rm T} = \underbrace{\sum p_{\rm T}^{\rm track}}_{\rm cone \ p_{\rm T}} - \underbrace{\rho \pi R^2}_{\rm expectation}$$

 $\delta p_{\rm T}$ distribution used to **unfold** jet spectra:

$$f_{\rm meas}(x) = \int R(x|y) f_{\rm true}(y) dy$$

... and no jet talk without unfolding ...

$$f_{\rm meas}(x) = \int R(x|y) f_{
m true}(y) dy$$

- $f_{true}(y)$: 'true' jet p_T
- $f_{\text{meas}}(x)$: 'measured' jet p_{T}
- R(x|y): response function

... and no jet talk without unfolding ...

$$f_{\rm meas}(x) = \int R(x|y) f_{\rm true}(y) dy$$

- $f_{true}(y)$: 'true' jet p_T
- $f_{\text{meas}}(x)$: 'measured' jet p_{T}
- R(x|y): response function
- A particle level jet at 200 GeV
 - ... can end up between 20 and 100 GeV in the detector ... !

Unfolding spectra introduces a systematic uncertainty

• Unavoidable for meaningful comparison to **theory** and between **experiments**

ALICE Preliminary Pb-Pb \sqrt{s_m} = 2.76 TeV 10-30% Centrality anti- $k_{\rm T} R = 0.2 p_{\rm T, charged}^{\rm leading} > 5 \, {\rm GeV}/c$ Combined Response Matrix (GeV/*c*) T_{jet} (GeV/*c*) 200 10⁻¹ 10-2 140 120 10⁻³ 100 10-4 80 60 10⁻⁵ 40 10⁻⁶ 20 10⁻⁷ 100 ንስ 30 40 50 60 70 80 90 p_det T,jet (GeV/c)

Q_{pPb} and centrality in p-Pb collisions

ALICI

b

- Estimate centrality from Zero Degree Calorimeter
- $\langle N_{cent}^{coll} \rangle$ scales with charged particle multiplicity in mid-rapidity or Pb-going side

Redmer Alexander Bertens - September 19, 2016 - slide 34 of 22 Jet results in the ALICE experiment