

Top quark pair production with N-jets

Luke Kreczko for the CMS Collaboration

Outline

- Introduction
- Latest jet related measurements

➤ The LHC is a top quark factory

- ➤At the LHC energies ≥ 50% of top quark pair
 - (tt̄) events are produced with additional jets

(not from tt decay)

Precise understanding of these events is important

(ttH, **ttt**)

Benchmark generators: test higher-order QCD predictions

> New physics: could be revealed by anomalous production of tt(+jets) 2.6 fb⁻¹ (13 TeV) 0.10 Single Lepton: µ 9+ Jets 4+ b-tags CMS Data Preliminary 10^{3} tī+X Events tt + jets as background for tttt (X 20) 10² ME Scale Uncertainty many searches and rare 10 **Standard Model processes**

 10^{-1}

-0.4

-0.2

0

0.2

0.4

 \geq 9 jets search region

0.6

0.8

BDT

≈ 90%

at $v_s = 13 \text{ TeV}$

Top quark pair production at the LHC (LO):

Top quark decay

Almost 100% of the time the top quark will decay into a W boson and a b-quark

The event signature is then characterised by the W boson decays

In this talk

Mainly using NLO matrix Element generators with Pythia8 for Parton Shower (m_t=172.5 GeV):

Matrix element	Shower & Hadronisation	PDF	Tune
Powheg (v2)	Pythia8	NNPDF3.0	CUETP8M1
Powheg (v2)	Herwig++	NNPDF3.0	EE5C
MadGraph5_amc@NLO	Pythia8	NNPDF3.0	CUETP8M1
MadGraph5	Pythia8	NNPDF2.3	CUETP8M1

Additional samples with different top masses (175.5 & 169.5 GeV) exist for comparison

> The Q² scale variations address two aspects

renormalisation and factorisation scale (ME)

➤ amount of ISR/FSR

➢ For each event Q² is defined as

► Powheg/MC@NLO:
$$Q^2 = m_t^2$$

$$\succ$$
 MadGraph: $Q^2 = m_t^2 + \sum p_T^2$

Samples with 0.25 x Q² and 4 x Q² exist for comparison

Differential cross section measurements

- ➤ N_{jets} (l+jets): CMS-PAS-TOP-15-006 (8 TeV)
- N_{jets} (l+jets): CMS-PAS-TOP-15-013 (13 TeV, EA)
- N_{jets} (di-lepton): CMS-PAS-TOP-16-011 (13 TeV)
- N_{jets} and 2D distributions (l+jets): CMS-TOP-16-008 (13 TeV)
- > Ratio of σ_{ttbb} / σ_{ttjj} (di-lepton): CMS-PAS-TOP-16-010 (13 TeV)
- Quick update on jet vetoes

$$\frac{1}{\sigma_{t\bar{t}}}\frac{d\sigma^{i}}{dN_{j}} = \frac{1}{\sigma_{t\bar{t}}}\frac{x^{i}}{\Delta_{X}^{i}L}$$

- xⁱ number of events after background subtraction, corrected for detector efficiencies, acceptances and migration to particle level with regularised unfolding
- \succ σ_{tt} inclusive tt cross section in the same, visible phase space
- $\succ \Delta_{x}^{i}$: bin width, L: integrated luminosity

Measurements in visible phase space and corrected to particle level

> Phase space recommendations provided by the <u>LHC Top WG</u>)

- ► Update to N_{jets} from CMS-TOP-12-041
 - Added more theory comparisons: MadGraph Q² & matching threshold variations & Sherpa
- ≻ Using 19.7 pb⁻¹ of 8 TeV data
- Event selection
 - Exactly 1 isolated lepton (electron or muon)
 - \geq 4 jets of which \geq 2 are b-tagged

CMS-PAS-TOP-15-006: results

With the exception of MadGraph Q²/4 and MadGraph matching threshold of 10 GeV (down) most variations and generators agree with the data within the uncertainty

- Measures several observables without top
 - quark reconstruction in the I+jets channel:
- ➢ Using 71 pb⁻¹ of 13 TeV data (early analysis)

Event selection

- Exactly 1 isolated lepton (electron or muon)
- \geq 4 jets of which \geq 2 are b-tagged

CMS-PAS-TOP-15-013: results

Too many jets in simulation explained by switch from Pythia6 to Pythia8: Sensitivity to the α_s (ISR) choice in Pythia; data seems to prefer lower values.

RIVET tuning

Using previous measurements at 8 TeV the value of α_s (ISR) was tuned in RIVET

Best agreement is found with $\alpha_s(ISR) = 0.115$

Measures several observables in the di-lepton

channel using top reconstruction:

Jet multiplicity, N_{jets}, without top reconstruction

- ➢ Using 2.2 fb⁻¹ of 13 TeV data
- Event selection

> Require 2 isolated leptons with opposite charge

 \geq 2 b-tagged jets

Veto Z boson events and require MET

In the di-lepton channel N_{jets} + 2 corresponds to N_{jets} in l+jets channel

More data increases sensitivity also in lower multiplicity bins (2 additional jets)

CMS-TOP-16-008

- Measures several observables in the I+jets
 - channel using top reconstruction:
 - N additional jets (jets not from top quark decays)
- ➢ Using 2.3 fb⁻¹ of 13 TeV data
- Event selection
 - Exactly 1 isolated lepton (electron or muon)
 - \geq 4 jets of which \geq 2 are b-tagged

CMS-TOP-16-008: results

M(tt) in different N_{jets} bins:

The results agree with Powheg + Pythia within uncertainties

In the ≥ 3 jets the cross section is higher for most samples

CMS-TOP-16-008: results

 $p_T(t\bar{t})$ in different N_{jets} bins:

Similar picture as for $M(t\bar{t})$.

Spectrum **softer** than in simulation and is predicted by the **NNLO** and the **NLO+NNLL**` QCD calculations

Also contains a big table of χ^2 evaluations w.r.t the different MCs, please do check the paper for details. Here a snippet:

Distribution	χ^2 /dof p-value	χ^2 /dof p-value	χ^2 /dof p-value	
	POWHEG+P8	POWHEG+H++	MG5_AMC@NLO+P8 MLM	
Additional jets	27.6/5 < 0.01	16.2/5 < 0.01	36.3/5 < 0.01	
Additional jets vs. $p_{\rm T}(t\bar{t})$	70.3/20 < 0.01	95.4/20 < 0.01	168/20 < 0.01	
Additional jets vs. $p_{\rm T}(t_{\rm h})$	96.2/36 < 0.01	218/36 < 0.01	180/36 < 0.01	
	MG5_AMC@NLO+P8	MG5_AMC@NLO+H++	MG5_AMC@NLO+P8 FXFX	
Additional jets	36.2/5 < 0.01	15.7/5 < 0.01	10.8/5 0.056	
Additional jets vs. $p_{\rm T}(t\bar{t})$	237/20 < 0.01	192/20 < 0.01	87.2/20 < 0.01	
Additional jets vs. $p_{\rm T}(t_{\rm h})$	251/36 < 0.01	76.0/36 < 0.01	45.6/36 0.132	

> Measurements in di-lepton channel:

- \succ cross section of tt + light jets (σ_{ttjj})
- > the cross section of $t\bar{t}$ + bb (σ_{ttbb})
- their ratio in the di-lepton channel
- ➤ Using 2.3 fb⁻¹ of 13 TeV data
- Event selection:
 - Require 2 isolated leptons with opposite charge
 - \geq 2 b-tagged jets
 - Veto Z boson events and require MET

CMS-PAS-TOP-16-010

Measurement compatible with Powheg + Pythia8 simulation

Phase Space	$\sigma_{t\bar{t}b\bar{b}}$ [pb]	$\sigma_{ m t\bar{t}jj}$ [pb]	$\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$
Measurement			
Visible	$0.085 \pm 0.012 \pm 0.029$	$3.5\pm0.1\pm0.7$	$0.024 \pm 0.003 \pm 0.007$
Full	$3.9\pm0.6\pm1.3$	$176\pm5\pm33$	$0.022 \pm 0.003 \pm 0.006$
Simulation (POWHEG)			
Visible	0.070 ± 0.009	5.1 ± 0.5	0.014 ± 0.001
Full	3.2 ± 0.4	257 ± 26	0.012 ± 0.001

CMS-TOP-12-41

Presented at

JetVM2014

► Now RIVET plugin is

available

 \succ used for tuning α_s (ISR)

Latest measurement

of the gap fraction

- \succ Presented t measurements with additional jets in the l
 - +jets and in the dilepton channels
- Compared them to different MC generators and parameter variations
- Starting to explore the different measurements to improve the ttbar description
 - > E.g. tuning α_s (ISR) parton shower using Run 1 data
- Softer p_T(tt) spectrum is expected from NNLO calculations
- > Ratio of σ_{ttbb} / σ_{ttjj} is well described by Powheg (+Pythia)

RIVET plugins for the presented analysis are either

available or in preparation

- > All measurements available in HepData
- Often experimental precision smaller than spread due to parameter variation -> variations can be reduced
- With more data the reach can be expanded (NNLO comparisons?)
- > Updates with all of 2016 data expected end of this year/ early next year.

Thank you for listening.

QUESTIONS?

BACKUP SLIDES

- Single lepton channels (l+jets):
 - > exactly one electron or muon with $p_T > 30$ GeV, $|\eta| < 2.4$
 - > not any other lepton (electron or muon) with $p_T > 15$ GeV, $|\eta| < 2.5$
 - ➤ M^w_T > 30 GeV
 - At least two b-tagged jets in the region $|\eta| < 2.4$ and $p_T > 30$ GeV
 - At least four jets in the region $|\eta| < 2.4$ and $p_T > 30$ GeV
- Di-lepton channels
 - At least two selected leptons (ee, eµ, µµ) with |η| < 2.4 and p_T > 30
 GeV
 - For same-flavour channels neutrino sum $p_T > 60$ GeV
 - At least two b-tagged jets in the region $|\eta| < 2.4$ and $p_T > 30$ GeV

The CMS detector

34

SELECTION DETAILS

- Require ==1 isolated lepton
 - p_T > 27 (24) GeV & |η| < 2.5 (2.1) for electrons (muons)</p>
 - ID & isolation
 - conversion veto (electrons)
 - Veto additional leptons
 - \blacktriangleright >= 4 ak5 jets with p_T > 30 GeV and $|\eta| < 2.5$
 - > Remove jets within ΔR (jet, lepton) < 0.5
 - >= 2 b-tagged jets
- Visible phase space modifications:
 - Jets: |η| < 2.5 (from |η| < 2.4)</p>
 - ➢ Remove jets within ∆R(jet, lepton) < 0.5</p>

- Require ==1 isolated lepton
 - p_T > 30 (23) GeV for electrons (muons), |η| < 2.1</p>
 - ID & isolation
 - conversion veto (electrons)
 - Veto additional leptons
 - > >= 4 ak4 jets with p_T > 25 GeV and $|\eta| < 2.4$
 - > Remove jets within ΔR (jet, lepton) < 0.4
 - >= 2 b-tagged jets
- Visible phase space modifications:
 - > Jets: $p_T > 25$ GeV (down from 30 GeV)
 - Leptons: p_T > 23 GeV (down from 30 GeV)

- Require ==1 isolated lepton
 - ▶ p_T > 30 GeV, |η| < 2.1</p>
 - ➢ ID & isolation
 - conversion veto (electrons)
 - Veto other leptons
 - \blacktriangleright >= 4 ak4 jets with pT > 30 GeV and $|\eta| < 2.4$
 - > Remove jets within ΔR (jet, lepton) < 0.4
 - >= 2 b-tagged jets
 - \rightarrow >=1 b-tagged and one other jet with p_T > 35 GeV
- Visible phase space modifications:
 - → Jets: $p_T > 25$ GeV, $|\eta| < 2.5$ (from $p_T > 30$ GeV, $|\eta| < 2.4$)
 - Leptons: |η| < 2.5 (|η| < 2.4)</p>

- Require 2 isolated leptons with opposite charge
 - ▶ p_T > 20 GeV, |η| < 2.4</p>
 - ID & isolation
 - conversion veto
 - > Veto Z events: $m_z 15 \text{ GeV} < m_{\parallel} < m_z + 15 \text{ GeV}$
 - ➢ MET > 40 GeV
 - \blacktriangleright >= 2 ak4 jets with p_T > 30 GeV and $|\eta| < 2.4$
 - ➢ Remove jets within ∆R(jet, lepton) < 0.5</p>
 - >= 2 b-tagged jets
- Visible phase space modifications:
 - Leptons: p_T > 20 GeV (down from 30 GeV)
 - ➢ Remove jets within ∆R(jet, lepton) < 0.5</p>

- Require 2 isolated leptons with opposite charge
 - ▶ p_T > 20 GeV, |η| < 2.4</p>
 - ➢ ID & isolation
 - conversion veto
 - > Veto Z events: $m_z 15 \text{ GeV} < m_{\parallel} < m_z + 15 \text{ GeV}$
 - ➢ MET > 40 GeV
 - \geq >= 2 ak4 jets with p_T > 30 GeV and $|\eta| < 2.4$
 - > Remove jets within ΔR (jet, lepton) < 0.4
 - >= 2 b-tagged jets
- Visible phase space modifications:
 - > Leptons: $p_T > 20$ GeV (down from 30 GeV)

Distribution	χ^2/dof	p-value	χ^2/dof	p-value	χ^2/dof	p-value
	POWHEG+P8		POWHEG+H++		MG5_AMC@NLO+P8 MLM	
$p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$	14.3/9	0.111	26.3/9	< 0.01	34.9/9	< 0.01
$ y(\mathbf{t}_{\mathbf{h}}) $	4.76/7	0.690	7.61/7	0.368	9.08/7	0.247
$p_{\mathrm{T}}(t_{\ell})$	22.9/9	< 0.01	40.8/9	< 0.01	54.6/9	< 0.01
$ y(t_\ell) $	7.14/7	0.415	10.6/7	0.156	18.2/7	0.011
$M(t\bar{t})$	9.25/8	0.322	173/8	< 0.01	13.4/8	0.100
$p_{\rm T}({ m t\bar{t}})$	2.31/5	0.805	39.6/5	< 0.01	48.9/5	< 0.01
$ y(t\bar{t}) $	1.37/6	0.967	2.44/6	0.876	14.5/6	0.025
Additional jets	27.6/5	< 0.01	16.2/5	< 0.01	36.3/5	< 0.01
Additional jets vs. $p_{\rm T}(t\bar{t})$	70.3/20	< 0.01	95.4/20	< 0.01	168/20	< 0.01
Additional jets vs. $p_{\rm T}(t_{\rm h})$	96.2/36	< 0.01	218/36	< 0.01	180/36	< 0.01
$ y(\mathbf{t}_{\mathbf{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathbf{h}})$	60.1/36	< 0.01	212/36	< 0.01	128/36	< 0.01
$M(t\bar{t})$ vs. $ y(t\bar{t}) $	28.2/24	0.251	280/24	< 0.01	41.2/24	0.016
$p_{\rm T}({ m t\bar t})$ vs. $M({ m t\bar t})$	16.7/32	0.988	465/32	< 0.01	97.6/32	< 0.01
	MG5_AMC@NLO+P8		MG5_AMC@NLO+H++		MG5_AMC@NLO+P8 FXFX	
$p_{\mathrm{T}}(t_{\mathrm{h}})$	13.1/9	0.159	6.85/9	0.653	5.05/9	0.830
$ y(\mathbf{t}_{\mathbf{h}}) $	9.91/7	0.194	13.5/7	0.060	8.12/7	0.322
$p_{\mathrm{T}}(t_{\ell})$	13.4/9	0.147	8.02/9	0.533	7.97/9	0.538
$ y(t_\ell) $	14.3/7	0.045	7.24/7	0.404	15.9/7	0.026
$M(t\bar{t})$	10.9/8	0.206	34.2/8	< 0.01	33.0/8	< 0.01
$p_{\mathrm{T}}(\mathrm{t}\mathrm{ar{t}})$	40.0/5	< 0.01	7.65/5	0.177	27.8/5	< 0.01
$ y(t\bar{t}) $	2.72/6	0.843	2.77/6	0.837	3.58/6	0.733
Additional jets	36.2/5	< 0.01	15.7/5	< 0.01	10.8/5	0.056
Additional jets vs. $p_{\rm T}(t\bar{t})$	237/20	< 0.01	192/20	< 0.01	87.2/20	< 0.01
Additional jets vs. $p_{\rm T}(t_{\rm h})$	251/36	< 0.01	76.0/36	< 0.01	45.6/36	0.132
$ y(\mathbf{t}_{\mathrm{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$	48.9/36	0.074	100/36	< 0.01	49.1/36	0.071
$M(t\bar{t})$ vs. $ y(t\bar{t}) $	25.1/24	0.403	53.4/24	< 0.01	56.7/24	< 0.01
$p_{\rm T}({\rm t}{\rm t})$ vs. $M({\rm t}{\rm t})$	133/32	< 0.01	157/32	< 0.01	109/32	< 0.01

Tuesday, 20 September 2016