

Searches for BSM+jets at CMS

Adam Elwood on behalf of the CMS Collaboration

Jet vetoes and multiplicity observables workshop IPPP, Durham, 19-21 September 2016

Motivation for BSM searches with jets at the LHC

- A Higgs boson has been discovered but a lot of questions about the • standard model remain
 - Hierarchy problem, dark matter, gravity, dark energy ٠
- As the LHC is a p-p collider the highest cross section BSM production processes occur hadronically
- In this talk focus on searches of BSM with jets and missing energy

Much more beyond SUSY and DM..

The Compact Muon Solenoid (CMS)

- CMS is a general purpose detector designed to search for new particles produced in proton proton collisions at the LHC
- It consists of a series of sub detectors built around a 4 Tesla solenoid that are exploited to reconstruct the particles produced in each collision event
- Due to its comprehensive coverage of all angles the missing momentum in each collision event can be accurately determined

Challenges of hadronic BSM searches

- Very high cross-section for QCD events at the LHC that mainly produce non-genuine E_T^{miss} through mismeasurement
 - High production rates present significant challenge for the trigger
 - Difficult to quantify due to challenges involved in simulating QCD events
- Electroweak processes that produce genuine
 ET^{miss}
 - W decays that are suppressed with a lepton veto
 - An irreducible Z to neutrino background that must be accurately predicted
- The types of events that are most sensitive to new physics typically sit in the tails of SM distributions, e.g. E_T^{miss}, N_{jet}
 - MC does not model these tails very reliably

Outline of typical search

- The use of a missing energy based discriminating variable
 - e.g. E_T^{miss} , M_{T2} , α_T
 - They act as 'QCD-killers' (e.g. α_T)
 - Can also separate signal from electroweak backgrounds (e.g. M_{T2})
- A trigger strategy is then defined based on the discriminating variables and energy scale of the events
- Additional QCD suppression through angular distribution of missing energy and jets
 - e.g. $\Delta \phi$ (jet, E_T^{miss}) > 0.3
- Backgrounds are predicted with data driven methods based on control regions
 - Single lepton to predict top and W+jets backgrounds
 - Z to neutrinos from double lepton and photon control regions
 - Remaining QCD predicted with multi-jet enriched QCD control sample (e.g. inverted $\Delta \phi$ cut)
- Sensitivity obtained by binning in the discriminating variable, energy scale and jet multiplicity variables

Example SUSY analyses

- In the bulk of this talk will use plots and examples from three hadronic SUSY analyses made with the 2015 and 2016 data collected at 13 TeV
 - The " α_T " analysis
 - <u>CMS-PAS-SUS-16-016</u> and <u>CMS-PAS-SUS-15-005</u>
 - The "MT2" analysis
 - <u>CMS-PAS-SUS-16-016</u> and <u>CMS-SUS-15-003</u>
 - The "H_T^{miss}" analysis
 - <u>CMS-PAS-SUS-16-014</u> and <u>CMS-SUS-15-002</u>

Distributions of binning variables

A. Elwood - IC

http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-15-003/index.html

Specific example - the α_T analysis

- Inclusive search targeting SUSY and Dark Matter
 - Vetoing leptons or photons
 - Consider all jet and b-tag multiplicities $(n_{jet} \ge 1, n_b \ge 0)$
 - Low threshold on jet activity to retain sensitivity to compressed SUSY scenarios
 - $H_T = \sum p_T^{jet} > 200 \text{ GeV}, \ H_T^{miss} = -\sum p_T^{jet} > 130 \text{ GeV}$
 - Thresholds maintained through a suite of dedicated triggers
- Robust analysis
 - Suppress QCD multijet background with tight cuts on dedicated variables: α_T , $\Delta \varphi^*$, H_T^{miss}/E_T^{miss}
 - Data-driven estimation of the other backgrounds
- Sensitivity
 - Binning in n_{jet} , n_b , H_T and H_T^{miss}
 - Further categorisation based on n_{jet} topologies

A. Elwood - IC

9

The α_T variable

- The analysis strategy revolves around reducing QCD to a negligible level with an appropriate cut on α_{T}
- It does this by separating processes with genuine missing energy from those with mismeasured jets that result in missing energy along the jet axis
- Originally designed for di-jet events then generalised to multi-jets

$$\begin{aligned} \mathbf{\alpha}_{\mathsf{T}} &= \frac{E_{\mathsf{T}}^{\mathsf{J}^2}}{\mathsf{M}_{\mathsf{T}}} \\ \mathbf{\alpha}_{\mathsf{T}} &= \frac{1}{2} \times \frac{H_T - \Delta H_T}{\sqrt{H_T^2 - (H_T^{miss})^2}} \end{aligned}$$

For a pseudo di-jet system with pseudo jet p_T difference: ΔH_T

The pseudo jets are constructed from a sum of all jets in the system so as to minimise ΔH_T

10

 $\boldsymbol{\alpha}_{\mathsf{T}} = \frac{1}{2} \times \frac{H_T - \Delta H_T}{\sqrt{H_T^2 - (H_T^{miss})^2}}$

Balanced multijet event: $\alpha_T = 0.5$

Mismeasured multijet event: $\alpha_T < 0.5$

Genuine missing energy multijet event: $\alpha_T > 0.5$

The $\Delta \phi^*$ variable

- In multi-jet systems QCD processes can still pass the α_T cut
 - e.g. heavy flavour QCD with neutrinos in the final state or extreme mismeasurement of multi jet systems
- Define a variable based on $\Delta \phi$ to further remove the remaining QCD events
- Constructed in such a way to be sensitive to under and over measurement

Signal triggers

Trigger

- Seeded by E_T^{miss} and H_T at the hardware trigger level
- 5 dedicated $\alpha_T \times H_T$ triggers for a series of H_T ٠ thresholds below 800 GeV
 - Require a minimum value of α_T that depends on the H_T threshold (above 200 GeV)
- Pure H_T trigger above 800 GeV
- An additional E_{T}^{miss} based trigger to maximise acceptance
- **Control triggers**
 - Require a single lepton or photon with low as possible threshold for reasonable rate
- close to 100% efficiency in the full signal region phase space

QCD prediction and validation

 Appropriate cuts reduce QCD background to the % level of the electroweak background but must be predicted

Genuine ET^{miss} background prediction

- After QCD reduction left with non-multijet Standard Model backgrounds
 - In association with lost leptons: $t\bar{t}$, W+jets
 - Irreducible: Z decaying to neutrinos
- Make use of the single muon, double muon and single photon control samples
- Emulate the missing energy by ignoring the leptons when calculating variables
- Extrapolate yields from one control sample to signal region via appropriate transfer factors in MC simulation

$$N_{\text{pred}}^{\text{signal}}(n_{\text{jet}}, n_{\text{b}}, H_{\text{T}}) = \frac{N_{\text{MC}}^{\text{signal}}(n_{\text{jet}}, n_{\text{b}}, H_{\text{T}})}{N_{\text{MC}}^{\text{control}}(n_{\text{jet}}, n_{\text{b}}, H_{\text{T}})} \times N_{\text{obs}}^{\text{control}}(n_{\text{jet}}, n_{\text{b}}, H_{\text{T}})$$

Control regions used for predictions

Control regions

Signal region

Determination of systematic uncertainties on the remaining non-multijet backgrounds from simulation

- To search for significant excesses in hadronic events with missing energy must take account of all systematic uncertainties
- Vary known experimental and theoretical uncertainties by $\pm \, I \, \sigma$ and propagate to the background prediction
- Propagate all relevant statistical uncertainties

Systematic source	Uncertainty in transfer factor [%]					
	$\mu + jets \Rightarrow t\bar{t}/W$	$\mu + jets \Rightarrow Z \rightarrow \nu \overline{\nu}$	$\mu\mu + jets \Rightarrow Z \rightarrow \nu\overline{\nu}$	$\gamma + jets \Rightarrow Z \rightarrow \nu \overline{\nu}$		
Corrections applied to simulation:						
Jet energy scale	1–5	1–5	1–5	1–5		
b-tag efficiency / mistag	1–5	1–5	1–5	1-5		
Lepton scale factors	1–3	1–3	1-3	/ -		
Pileup	0–2	0–2	0-2	0-2		
Signal trigger efficiency	1–2	1–2	1-2	1–2		
Muon trigger efficiency	2	2	2	-		
Photon trigger efficiency	-	-		1–2		
Top quark $p_{\rm T}$	1–10	1–30	1–10	- / /		

Closure tests

- Additional data driven tests that do not rely on simulation
- Confront data yield in control (sub-)sample against the prediction from another (sub-)sample (binned in $n_{jet},\,H_T)$
- e.g. testing the α_T modelling with the single muon control sample (per category):

$$N_{pred}^{\alpha_T > x} = \frac{N_{MC}^{\alpha_T > x}}{N_{MC}^{\alpha_T < x}} \times N_{obs}^{\alpha_T < x}$$

- Any significant bias or trend (as a function of N_{jet} and H_T) should be evident and can be investigated
- In the absence of bias we can use closure tests to derive systematic uncertainties
- With appropriately chosen closure tests this information can be used to determine data-driven systematic errors

Additional data driven systematic uncertainties

- E.g. use yields of events with low α_T to predict yields of events with high α_T in the single muon control sample
- Tests the modelling of the α_T variable

H_T^{miss} dimension

- In addition to the N_{jet} , N_b and H_T dimensions the shape of H_T^{miss} is used to discriminate signal from background
- Generally find that the mismodelling of event yields in the MC occurs as a function of the scale of the event, e.g. H_T
- As each bin is categorised based on these type of variables the H_T^{miss} distribution is taken directly from simulation in each bin
- The normalisation of this distribution comes from the data driven methods

H_T^{miss} dimension systematics

- In each (N_{jet}, N_b, H_T) bin, the data/MC ratio is validated in multiple control regions and used to derive uncertainties in the H_T^{miss} shape
 - Fit linear orthogonal polynomial and check linear term is compatible with 0 over all bins
 - Propagate the fit uncertainties
- This data-driven systematic is included in addition to effect on H_T^{miss} of all known experimental and theoretical uncertainties
- Find that the fit is compatible with flat across control samples only when binning in N_{jet} and H_T

Data ~ MC

ISR modelling reweighting for signal models

- Major mismodelling effects in SM backgrounds are reduced with data driven methods
- Still want to correct the modelling of ISR in the MC for the signal models
- Define N_{ISR} -jets as the number of jets not matched ($\Delta R < 0.3$) to MC truth particles
- Derive corrections as a function of N_{ISR}-jets
 - e.g. in an inclusive 2-lepton ttbar sample and check in 1-lepton sample
- Propagate uncertainties in the derivation of the reweighting

Corrections fix this kind of mismodelling in signal models

12.9/fb results - HT bins

• A maximum likelihood fit is performed simultaneously across all categories with systematic uncertainties floated as nuisance parameters

A. Elwood - IC

23

12.9/fb results - MHT dimension

24

Examples of other BSM+jets analyses at CMS

- H_T and H_T^{miss} search
 - A canonical jets+E^{miss} search
- Search variable: H_T^{miss}
- **Binned** in jet and b-jet multiplicity
 - N_{jet}: 3-4, 5-6, 7-8, 9+
 - N_b: 0, 1, 2, 3+
 - In each of these bins bin in H_{T} and H_{T}^{miss}

Alternative QCD background method: "rebalance and smear"

- Technique to gain more statistics for QCD events with E_T^{miss} that comes from mismeasurement
- Multi-jet events are collected with low threshold prescaled triggers and "rebalanced" by varying the jet p_T to obtain an event with minimal ${\sf E_T}^{\sf miss}$
 - Carried out with a maximum likelihood fit that takes into account the jet response function
- The rebalanced events are then smeared by varying the p_T of all the jets by a random number taken from the jet response function
- Each event is smeared multiple times and allows a large statistics sample to be built up

Examples of other BSM+jets analyses at CMS

- M_{T2} search
 - Optimised for pair-produced new physics with WIMPs
- Search variable: M_{T2} ('stransverse mass', E_T^{miss}-like)
- **Binned** in H_T , N_{jet} and N_b
 - H_T: 200, 450, 575, 1000, 1500+ GeV
 - N_{jet}: 1, 2-3, 4-6, 7+
 - N_b: 0, 1, 2, 3+
- In each of these regions look at the tails of M_{T2}

SUSY results

Examples of other BSM+jets analyses at CMS

- "Mono-jet" analysis
 - A search for invisible systems with ISR
- Search variable: ET^{miss}
 - Require $E_T^{miss} > 200 \text{ GeV}$
- Require:
 - >= I ak4 jet with pT>100GeV
 - or >=1 ak8 jet with mass
 65-105GeV
- Fit background and signal predictions to E_T^{miss} in data

Dark matter results

- Current public results from the mono-jet analysis
- Accelerators provide complimentary reach with direct detection experiments

Conclusions

- BSM searches with jets are critical for us to explore the unknown beyond the standard model
- A big challenge is presented by very high QCD multi-jet crosssections which is typically controlled with dedicated variables
- Standard model backgrounds with genuine missing energy, and their systematic uncertainties, are predicted with data driven methods wherever possible
- In current SUSY and DM analyses no excess of events above the predicted Standard Model backgrounds is observed
- The picture will become clearer as Run 2 progresses
- Fingers crossed for a glimpse of something new!

Imperial College London

Backup

Di-jet resonance search - latest results

- Di-jet resonance search fits smoothly falling multi-jet background and hunts for resonances above the background
- No statistically significant deviations from background observed in latest Run 2 data

Di-jet resonance search - latest results

CMS for SUSY searches

Compressed SUSY

- If SUSY is manifest with small mass splittings we have a compressed spectrum
- This results in decays to soft SM particles and only a small proportion of the MET is visible
- Challenging region that RA1 is well suited to

$\Delta \phi$ distribution (MT2 analysis)

Njet distribution (RA2b analysis)

QCD background estimation

Philosophy

-QCD is the most difficult background to measure...

-Cut hard (AlphaT + dPhi*), assume conservative systematics on negligible contribution

QCD estimate: based on QCD-enriched data sideband, independent per (Njet,HT)
 Method relies on QCD-enriched (and signal depleted) sideband: MHT/MET >1.25
 Data counts, *N^{corr}*, in sideband corrected to remove non-QCD contribution
 New: now use mu+jets control sample to predict the non-QCD background component
 Ratio, *R_{QCD}*, of MC QCD events satisfying or failing the MHT/MET < 1.25 requirement
 Product of *N^{corr}* and *R_{QCD}* gives estimate for QCD contamination vs (Njet,HT)

• **R**_{QCD} **validation**: ratio from MC is validated in dPhi* data sideband (dPhi* < 0.5) –Construct double ratio $R_{QCD}^{data} / R_{QCD}^{MC}$: should be unity, independent of dPhi*, Njet, HT

• QCD in the tails: check MHT and Nb distributions to ensure no "enrichment" -Distributions taken from MC, integrated over other variables and regions in HT

Likelihood model

 $i = H_T/n_{jet}/n_b$ bin

signal strength

$$L(\mu, \underline{\theta}(\mu)) = \prod_{i} (L^{i}_{had}(\mu, \underline{\theta}(\mu)) \times \prod_{control} L^{i}_{control}(\mu, \underline{\theta}(\mu)))$$
nuisances

- Binned analysis L is a product of poisson terms of the likelihood of the observation in each bin given the expected counts from background and signal processes (+ systematics)
- Likelihood broken into two parts per $H_T/n_i/n_b$ had (signal region) and control
 - $L_{had}^{'}$ contains the signal and background yields per MH_T bin and relevant (shape) systematics on the MH_T distribution within the signal bin
 - L[']_{control} contains the prediction of the dominant background yields by the control regions inclusive in MH_T including the relevant (log normal) systematics
- Signal contribution in signal and control regions (with relevant systematics) included
- Set limits based on value of µ excluded with CLs > 95% derived using LHC test statistic*

M. Citron mc3909@ic.ac.uk

Sideband corrections

- Take highest-precision cross section calculations and determine processspecific corrections relevant for our signal region phase space
 - Improves closure of data-driven checks (minimal impact on predictions)
- Use data sideband defined by MHT (αT for photon) cut in control regions
- Derive corrections with simultaneous fit over sidebands over all HT/njet/ nb bins (using a floating parameter per process)
 - Don't need to use cuts on nb/njet to enrich samples

Process	Sideband	Selection	Corrrection
γ + jets	$0.50 < \alpha_{\rm T} < 0.52$	γ + jets	1.33 ± 0.03
W + jets	$100 < H_{\mathrm{T}}^{\mathrm{miss}} < 130\mathrm{GeV}$	μ + jets	1.13 ± 0.01
Z+jets	$100 < H_{\mathrm{T}}^{\mathrm{miss}} < 130\mathrm{GeV}$	$\mu\mu$ + jets	0.99 ± 0.02
tī + jets	$100 < H_{\rm T}^{\rm miss} < 130{\rm GeV}$	μ + jets, $\mu\mu$ + jets	0.86 ± 0.01

Full list of signal systematics

Systematic source	Туре	Correlated	Typical magnitude (%)
Luminosity	Normalisation	Yes	6.3
Monte Carlo statistics	Norm. + shape	No	1–50
Jet energy scale	Norm. + shape	Yes	3–10
b-tag efficiency scale factors	Norm. + shape	Yes	5-40
Lepton scale factors	Normalisation	Yes	1–5
Pile-up	Norm. + shape	Yes	0–5
Trigger efficiency	Norm. + shape	Yes	0–4
Initial state radiation	Norm. + shape	Yes	1–30
Modelling of H ^{miss}	Normalisation	Yes	1–5

Example suite of tests

The closure tests are designed to probe the modelling of specific physics effects, several examples are given below

- W/tt composition
 - · $n_{jet}=2 \rightarrow n_{jet}=3$
 - · $n_{jet}=3 \rightarrow n_{jet}=4, \ldots$
- Lepton ID modelling
 - · Tight-Loose $\mu\mu \rightarrow$ Tight-Tight $\mu\mu$
- Z/gamma ratio
 - µµ+jets→γ+jets
- Z→inv with b-tags
 - · μ +1b $\rightarrow \mu\mu$ +1b
- Consistency between W,Z bosons
 - µ+jets→γ+jets
 - · μ +jets \rightarrow $\mu\mu$ +jets

A. Elwood - IC

- W polarisation effects
 - $\cdot \mu^+ + jets \rightarrow \mu^- + jets$
- $\cdot \,\, \alpha_T$ and $\Delta \varphi^*$ modelling
 - · "core" \rightarrow "tail"
- \cdot b-tagging SFs
 - · 0 b-tag \rightarrow 1 b-tag
 - · 1 b-tag \rightarrow 2 b-tags

(in addition to dedicated independent study)

- Lepton/photon efficiency and SF
 - · μ +jets \rightarrow $\mu\mu$ +jets
 - · µ+jets→γ+jets

Full systematic list with data driven tests

Systematic source	Uncertainty in transfer factor [%]				
	$\mu + jets \Rightarrow t\bar{t}/W$	$\mu + jets \Rightarrow Z \rightarrow \nu \overline{\nu}$	$\mu\mu + jets \Rightarrow Z \rightarrow \nu\overline{\nu}$	$\gamma + jets \Rightarrow Z \rightarrow \nu \overline{\nu}$	
Corrections applied to simul	ation:				
Jet energy scale	1–5	1–5	1–5	1–5	
b-tag efficiency / mistag	1–5	1–5	1–5	1-5	
Lepton scale factors	1–3	1–3	1-3	/ ·	
Pileup	0–2	0–2	0-2	0–2	
Signal trigger efficiency	1–2	1–2	1-2	1–2	
Muon trigger efficiency	2	2	2	-	
Photon trigger efficiency	-	-	<hr/>	1–2	
Top quark $p_{\rm T}$	1–10	1–30	1–10		
Derived from closure tests in	data:			$\langle \rangle$	
W/Z ratio	-	4-15	-		
Z/γ ratio	-	- / .	-	6–11	
W/tt composition	4–30	- / /	\\ -	-	
W polarisation	2-10	2-10	\	-	
$\alpha_{\rm T} \hat{/} \Delta \phi_{\rm min}^*$	3–30	3–30	3–30	-	