ATLAS: Beyond Standard Model Jet Searches

Lydia Beresford On behalf of the ATLAS Collaboration

JVMO Workshop September 21, 2016

Introduction

Jet vetoes & multiplicity observables are crucial for many BSM searches with ATLAS

Lydia Beresford

ATLAS: Beyond Standard Model Jet Sea

September 21, 2016 2 /

 \rightarrow Only a small selection of analyses will be highlighted here! Analyses:

Dijet Angular:

15.7 fb^{-1} , $\sqrt{s} = 13$ TeV ATLAS-CONF-2016-069

ISR + Dijet:

15.5 fb^{-1} , $\sqrt{s} = 13$ TeV ATLAS-CONF-2016-070

• Multi-jet:

3.6 fb^{-1} , $\sqrt{s} = 13$ TeV JHEP 03 (2016) 026

• Single VLQ \rightarrow Wb:

3.2 fb^{-1} , $\sqrt{s} = 13$ TeV ATLAS-CONF-2016-072

20.3 fb^{-1} , $\sqrt{s} = 8$ TeV Eur. Phys. J. C76 (2016) 442

ATLAS-CONF-2016-069

Look for new non-resonant phenomena (e.g. contact interaction) through variations in dijet angular distribution

Dijet Angular - Strategy

Search: Shape analysis (QCD \sim flat)

- \rightarrow Data-MC comparison of χ in different m_{jj} regions
- \rightarrow Look for rise at low χ , high m_{jj}

Dijet Angular - Strategy

Dataset: **15.7** fb^{-1} , $\sqrt{s} = 13$ **TeV**

Event Selection: Jets reconstructed using Anti-kT R = 0.4

Bkg estimate: Pythia 8.186 MC, NLO Corrected (QCD and EW):

- \rightarrow Mass and $\chi\text{-dependent}$ correction factors
- ightarrow QCD: Modify shape at level of 15% at low χ high $\mathit{m_{jj}}$, \leq 5% at high χ
- \rightarrow EW: Unity at low $m_{jj},$ up to 3% in $m_{jj}>$ 3.4 TeV region

Normalise to data in each mass bin

Lydia Beresford

三日 のへの

Use combined max-likelihood fit across 4 signal regions:

Coarse m_{jj} bins, covering $m_{jj} > 3.4$

 \rightarrow Low m_{jj} regions help to constrain nuisance parameters considered in the fit

p-value = 0.07

 $\sqrt{8}$ TeV analysis used inclusive mass bin, not combined fit \rightarrow Combined fit introduces sensitivity to the evolution in m_{jj}

7 / 31

• Dominant theory uncertainty at high *m_{jj}*:

Choice of renormalisation & factorisation scales (NLOJet++)

- Scales set to average p_T of two leading jets
- Vary each independently up & down by factor of 2 (excluding opposite variations)
- Uncertainty: Envelope of variations in the normalised χ distributions
- Size: Rises to 30% at smallest χ values at high m_{jj} values
- Dominant experimental uncertainty: Jet energy scale uncertainty
 - Size: At most 15% at high m_{jj} values
- Uncertainties which affect total cross-section rather than the shape of the χ distributions are very small e.g. PDF uncertainty <1%

JIN NOR

ATLAS-CONF-2016-070

Look for new resonance (e.g. Z') through its decay to quarks + trigger on ISR to reach low masses!

• γ jet jet: trigger on ISR photon and construct m_{12} (p_T Ordered)

• 3 jet: trigger on ISR jet (leading jet) and construct m_{23} (p_T Ordered)

Search: Look for localised excess above smoothly falling bkg!

Lydia Beresford

Dataset: 15.5 fb^{-1} , $\sqrt{s} = 13$ TeV

Event Selection: Jets reconstructed using Anti-kT R = 0.4 algorithm

Bkg estimate: Fit m_{jj} with smooth function

September 21, 2016

イロト 不得下 イヨト イヨト ヨヨー ショイ

11 / 31

Fit Range:

 γ jet jet: 169 GeV - 1493 GeV

3 jet: 303 GeV - 611 GeV

Lower bound: To exclude inefficiencies due p_T requirements Upper bound: Lower for 3 jet analysis, at high mass ISR jet is not lead

• Fit Function: Use Wilk's test to choose between nested functions - Fit distributions using set of 3,4,5 parameter functions

$$p_0(1-x)^{p_1}x^{p_2+p_3lnx+p_4lnx^2}$$
, $x=rac{m_{jj}}{\sqrt{s}}$

- Test statistic: - $2\log(\Lambda) = -2\log\left(\frac{L(H_0|\times)}{L(H_1|\times)}\right)$ Nominal fit used as H_0

- \rightarrow 3 parameter sufficient for 3 jet analysis
- ightarrow 4 parameter sufficient for γ jet jet

Lydia Beresford

September 21, 2016

12 / 31

ISR + Dijet - Search Results

Use **BumpHunter** algorithm \rightarrow Find most discrepant region

Use Pseudo-Experiments (PEs) \rightarrow Quantify the global significance

3 jet

ISR + Dijet - Fitting uncertainties

Fitting uncertainties:

- Systematics in limit setting
- Used in spurious signal check (Fit MC not data)
 Sherpa 2.1.1 for γ jet jet
 Pythia 8.186 for 3 jet

Statistical uncertainty: Fit PEs (Poisson draws from bkg estimate) & in each m_{jj} bin take the std. dev. of the function value for all PEs in that bin

Function Choice: Difference between nominal & alternate fit (extra degree of freedom)

September 21, 2016

14 / 31

ISR + Dijet - Fitting uncertainties

- Systematics in limit setting
- Used in spurious signal check (Fit MC not data)
 Sherpa 2.1.1 for γ jet jet
 Pythia 8.186 for 3 jet

Statistical uncertainty: Fit PEs (Poisson draws from bkg estimate) & in each m_{jj} bin take the std. dev. of the function value for all PEs in that bin

Function Choice: Difference between nominal & alternate fit (extra degree of freedom)

The Present

- Global fit seems to be working well 🙂
- Good fits & uncertainties are relatively small, especially at lower mass

The Future

• Data becomes more precise with higher lumi

 \rightarrow Need fit function that can accurately describe the data, while not fitting away bumps ... Or a new method!

 Need precise & trustworthy MC for cut optimisation, test fits & for spurious signal check

JHEP 03 (2016) 026

Search for new physics (e.g. micro black holes) in H_T distribution H_T : scalar sum of jet transverse momenta

Bin in $N_{jets} \ge$ 3, 4, 5, 6, 7, 8 \rightarrow Look for excess of events at high H_T

Lydia Beresford

17 / 31

Dataset: 3.6 fb^{-1} , $\sqrt{s} = 13$ TeV

Event Selection: Jets reconstructed using Anti-kT R = 0.4

- \geq 3 jets
- Trigger: $H_T > 850$ GeV & ≥ 1 jet with $p_T > 200$ GeV
- Jets: $p_T > 50$ GeV & $|\eta| < 2.8$
- $H_T > 1$ TeV

Multi-jet - Strategy

Bkg estimate:

Bin in $N_{jets} \ge 3$, 4, 5, 6, 7, 8

- Fit in low H_T control region CR

- Choose bkg parameterisation (from 10 functions) based on performance in validation region VR \rightarrow nominal function

- Yield of nominal function in signal region SR gives bkg prediction

Events / 0.1 TeV 01 01 ATI AS CR $= 3.0 \text{ fb}^{-1}$ √s = 13 TeV VR $n_{iet} \ge 3$ SR ata - fit)/σ_{data} H₇ [TeV

 \geq 3 jet bin

Predictions made in all jet multiplicity bins

Multi-jet - Strategy

Bkg estimate:

Bin in $N_{jets} \ge 3$, 4, 5, 6, 7, 8

- Fit in low H_T control region CR

- Choose bkg parameterisation (from 10 functions) based on performance in validation region VR \rightarrow nominal function

- Yield of nominal function in signal region SR gives bkg prediction

 \geq 3 jet bin

Unblind SR + Search for excess at high $H_T \rightarrow$ Counting experiment No excess seen in any jet multiplicity bin!

21 / 31

$n_{\rm jet} \ge$	VR (obs)	VR (exp)	SR (obs)	SR (exp)
3	28	$19.5 \pm 3.6 (PE) \pm 4.1 (DD)$	1	$2.10 \pm 0.51 \text{ (PE)} \pm 1.78 \text{ (DD)}$
4	27	$20.8 \pm 2.3 (PE) \pm 6.4 (DD)$	2	$2.36 \pm 0.52 \text{ (PE)} \pm 2.12 \text{ (DD)}$
5	26	$22.3 \pm 2.6 (PE) \pm 6.8 (DD)$	2	$1.95 \pm 0.45 \text{ (PE)} {}^{+2.10}_{-1.95} \text{ (DD)}$
6	20	$20.3 \pm 2.9 (PE) \pm 5.4 (DD)$	3	$1.82 \pm 0.49 \text{ (PE)} ^{+1.91}_{-1.82} \text{ (DD)}$
7	14	$20.7 \pm 4.1 \text{ (PE)} \pm 1.7 \text{ (DD)}$	0	$0.53 \pm 0.36 \text{ (PE)} \pm 0.22 \text{ (DD)}$
8	19	$18.2 \pm 4.9 (PE) \pm 3.5 (DD)$	0	$0.43 \pm 0.36 \text{ (PE)} \pm 0.26 \text{ (DD)}$

• MC Based (PE): Pythia 8.186, NNPDF23, A14 tune

Statistical: Data fluctuations in the CR

Systematic: Extrapolation uncertainty

- MC Normalised to data in region 1.5 < H_{T} < 2.9 TeV
- Fit PEs (drawn from MC) using nominal function

- Calculate width & median value of the difference between VR & SR predictions & the actual values

ELE DOG

$n_{\rm jet} \geq$	VR (obs)	VR (exp)	SR (obs)	SR (exp)
3	28	$19.5 \pm 3.6 (PE) \pm 4.1 (DD)$	1	$2.10 \pm 0.51 \text{ (PE)} \pm 1.78 \text{ (DD)}$
4	27	$20.8 \pm 2.3 (PE) \pm 6.4 (DD)$	2	$2.36 \pm 0.52 \text{ (PE)} \pm 2.12 \text{ (DD)}$
5	26	$22.3 \pm 2.6 (PE) \pm 6.8 (DD)$	2	$1.95 \pm 0.45 \text{ (PE)} {}^{+2.10}_{-1.95} \text{ (DD)}$
6	20	$20.3 \pm 2.9 (PE) \pm 5.4 (DD)$	3	$1.82 \pm 0.49 \text{ (PE)} ^{+1.91}_{-1.82} \text{ (DD)}$
7	14	$20.7 \pm 4.1 \text{ (PE)} \pm 1.7 \text{ (DD)}$	0	$0.53 \pm 0.36 (PE) \pm 0.22 (DD)$
8	19	$18.2 \pm 4.9 (PE) \pm 3.5 (DD)$	0	$0.43 \pm 0.36 \text{ (PE)} \pm 0.26 \text{ (DD)}$

• Data-driven (DD):

Systematic: Fit function choice

- Fit data with all qualified functions

- Take max difference in SR prediction between nominal function & alternate

ATLAS-CONF-2016-072

Look for single production of Vector Like Quark (VLQ), through its decay to Wb, where W decays leptonically i.e. $Q \rightarrow Wb \rightarrow l\nu b$

• Analysis focuses on interpretation where:

$$\begin{array}{l} \mathsf{Q} \,=\, \mathsf{T} \, \left(\mathsf{charge} \,+ \frac{2}{3} \right) \\ \mathsf{Q} \,=\, \mathsf{Y} \, \left(\mathsf{charge} \,- \frac{4}{3} \right) \end{array}$$

24 / 31

Dataset: 3.2 fb^{-1} , $\sqrt{s} = 13$ TeV

Event Selection: Jets reconstructed using Anti-kT R = 0.4

Jet veto: Reject event if any central ($|\eta| < 2.5$) jets with $p_T > 75$ GeV around or opposite to the b-jet: ΔR (jet, lead b-jet) < 1.2 Or > 2.7 \rightarrow Suppresses $t\bar{t}$ bkg

Lydia Beresford

Bkg Estimate:

• Backgrounds modelled using MC:

Process	Generator + parton showering/hadronis	Tune ation	PDF set	Inclusive cross-section order in pQCD
Y signal sample Madgraph5 + Pythia 8.186		A14	NNPDF2.3	NLO
$t\bar{t}$	Роwнед-Вох 2.0 + Рутніа 6.428	P2012	CT10	NNLO+NNLL
Single top	Роwнед-Вох 2.0 + Рутніа 6.428	P2012	CT10	NNLO+NNLL
Dibosons WW, WZ, ZZ	Sherpa 2.1.1	Default	CT10	NLO
W/Z + jets	Sherpa 2.2.0	Default	CT10	NNLO

W-boson p_T mismodelling at high p_T , corrected using re-weighting factors

• Backgrounds estimated using data-driven method: **Multijet** Contributes due to the mis-ID of a jet or γ as an electron, or presence of a non-prompt lepton. Suppressed by E_T^{miss} requirement

Bkg Estimate:

• W/Z + jets, tt & single top: Normalisation constrained by fitting predicted yields to data in Control Regions enriched in tt and W+jets events, with large number of events.

Selection changes for Control Regions (CRs) wrt Signal Region (SR) selection

Region		Selection cuts:			
	Leading jet $p_{\rm T}$	Leading jet is b -tagged	ΔR (jet, b-tagged jet))< 1.2		
			or ΔR (jet, <i>b</i> -tagged jet) > 2.7		
SR	$> 350 { m ~GeV}$	yes	0		
$t\bar{t}$ CR	$> 200 { m GeV}$	yes	≥ 1		
W+jets CR	$> 250 { m GeV}$	no	-		

Search:

• Use invariant mass of the reconstructed VLQ candidate m_{VLQ} to discriminate signal from background

 m_{VLQ} calculated from lead b-jet & W decay products (e or μ & u)

MC Signal Region Example: VLQ candidate mass for 3 signal masses & the total SM bkg

 \rightarrow Good discrimination between signal and background events in SR

Single VLQ \rightarrow Wb - Search Results (Pre-fit)

Pre-fit

Perform combined max-likelihood fit of SR, $t\bar{t}$ CR & W+jets CR:

 \rightarrow Allows for simultaneous determination of W+jets & top contribution from CRs

UNIVERSITY OF

Single VLQ \rightarrow Wb - Search Results (Post-fit \mathbb{Y}

Post-fit

No significant excess over Standard Model backgrounds is observed, but:

 \rightarrow Use of bkg enhanced CRs significantly reduces systematic uncerts on bkg estimate \rightarrow Increases search sensitivity!

Single VLQ \rightarrow Wb - $\sqrt{s} = 8$ TeV Analysis

Eur. Phys. J. C76 (2016) 442

Event Selection:

Small-R jets Anti-kT R = 0.4Large-R jets Anti-kT R = 0.1, trimmed

 $m_T(W) + E_T^{miss} > 60 \text{ GeV} \rightarrow \text{Suppress multijet bkg}$

Jet vetoes: Reject event if large-R jet is massive (m > 70 GeV) or if any jet with $p_T > 75$ GeV and $|\eta| < 2.4$ outside the large-R jet \rightarrow Suppresses $t\bar{t}$ bkg EL SOCO

Lydia Beresford

30 / 31

Jet vetoes & multiplicity observables are crucial for many BSM searches with ATLAS

Various techniques being used to estimate and reduce bkgs & systematics in analyses that use these observables \rightarrow Shown small selection, including: Bkg estimation:

- Fits to data distributions (with & without extrapolation)
- MC based estimates
- Reduction of backgrounds & systematics:
- Analysis cuts, including large + small R jet vetoes
- Bkg enhanced control regions
- Mass binned signal regions

BACKUP

High Mass Dijet Resonance - Fit Uncerts

PYTHIA 8 calculations use matrix elements that are at leading order in the QCD coupling constant with simulation of higher-order contributions partially covered by the parton shower modelling. They also include modelling of hadronisation effects. The distributions of events predicted by PYTHIA 8 are reweighted to NLO predictions of NLOJET++ [42–44] using mass- and χ -dependent correction factors defined as in Ref. [19]. The correction factors modify the shape of the angular distributions at the level of 15% at low values of χ and high values of m_{jj} . The correction is 5% or less at the highest values of χ . The PYTHIA 8 predictions also omit electroweak effects. These are included as additional mass- and χ -dependent correction factors [45] that are unity at low m_{jj} and differ from unity by up to 3% in the $m_{jj} > 3.4$ TeV region.

・ロト ・ 日 ・ ・ ヨ ト ・ 日 ト ・ クタマ

PYTHIA 8 calculations use matrix elements that are at leading order in the QCD coupling constant with simulation of higher-order contributions partially covered by the parton shower modelling. They also include modelling of hadronisation effects. The distributions of events predicted by PYTHIA 8 are reweighted to NLO predictions of NLOJET++ [42–44] using mass- and χ -dependent correction factors defined as in Ref. [19]. The correction factors modify the shape of the angular distributions at the level of 15% at low values of χ and high values of m_{jj} . The correction is 5% or less at the highest values of χ . The PYTHIA 8 predictions also omit electroweak effects. These are included as additional mass- and χ -dependent correction factors [45] that are unity at low m_{jj} and differ from unity by up to 3% in the $m_{jj} > 3.4$ TeV region.

・ロト ・ 日 ・ ・ ヨ ト ・ 日 ト ・ クタマ

Dijet angular - CL_s example

The test statistic q_{μ} is defined as the profile likelihood ratio: $q_{\mu} = -2 \ln(\mathcal{L}(\mu, \hat{\theta}_{\mu}) / \mathcal{L}(\hat{\mu}, \hat{\theta}))$, where $\hat{\mu}$ and $\hat{\theta}$ are the values of the parameters that maximise the likelihood function (with the constraint $0 \le \hat{\mu} \le \mu$), and $\hat{\theta}_{\mu}$ are the values of the nuisance parameters that maximise the likelihood function for a given value of μ . Statistical uncertainties in each bin of the discriminant distributions are also taken into account via dedicated parameters in the fit. The test statistic q_{μ} is implemented in the RooFrr package [113, 114] and is used to measure the compatibility of the observed data with the background-only hypothesis (i.e. the discovery test) setting $\mu = 0$ in the profile likelihood ratio: $q_0 = -2 \ln(\mathcal{L}(0, \hat{\theta}_0) / \mathcal{L}(\hat{\mu}, \hat{\theta}))$.

Shaded areas: 1 - CL_b and CL_{s+b}

Lydia Beresford

September 21, 2016

5 / 20

ISR + Dijet - Z' Dark Matter Mediator

MadGraph "dmA" model created by the Dark Matter Forum

Two new particles Z' mediator of mass M_R DM candidate χ of mass m_{χ}

Two new couplings coupling ${\rm g}_{\rm SM}$ of Z' to quarks coupling ${\rm g}_{\rm DM}$ of Z' to χ

7 / 20

- Statistical uncertainty on fit
- Fit function choice (N parameters + 1 as alternate)
- JES uncertainty
- Signal acceptance due to:
 - Luminosity 2.9%
 - Photon uncertainty 3% (No equivalent for 3 jet analysis yet)
 - JER: 2% for gjj, 1% for jjj
 - PDF: 1%

September 21, 2016

/ 20

September 21, 2016

21, 2016 10 / 20

September 21, 2016

11 / 20

er 21, 2016 12 / 20

2016 13 / 20

	Functional form	p_1	p_2
1	$f_1(x) = \frac{p_0(1-x)^{p_1}}{x^{p_2}}$	$(0,+\infty)$	$(0,+\infty)$
2	$f_2(x) = p_0(1-x)^{p_1} e^{p_2 x^2}$	$(0,+\infty)$	(- ∞ ,+ ∞)
3	$f_3(x) = p_0(1-x)^{p_1} x^{p_2 x}$	$(0,+\infty)$	(- ∞ ,+ ∞)
4	$f_4(x) = p_0(1-x)^{p_1} x^{p_2 \ln x}$	$(0,+\infty)$	$(-\infty,+\infty)$
5	$f_5(x) = p_0(1-x)^{p_1}(1+x)^{p_2x}$	$(0,+\infty)$	$(0,+\infty)$
6	$f_6(x) = p_0(1-x)^{p_1}(1+x)^{p_2\ln x}$	$(0,+\infty)$	$(0,+\infty)$
7	$f_7(x) = \frac{p_0}{x} (1-x)^{[p_1 - p_2 \ln x]}$	$(0,+\infty)$	$(0,+\infty)$
8	$f_8(x) = \frac{p_0}{x^2} (1-x)^{[p_1 - p_2 \ln x]}$	$(0,+\infty)$	$(0,+\infty)$
9	$f_9(x) = \frac{p_0(1-x^{1/3})^{p_1}}{x^{p_2}}$	$(0,+\infty)$	$(0,+\infty)$
10	$f_{10}(x) = p_0(1 - x^{1/3})^{p_1} x^{p_2 \ln x}$	$(0,+\infty)$	(- ∞ ,+ ∞)

Table 1. Analytic functions considered in this analysis where $x = H_T/\sqrt{s}$. p_0 is a normalization constant. p_1 and p_2 are free parameters in a fit, and their allowed floating ranges are shown in the last two columns.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国社 釣A@

・ロト ・ 日 ・ ・ ヨ ト ・ 日 ト ・ クタマ

15 / 20

Monte Carlo: Used for uncertainties + analysis decisions as VR blinded, normalised to data in region $1.5 < H_T < 2.9$ TeV

Region definitions:

Lower bound of VR chosen so that the normalised MC bkg predicts at least 20 events above this Lower bound of CR chosen so the PE based uncertainty is minimised

Lower bound of SR chosen so that the extrapolation uncertainty is approximately 0.5 events in the SR $\,$

Function Ranking: 1000 PEs drawn from samples of MC bkg

Qualify if: Converge in CR, decrease monotonically with H_T in SR for \geq 95% of PEs

Rank qualified functions based on goodness of extrapolation VR based on the statistical uncertainty and potential bias of their extrapolation.

Vector-like Quarks (VLQ): hypothetical, spin 1/2 particles predicted by several BSM models

Vector like couplings, not chiral, left and right-handed components have same color and EW quantum numbers

Appear in different SU(2) multiplets:

```
Singlets: T, B
Doublets: (XT), (TB), (BY)
Triplets: (XTB), (TBY)
```

Single production σ > pair-produced σ for large VLQ masses

Highest allowed singlet σ , T (singlet), Y (doublet) \rightarrow Search for these!

イロト 不得下 イヨト イヨト ヨヨー ショイ

Figure 11: Illustration of the usage of large-radius jet mass to veto $t\bar{t}$ background. For the signal $T \rightarrow Wb$, the *b*-quark recoils against the *W*-boson. Thus the hardest large-*R* jet in the event typically contains a *b*-hadron plus additional soft and collinear radiation, and tends to have a low mass. For the semileptonic $t\bar{t}$ background, right, a mildly boosted hadronically decaying top quark produces large-*R* jets containing a significant fraction of the top decay products. The fraction of top decay products contained, and therefore the jet mass, increases with jet p_T . Hence, a cut based on the large-*R* jet p_T and mass can be optimised to distinguish between signal and $t\bar{t}$ background, whilst still retaining good signal efficiency. Figure from Ref [9].

イロト 不得下 イヨト イヨト ヨヨー ショイ

4.3 Estimation of non-prompt and fake lepton backgrounds

Background processes involving non-prompt leptons, hadrons and photons may satisfy the selection criteria, giving rise to so called "non-prompt and fake" lepton backgrounds (fakes). The multijet background normalisation and shape are estimated with a data-driven method, referred to as Matrix Method [94, 95]. This method uses the efficiencies of loosely selected leptons (loose leptons) to pass the default tight lepton selection cuts. The efficiencies are obtained in dedicated control regions enriched with real or non-prompt leptons, respectively, and applied to events selected with either loose or tight lepton definition to obtain the fraction of multijet events. Systematic uncertainties on the estimate are assessed using alternative control samples, propagating systematic uncertainties associated to object reconstruction and MC simulation to the fake-lepton estimate as well as by comparing different parametrisations of the efficiencies.

クロシ 不得 イヨシ イヨン 正正 ろくの

A mismodelling of the W-boson transverse momentum is observed at high p_T . To correct for this mismodelling, reweighting factors are obtained at preselection for W+jet events as a function of the W-boson p_T and applied to the W+jets background in all kinematic distributions. The correction factors are approximately between 0.9 and unity for W-boson p_T below 300 GeV, going to 0.7- 0.8 for higher p_T values.

イロト 不得下 イヨト イヨト ヨヨー ショイ

To obtain the z-

ELE DOG

component of the neutrino momentum $(p_{z,v})$, the invariant mass of the lepton-neutrino system is set to the W-boson mass and the resulting quadratic equation is solved. If no real solution exists, the \vec{E}_{T}^{miss} vector is varied by the minimum amount required to produce exactly one real solution. If two real solutions are found, the one with the smallest $|p_{z,v}|$ is used. The W-boson candidate and the leading *b*-tagged jet are then used to reconstruct the *Q* candidate.