$t\bar{t}$ +jets in ATLAS

Spyros Argyropoulos

(on behalf of the ATLAS collaboration)

Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

LHC is a top factory:

√s	σ _{tt} [pb] *	L [fb ⁻¹]	Number of top events
7 TeV (2011)	174	4.6	0.8 M
8 TeV (2012)	248	20.3	5 M
13 TeV (2015)	816	3.2	2.6 M

*Czakon, Fiedler, Mitov [PRL 110, 252004]

- ⇒ precision measurements, understand top modeling (differential cross-section, additional jets production, heavy flavor, …)
- ⇒ reduce systematic uncertainties in precision measurements (MC tuning)
- \Rightarrow control top background in other measurements/searches (ttH, SUSY, ...)

Some examples from measurements...

Top mass

- ISR jets can be mis-identified as jet from top decay
- **FSR** affects kinematics of top decay products
- modeling of QCD radiation: one of the dominant uncertainties: 30% of total systematic

Spin correlation

- extra radiation affecting the angle between leptons, jets
- 30-40% of total systematic

Some examples from searches...

- signature based searches: leptons + jets
 + MET (same as top production)
- tt+jets is the dominant background for many of the SUSY searches

 ttbb modeling one of the main challenges of this search - also the dominant systematic

Measure jets produced in association with at top-antitop pair

<u>Measurements</u>

- multiplicity and p_T spectrum of additional jet activity (ISR, FSR) in top events
- gap fraction
- tt + heavy flavor

The measurements: generalities

Jet multiplicity & p_T spectrum

- jet multiplicity, p⊤ spectrum ⇒ check predictions of NLO, multi-leg generators and PS
- probe ME+PS matching and merging schemes

 leading jet p_T spectrum strongly correlated with p_T(tt) ⇒
 complementary to differential crosssection measurement

Gap fraction

- measure ratio of events without extra jets in different rapidity intervals
- sensitive to parton shower paremeters, ME+PS matching, α_s
- differential in: jet veto scale Q, rapidity
- \bullet ratio \Rightarrow cancellation of uncertainties

$$f(Q_0) = \frac{\sigma(Q_0)}{\sigma} = \frac{\sigma(\text{no jet with } p_T > Q_0)}{\sigma}$$

Channels

single lepton channel:

- signature: 2 b-jets from top decay + 2 extra jets from W decay (4 jets @ LO)
- single isolated lepton + MET
- **higher statistics**, lower background than all-hadronic
- additional jets can't be unambiguously defined (no reconstruction of top candidate)

di-lepton channel:

- signature: 2 b-jets from top decay
 (2 jets (0 LO))
- two isolated leptons + MET
- low background
- additional jets can be identified without top reconstruction

eµ channel:

• highest purity

Common object selection

- \bullet electrons: $E_T > 25$ GeV, $|\eta| < 2.47$ excluding 1.37 $< |\eta| < 1.52$
- \bullet muons: $p_T>25$ GeV, $|\eta|<2.5$
- \bullet jets: anti-kT R=0.4, pt > 25 GeV, $|\eta|$ < 2.5
 - lepton-jet isolation: $\Delta R > 0.4$
- b-tagging:
 - multi-variate tagger using information from impact parameter, secondary vertex reconstruction and b-decay topology
 - different training for 7, 8, 13 TeV

Channel-specific event selection

single lepton channel:

- $m_T(W) > 35 \text{ GeV}$
- MET > 30 GeV

di-lepton channel:

- opposite sign leptons
- + $|m_{II}\text{-}m_Z|$ > 10 GeV , m_{II} > 15 (40) GeV

Fiducial volume definition

<u>Goal</u>

- define a reference phase space that is close to the region where the detector functions with high efficiency
- minimize extrapolations which cannot be experimentally constrained

Definition

- use stable particles (lifetime > 30 ps)
- leptons: not coming from hadron decays, dressed with photons within a cone of $\Delta R{=}0.1$
- same p_T and η cuts for all objects as the ones used for reconstruction (for electrons one extrapolates over $1.37 < |\eta| < 1.52$)
- \bullet b-tagging: ghost association of B hadrons with $p_{T}>5$ GeV with jets

Definitions developed after series of workshops involving top and SM groups as well as theorists

Unfolding

- extract particle-level spectrum from measured reco-level
- for p_T unfolding reco-jets are matched (ΔR < 0.35) to particle jets after ordering in p_T or b-tagging score
- correct for detector effects:
 - pass part & not reco: **f**_{part!reco}
 - pass reco & not part: $f_{reco!part}$
 - acceptance effects (b-tag, trigger, lepton): f_{accpt}
 - migration across bins: M, $f_{misassign}$

$$N_{\text{part}}^{i} = f_{\text{part}!\text{reco}}^{i} \cdot \sum_{j} M_{\text{reco},j}^{\text{part},i} \cdot f_{\text{misassign}}^{j} \cdot f_{\text{reco}!\text{part}}^{j} \cdot f_{\text{accpt}}^{j} \cdot \left(N_{\text{reco}}^{j} - N_{\text{bgnd}}^{j}\right)$$

The measurements: specifics

<u>Goal</u>:

 repeat previous jet multiplicity, p_T and gap fraction measurements utilizing εµ top-cross-section measurement (<u>Eur.Phys.J. C74 (2014) 3109</u>)

Interlude about the ept top cross-section measurement:

- most precise measurement of the top cross-section
- uncertainty slightly smaller than NNLO+NNLL prediction

$$N_1 = L \cdot \sigma_{t\bar{t}} \cdot \epsilon_{e\mu} \cdot 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{\text{bg}}$$
$$N_2 = L \cdot \sigma_{t\bar{t}} \cdot \epsilon_{e\mu} \cdot C_b \cdot \epsilon_b^2 + N_2^{\text{bg}}$$

- based on in-situ measurement of b-tagging efficiency to reduce uncertainties
- Events with at least 2 b-jets have very high signal purity: > 96%

Jet multiplicity @ 8 TeV - di-lepton eµ

uncertainty significantly reduced with respect to 7 TeV measurement

arXiv:1606.09490

- measurement compared against wider variety of MC predictions
- same features as 7 TeV measurement
 - MC@NLO+Herwig doesn't describe the high jet multiplicity tail
 - data prefer lower values of $\alpha_{\rm s}$

Jet multiplicity @ 8 TeV - di-lepton eµ

Gap fraction @ 8 TeV - di-lepton eµ

arXiv:1606.09490

ATLAS

_ dt = 2.05 fb⁻¹

MC@NLO

SHERPA

Powheg+Herwig

POWHEG+PYTHIA

ALPGEN+HERWIG

Q₀ [GeV]

Jet multiplicity @ 13 TeV - di-lepton ee+eµ+µµ

ATLAS-CONF-2015-065

- New generators tested (aMC@NLO) and more PS (Pythia8, Herwig++)
- All generators in good agreement with data
- higher radiation preferred for Powheg+Pythia6 setup

- Plots to become available very soon
- Comparisons to state of the art generators including
 - Sherpa 2.2 and Powheg and MG5_aMC@NLO interfaced to
 - Pythia 8, Herwig++, Herwig7
- Powheg+Herwig7 produces too much extra radiation
- Powheg+Pythia8 too little radiation
- 13 TeV data is not described very well by previous tunes

ttbb @ 8 TeV

Eur. Phys. J. C (2016) 76:11

Why to measure ttbb:

- dominant background for ttH(bb), H⁺
 - (tb), some SUSY searches
- hard to calculate: multi-scale process, α_s^4
 - \Rightarrow large uncertainties from scale choice
- sensitive to modeling aspects which are poorly constrained (g→bb)

Measurements:

- 5 measurements:
 - $tt+\geq 1b$: single-lepton & di-lepton
 - tt+ \geq 2b: di-lepton cut-and-count and fit
 - ttbb/ttjj

ttbb @ 8 TeV

Eur. Phys. J. C (2016) 76:11

Cut-and-count

ttbb @ 8 TeV

- Measurements generally agree with predictions within uncertainties
- Data prefer slightly higher $g \rightarrow bb$ rates
- Soft scales seem to perform better $\mu_{BDDP} = m_{top}^{1/2}$ $(p_T(b)p_T(b))^{1/4}$
- Sensitivity to g→bb description: most extreme model disfavored

Tunes and modeling studies using tt measurements

several public notes on different aspects of top modeling:

- Top modeling at 13 TeV (ATL-PHYS-PUB-2016-004)
- Tuning of MG5_aMC@NLO+Pythia8 (<u>ATL-PHYS-PUB-2015-048</u>)
- Modeling of bottom and charged hadrons in top decays (ATL-PHYS-PUB-2014-008)
- Study of measurements constraining QCD radiation in top events (<u>ATL-PHYS-PUB-2013-005</u>)
- Study of ttcc with MG5_aMC@NLO (<u>ATL-PHYS-PUB-2016-011</u>)
- and many more

A top-specific tune: ATTBAR

ATL-PHYS-PUB-2015-007

- 2 step tune:
 - Pythia 8 stand-alone (ATTBAR)
 - ATTBAR applied to NLO+PS (Powheg, MadGraph5_aMC@NLO) + further tuning of matching parameters
- Starting points:
 - Monash [Skands, Carazza, Rojo, <u>Eur.Phys.J. C74 (2014) no.8, 3024</u>]
 - 4C [Corke, Sjöstrand, <u>JHEP 1103:032,2011</u>]
- 7 TeV ATLAS data:
 - tt gap fraction, additional jet pT and multiplicity, jet shapes

ATL-PHYS-PUB-2015-007

Parameter	Pythia8 setting	Variation range	4C	Monash
$\alpha_s^{\rm ISR}(m_Z)$	SpaceShower:alphaSvalue	0.110 - 0.140	0.137	0.1365
ISR damping	SpaceShower:pTdampMatch	1 (fixed)	0	0
$p_{\mathrm{T,damp}}^{\mathrm{ISR}}$	SpaceShower:pTdampFudge	0.8 - 1.8	-	-
$\alpha_s^{\text{FSR}}(m_Z)$	TimeShower:alphaSvalue	0.110 - 0.150	0.1383	0.1365
$p_{\rm T,min}^{\rm FSR}$ [GeV]	TimeShower:pTmin	0.1 - 2.0	0.4	0.5

Parameters for ATTBAR tune

Parameters for NLO+PS tunes:

• h_{damp} Powheg:
$$R^s = R \cdot \frac{h_{damp}^2}{h_{damp}^2 + p_T^2}$$

starting scale of shower in MG5_aMC@NLO

Sensitivity to tuned parameters

ATL-PHYS-PUB-2015-007

- Jet multiplicity and gap fraction mostly sensitive to α_s choice for ISR (also sensitive to hdamp choice)
- Leading jet p_T also sensitive to damping scale

A more in-depth look: the ATTBAR tune

^{prediction/Data}

ATL-PHYS-PUB-2015-007

- A top-specific tune can greatly improve the description of top observables
- After the tuning the LO and NLO+PS predictions agree with the measurements within errors

ATL-PHYS-PUB-2016-011

- MG5_aMC@NLO with several functional forms for the renormalization/factorization scale
- Scale uncertainties 50-100%
- Generator predictions vary by a factor of 2 or more - beyond scale uncertainties

 \bullet rich program of measurements including tt+X in ATLAS

• lots of top quarks

 \Rightarrow precision measurements

 \Rightarrow better understanding of top modeling

 \Rightarrow reduced systematics / better description of top bg

• synergy between experiment & theory (e.g. <u>Top LHC WG</u>)

Thank you for your attention!