

Higgs production with jets @ CMS

Yacine Haddad On Behalf of the CMS Collaboration IPPP Durham : Workshop on Jet Vetoes and Jet Multiplicity Observables at the LHC

Talk Overview

 Jets play crucial role in enhancing sensitivity in most Higgs analyses, so it is important to have a good reconstruction and modelling of the jets.

- Review of the latest results from $H \rightarrow ZZ^* \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow bb$ with a special focus:
 - Different methods/tools for tagging production modes using jets
- Quick overview of selected results from BSM Higgs searches.

Jet @ CMS

Imperial College London

- PFA: Particle-Flow Algorithm Combine all the information from several sub-detectors
- Individual particles are reconstructed using the PFA and then clustered into jets
- Jet definition : PF Particle clustered Anti-kt algorithm with R=0.4

PileUp mitigation

- CMS has developed and implemented various techniques: ۲
 - Timing of calorimeter @ hardware level, effective to remove out-of-time pileup.
 - Subtracting pileup contribution in average from jets and \bigcirc lepton isolation.
 - Charged Hadron Subtraction(CHS) removes charged particles \bigcirc associated with pileup vertices from reconstructed physics objects, before the jet clustering.
 - **Pileup Jet ID** : Remove jets from pileup using tracking information and jet shape combined in an boosted decision tree (BDT)

- Other methods have been studied in addition to CHS, the most \bigcirc promising one is **PileUp Per Particle Identification (PUPPI)**
 - more details in technical proposal for the phase-II Upgrade of the CMS Detector http://cds.cern.ch/record/2020886

8 TeV

Overview of Higgs production modes

Most of the channels use jets to gain sensitivity and \bigcirc to test coupling strength of certain production modes

Imperial College London

$H \rightarrow ZZ^* \rightarrow 4\ell$: Analysis strategy

- fully reconstructible Background estimation:
 - Main background = non-resonant qq→ZZ and gg→ZZ. Apply NNLO/NLO (resp NNLO/LO) QCD k-factor as a function of mzz
 - Reducible background (Z+X):
 - data-driven estimation from control regions,
 2 independent methods

- Large S/B ratio, excellent resolution, final state fully reconstructible
- Looking for $H \rightarrow ZZ^* \rightarrow 4\ell$ ($\ell = \mu, e$)
- Higgs properties:
 - Signal Strength
 - Fiducial/differential cross section measurement
- Analysis steps optimised for the new conditions @13TeV
 - Analysis relies on efficient leptons selection
 - FSR recovery and ZZ candidate selection
- Two same-flavour, opposite-sign lepton pairs
- Event Selection
- e (µ) pT > 7 (5) GeV, $|\eta| < 2.5$ (2.4)
- Leading 2 leptons: pT > 20, 10 GeV

Imperial College

ondon

- FSR Recovery: attached to closest lepton
- Reject candidates with alternating pairing ZaZb:
- $|m_{Za} m_Z| < |m_{Z1} m_Z|$ and $m_{Zb} < 12 \text{ GeV}$

 ${\scriptstyle \odot}$ Jets reconstructed using PF candidates, clustered by anti-k_T R=0.4

- ${\scriptstyle \odot}$ must satisfy $p_T>30$ GeV with $|\eta|<4.7$
- must be isolated from lepton/FSR photon: $\Delta R(\ell/\gamma, \mathrm{jet}) > 0.4$

Yacine Haddad

CMS-PAS-HIG-16-033

$H \rightarrow ZZ^* \rightarrow 4\ell$: VBF tagged event

CMS-PAS-HIG-16-033

$H \rightarrow ZZ^* \rightarrow 4\ell$: Production mode

Encode angular information in matrix-element based discriminants

• A global discriminant sensitive to $gg/qq \rightarrow 4\ell$ kinematics:

$$\mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}} = \left[1 + rac{\mathcal{P}_{\mathrm{bkg}}^{\mathrm{q}\overline{\mathrm{q}}}(\vec{\Omega}^{\mathrm{H}
ightarrow 4\ell} | m_{4\ell})}{\mathcal{P}_{\mathrm{sig}}^{\mathrm{gg}}(\vec{\Omega}^{\mathrm{H}
ightarrow 4\ell} | m_{4\ell})}
ight]^{-1}$$

- A discriminant for each production mode topology :
 - $\odot~VBF~(D_{2jet}~\&~D_{1jet})$, D_{WH} , $~D_{ZH}$
- Define 6 event categories for each H(125) decay mode (4e, 4µ, 2e2µ):
 - VBF-2jets category: exactly 4 leptons, 2 or 3 jets (at most 1 b-tag) or at least 4 jets + High D_{2jets} value
 - VH-hadronic category: exactly 4 leptons + 2 or 3 jets (at most 1 b-tag) or at least 4 jets + High D_{ZH} or D_{WH} value.
 - VH-leptonic category: ≤ 3 jets + 1 additional lepton or 1 opposite sign lepton-pair
 - ttH category : ≥4 jets (at least 1 b-tag) + 1 additional lepton
 - **VBF-1jet category :** 4 leptons + 1 jet + high D_{1jet} value
 - Untagged category : remaining events

Expectation in [118, 130 GeV]

$H \rightarrow ZZ^* \rightarrow 4\ell$: Event selection

yields for each event category in [118, 130] GeV

Imperial College London

Category	Untagged	VBF-1j	VBF-2j	VH-lept.	VH-hadr.	tīH	Total
$q \tilde{q} \rightarrow Z Z$	7.27	0.82	0.06	0.10	0.11	0.01	8.36
$gg \rightarrow ZZ$	0.62	0.11	0.01	0.01	0.01	0.00	0.77
Z + X	3.83	0.32	0.24	0.05	0.08	0.10	4.64
Sum of backgrounds	11.73	1.25	0.32	0.16	0.20	0.11	13.77
Signal ($m_{\rm H} = 125 {\rm GeV}$)	15.51	3.62	1.45	0.14	0.70	0.19	21.61
Total expected	27.24	4.87	1.77	0.30	0.90	0.30	35.38
Observed	29	1	2	0	1	0	33

 Good data/MC in the full m₄₁ range and for the 3 final states (4e, 4µ, 2e2µ)

$H \rightarrow ZZ^* \rightarrow 4\ell$: Signal extraction

p-value, mass, and signal strength extracted using a
 2D likelihood fit defined by:

- $\mathcal{L}_{2D}(m_{4l}, \mathcal{D}_{bkg}^{kin}) = \mathcal{L}(m_{4l})\mathcal{L}(\mathcal{D}_{bkg}^{kin}|m_{4l})$
- in 3 final states x 6 categories.
- Minimum of p-value at 124.3 GeV with 6.4σ obs.
 (6.3σ exp.) significance
- 6.2σ obs. (6.5σ exp.) at m_H=125.09 GeV (Run1 LHC average)

Channel	4e	4μ	2e2µ	4ℓ
$q\bar{q} \rightarrow ZZ$	$1.37\substack{+0.16 \\ -0.15}$	$3.09^{+0.27}_{-0.27}$	$3.90^{+0.46}_{-0.43}$	$8.36^{+0.81}_{-0.79}$
$gg \to ZZ$	$0.16\substack{+0.03\\-0.03}$	$0.32\substack{+0.05\\-0.05}$	$0.30^{+0.05}_{-0.05}$	$0.77^{+0.12}_{-0.12}$
Z + X	$0.90^{+0.38}_{-0.37}$	$1.40\substack{+0.52\\-0.51}$	$2.34^{+0.91}_{-0.89}$	$4.64^{+1.11}_{-1.09}$
Sum of backgrounds	$2.42_{-0.40}^{+0.42}$	$4.81\substack{+0.59\\-0.59}$	$6.54^{+1.03}_{-1.00}$	$13.77^{+1.41}_{-1.38}$
Signal ($m_{\rm H} = 125 {\rm GeV}$)	$3.90^{+0.53}_{-0.54}$	$7.92\substack{+0.88\-0.93}$	$9.80^{+1.34}_{-1.36}$	$21.61^{+2.63}_{-2.71}$
Total expected	$6.32\substack{+0.78\\-0.76}$	$12.73^{+1.21}_{-1.24}$	$16.34^{+1.92}_{-1.90}$	$35.38^{+3.43}_{-3.45}$
Observed	5	12	16	33

CMS-PAS-HIG-16-033

$H \rightarrow ZZ^* \rightarrow 4\ell$: H(125) production modes

$H \rightarrow ZZ^* \rightarrow 4\ell$: fiducial cross-section

e space	
$p_T > 20 \text{ GeV}$	
$p_{\rm T} > 10 {\rm GeV}$	
$p_{\rm T} > 7(5) {\rm GeV}$	\bigcirc
$ \eta < 2.5(2.4)$	\cup
$< 0.4 \cdot p_{\mathrm{T}}$	
satisfy criteria above	
$40 \text{ GeV} < m_{Z_1} < 120 \text{ GeV}$	
$12 \text{ GeV} < m_{Z_2} < 120 \text{ GeV}$	
$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$	(
$m_{\ell^+\ell'^-} > 4 \text{GeV}$	
$105 { m GeV} < m_{4\ell} < 140 { m GeV}$	
	$\begin{array}{l} p_{\rm T} > 20~{\rm GeV} \\ p_{\rm T} > 10~{\rm GeV} \\ p_{\rm T} > 7(5)~{\rm GeV} \\ \eta < 2.5(2.4) \\ < 0.4 \cdot p_{\rm T} \\ \end{array}$ satisfy criteria above $40~{\rm GeV} < m_{Z_1} < 120~{\rm GeV} \\ 12~{\rm GeV} < m_{Z_2} < 120~{\rm GeV} \\ 12~{\rm GeV} < m_{Z_2} < 120~{\rm GeV} \\ 12~{\rm GeV} < m_{Z_2} < 120~{\rm GeV} \\ 10~{\rm GeV} < m_{4\ell} < 140~{\rm GeV} \\ \end{array}$

CMS-PAS-HIG-16-033

Maximum likelihood fit to the uncategorised m₄₁ distribution, assuming $m_H = 125 \text{ GeV}$

$$\sigma_{\rm fid.} = 2.29^{+0.74}_{-0.64}({\rm stat.})^{+0.30}_{-0.23}({\rm sys.})^{+0.01}_{-0.05}({\rm model~dep.})~{\rm fb}$$

$H \rightarrow ZZ^* \rightarrow 4\ell$: differential cross-section

CMS-PAS-HIG-16-033

$H \rightarrow ZZ^* \rightarrow 4\ell$: differential cross-section

CMS-PAS-HIG-16-033

$H \rightarrow \gamma \gamma$: analysis strategy

Good precision mass measurement

Imperial College London

$$m_{\gamma\gamma}^2 = E_{\gamma_1} E_{\gamma_2} (1 - \cos \alpha)$$

 Requires a good energy reconstruction and correct vertex assignment CMS-HIG-16-020

- ${ullet}$ Looking for a small signal in a large falling background
- Background composed by :
 - γ-γ (irreductible) ~ 70%
 - γ-jet (reducible) ~ 30%
 - jet-jet (reducible) < 1%
- General strategy: categorise events by resolution and production topology

$H \rightarrow \gamma \gamma$: categorisation

ttH (leptonic)

- (sub-)lead-photon pT/myy >1/2(1/4), at least one lepton ($\ell = \mu, e$) away from Z peak
- at least two jets with pT>25GeV, $|\eta|$ <2.5

• at least one of the jet is b-tag

ttH (Hadronic)

- at least two jets with pT>25GeV, $|\eta| < 2.5$
- no lepton + at least 5 jets (≥ 1 b-tag)

Yacine Haddad

e.

$H \rightarrow \gamma \gamma$: categorisation

ttH (leptonic)

- (sub-)lead-photon pT/m_{yy} >1/2(1/4), at least one lepton ($\ell = \mu, e$) away from Z peak
- at least two jets with pT>25GeV, $|\eta| < 2.5$
- at least one of the jet is b-tag

ttH (Hadronic)

- at least two jets with $p_T>25GeV$, $|\eta|<2.5$
- no lepton + at least 5 jets (≥ 1 b-tag)

VBF (0-1)

- \odot Require at least 2 jets with $p_{T1}>30GeV,\,p_{T2}>20$ GeV, $|\eta|<4.7,\,m_{jj}>250$ GeV
- A diphoton pair with (sub)lead $p_T/m_{\chi\chi} > 1/2(1/4)$
- Construct a BDT to identify VBF dijet-like events using:
 - $p_T/m_{\chi\chi}$ of both photons, p_T of both jets, m_{jj} , $\Delta \eta_{jj}$, Zeppenfeld variable, $\Delta \phi(jj,\chi\chi)$
- Final VBF classification combines dijet BDT with BDT estimating diphoton quality (see next slide)
- \odot 2 VBF categories are then defined by sensitivity (VBF tag 0-1)

$H \rightarrow \gamma \gamma$: categorisation

- Remaining events fall into the untagged category
- Construct MVA to select diphoton pairs with signal like kinematics, high photon ID score and good mass resolution
- Split events into categories based on output of classifier exploiting S/B ratios and mass resolution
- 4 untagged categories → 8 nonoverlapping categories in total

(0-3)**Jntagged**

$H \rightarrow \gamma \gamma$: Signal extraction

CMS-HIG-16-020

- Maximum observed significance is 6.1 o at 126.0 GeV
- Best-fit signal strength $\hat{\sigma}/\sigma_{SM} = 0.95^{+0.21}_{-0.19} = 0.95 \pm 0.17(stat.)^{+0.08}_{-0.05}(theo.)^{+0.10}_{-0.07}(syst.)$ ٠

Imperial College ondon

٠

$H \rightarrow \gamma \gamma$: Production modifier

CMS-HIG-16-020

• Best fit signal strength split into boson and fermionic production modes:

 $\hat{\mu}_{VBF,VH} = 1.59^{+0.73}_{-0.45}$ and $\hat{\mu}_{ggH,t\bar{t}H} = 0.80^{+0.14}_{-0.18}$

Also split the signal strength by individual production mode

$H \rightarrow \gamma \gamma$: Fiducial cross section

 Fiducial cross section measured profiling m_H:

 $\hat{\sigma}_{fid} = 69^{+16}_{-22}$ (stat.)⁺⁸₋₆(syst.)fb

• Theoretical prediction for m_{\rm H}=125.09~{\rm GeV} $\sigma^{th.}_{fid}=73.8\pm3.8{\rm fb}$

- Differential XS measurement done in Run1 for H+jets
- Similar results @13TeV are in preparation

VBF H→bb : Analysis strategy

CMS-HIG-16-003

- Signal signature:
 - 2 b-jets + 2 forward VBF jets with:
 - \odot large separation in η
 - Iarge di-jet invariant mass
 - Main background : Multi-jet QCD
- Analysis separated into two parts from complementary trigger strategies

	SingleB	DoubleB	
Trigger	one b-tagged jet	two b-tagged jets	
jets <i>p</i> _T	$p_{\rm T}^{1,2,3,4} > 92,76,64,30 { m GeV}$		
jets $ \eta $		<4.7	
b tag	no cut	two jets with CSV>0.5	
$\Delta \phi_{ m bb}$	<1.6 radians	<2.4 radians	
	$m_{\rm qq} > 460 {\rm GeV}$	$m_{\rm qq} > 200 { m ~GeV}$	
VBF topology			
	$ \Delta \eta_{ m qq} > 4.1$	$ \Delta\eta_{ m qq} >1.2$	
Veto	None	Events that belong to Single	

Imperial College

ondon

- Construct a MVA discriminant based on:
 - 1 or 2 b-tagged jets
 - VBF di-jet signature (tighter selection for 1 b-jet)
 - PU rejecting with "soft activity" jet counting

H→bb : Quark/Gluon Tagger

CMS PAS JME-13-002

- At a given energy a gluon jet will, on average
 - have a higher multiplicity
 - be angularly wider

Imperial College

ondon

- have more uniform energy fragmentation
- **Different variables** have been studied \rightarrow 3 chosen

- Neutral multiplicity
- Total multiplicity

Jet shape variables

- $\odot~$ RMS of PF candidate in $\eta-\varphi$ plan
- Major axis in η-φ
- Minor axis in η-φ

Energy variables

- Pull
- R, energy fraction carried by the leading consistent
 Fragmentation variable : P_T^D

Yacine Haddad

quark jet

gluon jet

H→bb : Quark/Gluon Tagger

 \odot Construct a likelihood discriminant (up to η =4.7) based on the chosen of three variables

• Extracted on di-jet sample. Applied also on the Z+jet sample for validation

Imperial College London

VBF H→bb : Mass resolution

CMS-HIG-16-003

VBF H→bb : event categories

CMS-HIG-16-003

- All the discriminating variables (VBF kinematics + jet properties) are combined by means of a BDT:
 - There is a separate training for 1 or two b-tagged categories

ondon

- Categories defined in ranges of BDT output, chosen to maximise significance (similar to $H \rightarrow \gamma \gamma$):
 - Four (three) from the single (double) b-jet : seven categories in total
- QCD background template is extracted from a fit on the mbb in the unused region, then a transfer correction is applied to the shape per category

VBF H→bb :Run1+2015 Data

CMS-HIG-16-003

 Using 2.3 fb-1 of 2015 Data @ 13TeV, the analysis shows a deficit of data at m_{bb}=125 GeV

$$\mu_{2015} = -3.7^{+2.4}_{-2.5}$$

 Combined with run-1 analysis, the signal strength is :

 $\mu_{\rm Run1+2015} = 1.3^{+1.2}_{-1.1}$

 \odot With

$$\mu_{\rm Run1} = 2.8^{+1.6}_{-1.4}$$

HH→bbγγ

- \bullet Large cross section from bb, good resolution from $\chi\chi$
- Main background :
 - SM $\chi\chi$ + jets production

Imperial College

ondon

- SM γ + jets (1 jet identified as a photon)
- QCD Mutijet (two jets identified as photons)

•Two strategies :

• Resonant low mass ($m_X < 500$ GeV) : two categories based o b-tag, signal extracted using 2D unbinned fit in m_{ii} and $m_{\chi\chi}$

Resonant High mass (>500GeV) : same as low mass but 1 category

CMS-PAS-HIG-16-032

- Other analyses exploring double Higgs production ●hh→bbbb: CMS-PAS-HIG-16-002 CMS-PAS-HIG-16-026
 - ●hh→bbWW: CMS-PAS-HIG-16-011 CMS-PAS-HIG-16-024
 - ●hh→ $bb\tau\tau$: CMS-PAS-HIG-16-028 CMS-PAS-HIG-16-029

Yacine Haddad

M(ii) [GeV]

VBF charged Higgs to WZ

Conclusion

- Jets play an important role improving analyses sensitivity and hunting Higgs production modes
- Coupling and production cross section measurements can be then measured
 - Fiducial measurements of jet cross sections using RunII have started to emerge from CMS
 - Fiducial cross section + differential measurement from 4ℓ analysis (Future measurements are in preparation)
- Review of different methods for tagging techniques used in CMS + latest CMS Higgs results @13TeV

Extra slides

H→γγ : photons

- Electromagnetic calorimeter response:
 - corrected through time
 - inter-calibration in η/ϕ

Imperial College

ondon

- adjustment of absolute scale
- Energy and its uncertainty corrected for local and global shower containment:
 - regression targeting Etrue/Ereco
- Scale/Resolution corrected over time using Z→ee peak as reference
- Corrected energy and resolution used in the analysis
- MVA based photon ID classifier to differentiate between prompt and fake photons
 - Uses shower shape variables, PF isolations, photon's kinematics and median energy density (ρ)

Envelope method

- For background parameterisation, several families functions might provide decent fits to a background distribution → Model Choice problem.
- The different choices of function can lead to different results! So which to choose?
- Common solutions to this:
 - Chose a model based (sometime) on some physics motivation.
 - Look at how different your results would be and assign a systematic uncertainty.
 - how do we choose the model?
 - How do we quote the result?
 - How do we correctly assign a systematic for any choices we made?

Yacine Haddad, Pheno 2016 Pittsburgh

Envelope method

- The envelope method seeks to provide some answers to these questions.
- Scan -2NLL of parameter of interest whilst profiling some set of nuisance parameters.
- If the true values of nuisances were known perfectly, curve would be much narrower (equivalent to stat-only uncertainty). Eg, fix nuisances to best fit values.
- Fixing nuisances to any other values give another curve, not necessarily at the minimum. Can do this for different values of background params.
- If we do sample sufficient possible values of nuisance params, the minimum envelope of all curves begins to approximate the original -2NLL !
- In principle we can do this also for discrete nuisances (like choice of background function, even if the different functions has different numbers of parameters!)

Yacine Haddad, Pheno 2016 Pittsburgh

Envelope method

- In SM Hgg example: pick µ as POI.
 - Choices which are similar shouldn't effect our result (Laurent and Power Law)
 - Choices which are poor should have little impact (Polynomial)
 - Choices which seem equally valid but disagree should increase our uncertainty (Exponential)

- Take the minimum of all the curves as a function of µ (the envelope). If more than one function contributes then that envelope is wider than any of the individual curves → parameter uncertainty is increased
- No explicit model choice has to be made, since this choice is dynamic in the scan .
- Result: Best fit value, confidence interval and systematic for model choice!

Yacine Haddad, Pheno 2016 Pittsburgh

Differential XS from Runl: H(yy)

Soft activity pileUp mitigation

● VBF signal events: electroweak production of jets → no QCD colour exchanged: ● rapidity gap of suppressed activity between the two VBF tagging jets ● only little badronic activity (soft)

• only little hadronic activity(soft)

• Additional tracks:

satisfy the high purity quality requirements and pT > 300 MeV
are not associated with any of the four leading PF jets in the event
are not in the region between the two best b-tagged jets

• Clustered into AK4 soft TrackJets

 \odot use only multiplicity of soft track jets with pT > 5 GeV with good Data/MC agreement

Differential XS from Runl: H(yy)

A word about PileUp Per Particle Identification

- Transforms the distribution of *a* in a weight (1 for particle from LV, 0 for particles from PU)
- This weight can be also defined at large rapidities where ٠ there is no coverage from the tracker.
- Then, jet reconstruction algorithm can run on the particles with the weight (but PUPPI is not only for jet.).

Imperial College .ondon

10⁻³

charged LV charged PU

neutrals LV ······ neutrals PU

Particles

from LV

10

neutrals LV

neutrals PU

0.8

weight (α_i^F)

0.6

 α_i^F

5

0.4

0.2

$HH \rightarrow bb\tau\tau$

Intermediate BR, fully reconstructed final state:

 \odot 1H+1 isolated leptons (e, ,H)+2 b-jets in the final state

•3 final states: $e\tau_H$, $\mu\tau_H$, $\tau_H\tau_H$

Main backgrounds: tt (from MC), mutijet QCD (from data in control regions)

Resonant search:

.ondon

•Limit extraction on kinematic fit of the 4-body invariant mass:

Non-resonant analysis:

- kinematic BDT discriminant to reduce tt (uses only angular information)
- visible mass as final variable

• Only results on 2016 data shown.

Results with 2015 data:

- CMS-PAS-HIG-012