Heavy Neutrinos from Vector Boson Fusion

IPPP VBF Workshop

Richard Ruiz

Institute for Particle Physics Phenomenology, University of Durham

September 23, 2016

N from VBF	1 / 22	

• • • • • • • • • • • • •

Anatomy of $W\gamma$ Scattering

2 / 22

(日) (個) (E) (E) (E)

VBF: Great for Probing High-Mass Scales

In weak boson scattering, *t*-channel propagators give rise to logarithms that scale with the hard scattering process

In principle (and in nature), logs for *t*-channel **photons** are regulated by fermion masses. In practice:

- **1** Introduce a cutoff, e.g., η , p_T cuts on associated jet
- 2 Collinearly factorize to obtain a γ PDF
- Ombine the two via some matching scheme

R. Ruiz

3 / 22

Scattering with t-Channel Photons

(a) collinear photon radiation and (b) wide-angle photon radiation

Recognize that the logs appearing in each expression are the same!

$$f_{\gamma/p}(Q_{\gamma}^2) \sim \log rac{Q_{\gamma}^2}{\Lambda^{{
m El}~2}} \longleftarrow {
m same} \log \longrightarrow rac{d\sigma(qX)}{dQ_{\gamma}^2} \propto rac{1}{Q_{\gamma}^2}$$

Evolve $f_{\gamma/p}(Q_{\gamma})$ in **up to** and integrate (b) from same scale Λ^{DIS}

N from VBF	4 / 22	

A Look at Different Phase Space Regions

Region (a): $q\gamma
ightarrow qW^*$ given by VBF + Compton diagrams

Region (b): At larger momentum transfers $(Q^2 \gg m_p^2)$, we recover the deeply inelastic scattering (DIS) contribution of $qq \rightarrow W^*q'q'$

N from VBF	5 / 22	

For $M_{W\gamma} > 300 \text{ GeV} - 1 \text{ TeV}$, only ~40% (50%) of events have a second jet with $p_T > 15$ (25) GeV at 14 (100) TeV [1411.7305]

Most $W\gamma$ events have a second jet outside fiducial volume of ATLAS/CMS.

$W\gamma$ Scattering at 100 TeV (1 slide)¹

- ullet Central region extends to $|\eta|\sim 3-4,$ so very challenging.
- Forward region extends to $|\eta| \sim 4 8$, so comically difficult.
- Kinematics of decay products scale with $\langle \Phi \rangle_{BSM} \gg \langle \Phi_{EW} \rangle$, Λ_{QCD} Helps with trigger/selection.
- LHC VBF tagging will not work at VLHC.
 Perhaps high-p_T, central jet veto as new VBF tag?

¹Many 100 TeV plots in Han, et al [1411.2588]; Arkani-Hamed, et al [1511.06495]; AH**RR** [1411.7305]

	N from VBF	7 / 22	
--	------------	--------	--

QCD Corrections to $W\gamma$ Scattering (1 slide)

VBF is a color-singlet process (zero color flow): QCD corrections largely included in PDF definition, so little impact on total cross section

Using VBF to probe New Physics

9 / 22

<ロ> (四) (四) (三) (三) (三) (三)

Motivation for New Physics from Neutrinos

The SM, via the Higgs Mechanism, explains *how* elementary fermions obtain mass, i.e., the $m_f = y_f \langle \Phi \rangle$, **not** the values of m_f .

Spanning many orders of magnitudes, the relationship of fermion masses is still a mystery. Two observations:

- Neutrinos have mass (BSM physics and 2015 ⁽¹⁾)
- Output in the second second

R. Ruiz

10 / 22

Nonzero Neutrino Masses is BSM Physics

To generate ν masses similar to other SM fermions, we need N_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \begin{pmatrix} \overline{\nu_L} & \overline{\ell_L} \end{pmatrix} \begin{pmatrix} 0 \\ \langle \Phi \rangle + h \end{pmatrix} N_R + H.c. \implies -m_D \overline{\nu_L} N_R + H.c.$$

 $m_D = y_{\nu} \langle \Phi \rangle$, and y_{ν} is the neutrino's Higgs Yukawa coupling.

Since N_R^i do not exist in the SM, massless neutrinos are predicted.

Through oscillation expts., the massless neutrino paradigm is now knot to be inaccurate.

[T2K ν_e appearance, 1503.08815v3]

R. Ruiz N from VBF 11 / 22 Seesaw Mechanisms: pathways to naturally small m_{ν}

12 / 22

・ロト ・個ト ・ヨト ・ヨト 三日

Seesaw Mechanisms: Pathways to Naturally Small $m_{ u}$

Spinor/gauge algebra + renormalizability restrict ways to construct m_{ν} [Ma'98]

- "Type 0": Add SM-singlet N_R with $y_
 u \sim 10^{-12}$ and forbid Majorana mass
 - Possible, but tiny y_{ν} is theoretically unsatisfying

Type I: Add N_R and keep the Majorana mass term • $\mathcal{L} \ni -y_{\nu} \overline{L} \tilde{\Phi} N_R - \frac{m_R}{2} \overline{N_R}^c N_R \implies m_{\nu} \propto m_D^2/m_R, \quad m_D = y_{\nu} \langle \Phi \rangle$

Type II: Add scalar $SU(2)_L$ triplet $(\Delta^{0,\pm,\pm\pm})$ - No N_R required • $\mathcal{L} \ni y_\Delta \overline{L}(i\sigma_2) \Delta L^c \implies m_\nu \propto y_\Delta \langle \Delta \rangle \overline{\nu^c} \nu, \quad \langle \Delta \rangle < \text{few GeV}$

Type III: Add fermion $SU(2)_L$ triplet $(T^{0,\pm})$ • $\mathcal{L} \ni y_T \overline{L} T^a \sigma^a (i\sigma^2) \Phi + \frac{m_T}{2} \overline{T^{0c}} T^0 \implies m_\nu \propto m_D^2/m_T$

Less Minimal Models: Hybrid, Inverse, Radiative, all with rich pheno one

R. Ruiz	N from VBF	13 / 22	

"Vanilla seesaws" are only proof-of-principle ideas, not realistic models:

Type I Ex: $\Delta m_{sol/atm}^2$ require at least two nonzero masses (so two N_R). Naively, N_R have comparable m_R . Naive scaling does not hold.

Super Important: discovery/benchmark collider pheno, e.g., LFV, LNV, etc., of TeV-scale and vanilla seesaws are the same. Straightforward to reinterpret LHC Type I, II, III, etc. results for *extended or hybrid* models.

Ex 1: TeV-scale Seesaws occur naturally in hybrid models, e.g., Type I+II²,

$$m_{
m light} = \underbrace{\tilde{m}_L}_{
m Type~II} - \underbrace{\tilde{m}_D \tilde{m}_R^{-1} \tilde{m}_D^T}_{
m Type~I} \sim \mathcal{O}(0) + {
m symm.-breaking terms}$$

Note: TeV-scale lepton number violation in Type I models is decoupled from tiny neutrino masses [0705.3221]; different from saying no LNV. ²Akhmedov et al [hep-ph/0609046; hep-ph/0612194]; Chao, et al [0907.0935] =

R. Ruiz	N from VBF	14 / 22	

Event Generators (1 slide)

Modern general purpose MC packages³ are *very* sophisticated "With great power there must also come - great responsibility"- B. Parker ('62)

• "Black boxes" very easy to use but contain lots of physics

Seesaws have been implemented in mainstream event generators:

- ALPGEN:⁴ Type I Seesaw but only Drell-Yan processes
- FeynRules: Translates Lagrangian to "Universal File Output" (UFO) for MC packages. Public library⁵ contains favorite models:
 - ► Type I: HeavyN@NLO (DMRT) lepton number and flavor violation
 - Type II: Scalar Sector @ NLO (Degrande)
 - ▶ B-L and LRSM: Z' (Christensen), W' (Donini, Fuks), + updates soon
 - ► **Type III:** (Biggio, Bonnet) LNV+LFV with heavy+SM leptons
 - Authors are happy to help and answer questions!

³Herwig/Herwig++, MadGraph (MG5_aMC@NLO), Sherpa - All take UFO inputs. ⁴del Aguila, et al [hep-ph/0606198], http://mlm.web.cern.ch/mlm/alpgen/ ⁵http://feynrules.irmp.ucl.ac.be/wiki/SimpleExtensions □ → All take UFO inputs.

к	к	1117

15 / 22

Lepton Number Violation

Ξ.

イロト イヨト イヨト イヨト

Heavy N from VBF: $pp \rightarrow N\ell^{\pm}jj$, $N \rightarrow \ell^{\pm}W^{\mp} \rightarrow \ell^{\pm}jj$

Table 12. Parton-level cuts on 14 TeV $\mu^{\pm}\mu^{\pm}jjX$ Analysis.

$\sigma \setminus m_N \; [\text{GeV}]$	100	200	300	400	500	600	700
$\sigma_0^{\text{All Cuts}}$ [fb]	576	132	36.0	14.0	6.28	3.05	1.55
$\sigma_{\text{Tot}}^{\text{SM}}$ [ab]	14.1	18.6	5.62	2.05	0.837	0.393	0.195
$n_{2\sigma}^{b+\delta_{Sys}}(100 \text{ fb}^{-1})$	4	4	2	1	1	0	0
$n_{2\sigma}^{s}(100 \text{ fb}^{-1})$	8	8	6	5	5	4	4

Backgrounds: $pp \rightarrow W^{\pm}W^{\pm}jj$,

 $W^{\pm}W^{\pm}W^{\mp}$

 $pp \rightarrow t\overline{t}W/Z$, $t\overline{t}$ (charge mis-ID)

-		-		
н		ь		
•	۰.		u	2

10

 10^{-2}_{-100} 200

17 / 22

< ∃ ►

< ∃⇒

300 400 500 600

m_N [GeV]

700 800

Sensitivity at (V)LHC to Heavy N

VBF is sizable contribution to inclusive jet process.

- 5σ at LHC for $m_N = 260$ (530) GeV after 100 fb⁻¹ (1 ab⁻¹)
- 2σ sensitivity w/ 100 fb⁻¹ extends to $m_N = 450$ GeV!
- 5 σ at VLHC for $m_N = 580 \ (1070)$ GeV after 100 fb⁻¹ (1 ab⁻¹)

The LHC and High Luminosity LHC programs are taking us to unexplored territory and perhaps (I hope) a new discovery!

N from VBF	18 / 22	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Lepton Flavor Violation

N from VBF

19 / 22

Ξ.

イロト イヨト イヨト イヨト

Due to $\nu_L^a - N_R^b$ mixing, N decays can violate lepton flavor, e.g., $pp \rightarrow N \mu^{\pm} j_{VBF} j_{VBF}, \quad N \rightarrow \tau^{\mp} W^{\pm}$

Common in, e.g., Inverse and Linear Seesaw models, where LNV is suppressed for TeV-scale neutrinos [Mohapatra ('86); +Valle ('86); Bernabeu, et al ('87); etc.]

Like LNV case, VBF pushes sensitivity in benchmark models. Arganda, et al [1508.05074] (Talk to Cedric for more info.)

R. Ruiz

Doubly Charged Scalars $H^{\pm\pm}$

Same-sign W scattering can produce $H^{\pm\pm}$ in Type II-based Seesaws, i.e.,

$$pp
ightarrow H^{\pm\pm} j_{VBF} j_{VBF}, \quad H^{\pm\pm}
ightarrow W^{\pm} W^{\pm} / \ell^{\pm} \ell^{\prime\pm}$$

Good VBF BSM pheno studies by the Texas A&M pheno/CMS group [1210.0964; 1304.7779; 1404.0685; 1411.6043]

 $H^{\pm\pm} \rightarrow \tau^{\pm} \tau^{\pm}$ (or other pairs) can be probed despite such small couplings

R. Ruiz

21 / 22

The origin of tiny neutrino masses is still a puzzle and may manifest at collider experiments via the production of Seesaw partners.

- Colliders are very complimentary to low energy and oscillation expts.
- VBF is a powerful discovery tool.

Now tell us theory/pheno folk what you need!