#### Interference effects in Vector boson pair production

#### Keith Ellis IPPP-Durham

#### Rescaling properties of the cross section on the peak

\* In the narrow width approximation

$$\sigma(i \to H) \times BR(H \to X) = |M(i \to h)|^2 \frac{\Gamma(h \to X)}{\Gamma_h} \sim \frac{g_i^2 g_f^2}{\Gamma_h}$$

- \* Measurements on the Higgs peak, are only sensitive to the ratio,  $\frac{g_i^2 g_f^2}{\Gamma_b}$
- Performing the rescaling by κ
   leaves the on-shell rate unchanged.

 $g_i \to \kappa g_i$  $g_f \to \kappa g_f$  $\Gamma_H \to \kappa^4 \Gamma_H$ 

# Signal strength measurements



\* Signal strength measurements, (that assume a value for the total width), confirm that  $g_i^2 g_f^2 / \Gamma_h$  is close to its standard model value (with ~20% errors)

#### Narrow width approximation for Higgs production

\* In the limit  $\Gamma/M_h \rightarrow 0$  we may replace the Breit-Wigner distribution by a delta function.

$$\frac{1}{(\hat{s} - M_h^2)^2 + M_h^2 \Gamma_h^2} \approx \frac{\pi}{M_h \Gamma_h} \,\delta(\hat{s} - M_h^2) \,.$$

\* For the standard model Higgs,  $\Gamma/M_h = 1/30,000$  so narrow width approximation should apply....

#### Narrow width approximation for Higgs boson

- \* How can it fail?
  - \*  $\Gamma_{\rm H}$  /  $M_{\rm H}$ =1/30,000

- \* It fails spectacularly for  $gg \rightarrow H \rightarrow ZZ^{(*)} \rightarrow e^{-}e^{+}\mu^{-}\mu^{+}$ .
- \* At least 10% of the cross section comes from  $m_{4l}$ >130GeV.

Kauer, Passarino,arXiv:1206.4803

\* Similar tail for  $H \rightarrow WW$ .



# Interference in pp—>ZZ->e<sup>-</sup>e<sup>+</sup> $\mu^{-}\mu^{+}$

- \* We cannot consider the Higgs process alone.
- \* Both interfering and non-interfering backgrounds.

# $pp \rightarrow e^-e^+\mu^-\mu^+$ in the standard model

- Mishmash of orders in perturbation their
- Representative diagrams are:-
- (a) and (e), (b) and (d) can interfere.
- (b-d) interference
   does not overwhelm (a e)

| $(a): g(-p_1) + g(-p_2) \to H \to e^-(p_3) + e^+(p_4) + \mu^-(p_5) + \mu^+(p_6)$          | $O(g_s^2 e^4)$ |
|-------------------------------------------------------------------------------------------|----------------|
| $(b): q(-p_1) + g(-p_2) \to H \to e^-(p_3) + e^+(p_4) + \mu^-(p_5) + \mu^+(p_6) + q(p_7)$ | $O(g_s^3 e^4)$ |
| $(c): q(-p_1) + \bar{q}(-p_2) \to e^-(p_3) + e^+(p_4) + \mu^-(p_5) + \mu^+(p_6)$          | $O(e^4)$       |
| $(d): q(-p_1) + g(-p_2) \to e^-(p_3) + e^+(p_4) + \mu^-(p_5) + \mu^+(p_6) + q(p_7)$       | $O(g_s e^4)$   |
| $(e): g(-p_1) + g(-p_2) \to e^-(p_3) + e^+(p_4) + \mu^-(p_5) + \mu^+(p_6)$                | $O(g_s^2 e^4)$ |



## Caola-Melnikov method for Higgs width

- Higgs cross section under the peak, section depends on ratio of couplings and width.
- Measurements at the peak cannot untangle couplings and width.
- \* Off-peak cross section is independent of the width, but still depends on  $g_i^2 g_f^2$  (modulo interference, see later).



$$\sigma_{\rm off} \propto g_i^2 g_f^2$$

\* Assuming  $g_i^2 g_f^2$  is the same on-shell as off-shell, we have

$$\frac{\left(\frac{\sigma_{\rm off}}{\sigma_{\rm peak}}\right)_{\rm experimental gg}}{\left(\frac{\sigma_{\rm off}}{\sigma_{\rm peak}}\right)_{\rm theoretical SM}} = \frac{\Gamma}{\Gamma^{\rm SM}}$$

## ATLAS result

ATLAS-CONF-2014-042

 Presented as a function of the unknown relative K factor between "signal" and "background".



## CMS result

#### arXiv:1405.3455

\*  $\Gamma_{\rm H}/\Gamma_{\rm H}^{\rm SM}$ =5.4 at 95%cl



\* Results are at least 2 orders of magnitude better than previous limit from direct observation of the final state.

#### Model-dependence of Higgs width bound.

- The bound on the Higgs width holds under the assumption that the coupling constants remain the same over a large span of energy √s=126→~500 GeV.
- If new phenomena are present, this will not always be true.
- In all cases there is great interest in the measurement of the gluon induced 4-lepton cross section away from the Higgs peak.
- If there is a large scale separation between the new phenomena and the off-shellness probed, this can be treated using an effective operator formulation.

$$\mu_{ZZ}^{\text{on}} \equiv \frac{\sigma_h \times \text{BR}(h \to ZZ \to 4\ell)}{[\sigma_h \times \text{BR}(h \to ZZ \to 4\ell)]_{\text{SM}}} \sim \frac{\kappa_{ggh}^2 \kappa_{hZZ}^2}{\Gamma_h / \Gamma_h^{\text{SM}}}$$
$$\mu_{ZZ}^{\text{off}} \equiv \frac{\mathrm{d}\overline{\sigma}_h}{[\mathrm{d}\overline{\sigma}_h]_{\text{SM}}} \sim \kappa_{ggh}^2(\hat{s}) \, \kappa_{hZZ}^2(\hat{s}) \,,$$

2

2

Englert and Spannowsky, 1405.0285

Cacciapaglia et al, 1406.1757 Azatov et al, 1406.6338 Gaines et al, 1403.4951

## Theoretical predictions for Vector Boson Fusion

# Diagrams for pp $\rightarrow$ jet+jet+e<sup>-</sup>e<sup>+</sup>µ<sup>-</sup>µ<sup>+</sup>

\* Off-shell behaviour for VBF subject of much theoretical study.

\* Jet cuts

 $p_{T,J} > 30 \text{ GeV}, |\eta_J| < 4.5, R = 0.4$ 

\* CMS lepton cuts  $p_{T,\mu} > 5 \text{ GeV}, |\eta_{\mu}| < 2.4,$ 

$$\begin{split} p_{T,e} &> 7 \ {\rm GeV} \,, \ |\eta_e| < 2.5 \,, \\ m_{ll} &> 4 \ {\rm GeV} \,, \ m_{4\ell} > 100 \ {\rm GeV} \,. \end{split}$$

Additional VBF cuts

 $y_{gap} > 2.4$  $\eta_1 \times \eta_2 < 0$  $m_{j_1 j_2} > 500 \text{ GeV}$ 



### Gluon-gluon fusion vs Vector boson fusion

- \*  $(pp \rightarrow e^+\mu^+) vs (pp \rightarrow jet+jet+e^+\mu^+\mu^+ with VBF)$ cuts)
- EW cross section for Higgs ~10% of gg fusion (before VBF cuts)
- Higgs tail relatively more important in pp → jet+jet +e<sup>-</sup>e<sup>+</sup>µ<sup>-</sup>µ<sup>+</sup>
- Different slope for VBF tail.





- \* Run II will give us access to VBF
- \* VBF cuts reduce the strong background,  $O(\alpha^4 \alpha_s^2)$ , but  $gq \rightarrow gq e^-e^+\mu^-\mu^+$  still significant.
- \* This same statement holds for W<sup>+</sup>W<sup>-</sup>,W<sup>±</sup>Z,ZZ

## Most useful channel is W<sup>+</sup>W<sup>-</sup>vs W<sup>+</sup>W<sup>+</sup>

 In the first instance, we work in the effective coupling framework, where standard couplings are rescaled by *k*<sub>V</sub>.



- ATLAS on-shell signal-strength
- \* ATLAS W<sup>+</sup>W<sup>+</sup> measurement
- \* Bound is  $\kappa_V < 7.8$ .
- \* current notional width bound  $\Gamma_H < 60.8 \times \Gamma_H^{SM}$ .





New idea

W+W-On-shell

W<sup>+</sup>W<sup>+</sup> Off-shell

$$\sigma^{measured} = 1.3 \pm 0.4(stat) \pm 0.2(syst) \,\mathrm{fb}$$

 $\mu_{VBF}^{ATLAS} = 1.27^{+0.53}_{-0.45}$ 

Current result

## Improvement with 100, $300 \text{fb}^{-1}$ at $\sqrt{\text{s}}=13 \text{TeV}$

- Expected upper and lower bounds on κ<sub>V</sub> obtained from W<sup>+</sup>W<sup>+</sup> events as a function of the transverse mass.
- Bounds are cut off when SM prediction falls below 10 events.
- In all cases the best bounds are achieved, taking the highest possible cut on the transverse mass.
- Possible width bounds with (100, 300fb<sup>-1</sup>) are similar to those currently obtained from gg fusion (20fb<sup>-1</sup>).



#### Effective coupling dependence of other processes

- \*  $\sqrt{s}=13$ TeV in 100fb<sup>-1</sup>
- \* M<sub>(T)</sub>>300GeV
- \* Note that numbers are not so different for  $\kappa_v=0$  (no Higgs) and  $\kappa_V=1$  (SM)
- For this energy and luminosity we cannot place the cut sufficiently high that the noncancelling terms dominate.

Signal

Signal + Background

| $l^- l^+ \nu \bar{\nu}$ :       | $N^{\rm off} = 127.9 - 42.8 \kappa_V^2 + 20.8 \kappa_V^4$ |
|---------------------------------|-----------------------------------------------------------|
| $l^+l^+\nu\nu$ :                | $N^{\rm off} = 37.2 - 18.3 \kappa_V^2 + 8.3 \kappa_V^4$   |
| $l^- l^- \bar{\nu} \bar{\nu}$ : | $N^{\rm off} = 11.0 - 4.1\kappa_V^2 + 1.8\kappa_V^4$      |
| $l^{+}l^{-}l^{+}\nu$ :          | $N^{\rm off} = 23.5 - 6.8 \kappa_V^2 + 3.2 \kappa_V^4$    |
| $l^{+}l^{-}l^{-}\bar{\nu}$ :    | $N^{\rm off} = 11.3 - 3.3\kappa_V^2 + 1.6\kappa_V^4$      |
| $-l^+l^-l^+$ :                  | $N^{\text{off}} = 6.0 - 3.0 \kappa_V^2 + 1.5 \kappa_V^4$  |

| $l^- l^+ \nu \bar{\nu}$ :       | $N^{\rm off} = 224.8 - 42.8 \kappa_V^2 + 20.8 \kappa_V^4$ |
|---------------------------------|-----------------------------------------------------------|
| $l^+l^+\nu\nu$ :                | $N^{\rm off} = 38.8 - 18.3  \kappa_V^2 + 8.3  \kappa_V^4$ |
| $l^- l^- \bar{\nu} \bar{\nu}$ : | $N^{\rm off} = 11.5 - 4.1\kappa_V^2 + 1.8\kappa_V^4$      |
| $l^+l^-l^+\nu$ :                | $N^{ m off} = 60.1 - 6.8 \kappa_V^2 + 3.2 \kappa_V^4$     |
| $l^+l^-l^-\bar{\nu}$ :          | $N^{\rm off} = 29.5 - 3.3  \kappa_V^2 + 1.6  \kappa_V^4$  |
| $l^{-}l^{+}l^{-}l^{+}:$         | $N^{ m off} = 9.0 - 3.0  \kappa_V^2 + 1.5  \kappa_V^4$    |

## Conclusions

- \* Sensitivity to  $\kappa_V$  decreases as the standard model value  $\kappa_V = 1$  is approached.
- \* With samples of order 100fb<sup>-1</sup> we can reach similar bounds on the Higgs boson width from VBF, as we currently have with gluon fusion, but with different theoretical systematics.

#### How can we probe a 4 MeV width for the Higgs?

γγ

CC

Zgam



- Large number of observable SM Higgs decays
- \* We will consider ZZ\*,WW\*.

gg

77\*

 ZZ\* branching ratio is 3%, (but before BR to observable mode).

| Particle | Width[MeV]            | Lifetime[s]                |
|----------|-----------------------|----------------------------|
| t        | $\sim 1,300$          | $\sim 5 \times 10^{-25}$   |
| W        | $\sim 2,000$          | $\sim 3 \times 10^{-25}$   |
| Z        | $\sim 2,500$          | $\sim 2.6 \times 10^{-25}$ |
| h        | $4.21\pm0.16$         | $\sim 1.65\times 10^{-22}$ |
| b        | $4.4 \times 10^{-10}$ | $\sim 1.5 \times 10^{-12}$ |

 $_{\rm H}^{\rm SM} \approx 4$  MeV, c.f. jet resolution ~ 1GeV.

re there other contributions to the tota idth?

# The big picture @ 8TeV

- Peak at Z mass due to singly resonant diagrams.
- Interference is an important effect off-resonance.
- Destructive at large mass, as expected.
- With the standard model width, Γ<sub>H</sub>, challenging to see enhancement/deficit due to Higgs channel.
- \* 3 phenomena happening in the tail.



# Higgs being Higgs

- Consider right hand side of gluon-gluon initiated diagrams.
- \* tt  $\rightarrow$  ZZ, longitudinal modes of Z-bosons.



- First cancellation due to the gauge structure
- \* Higgs tail has to be there to cancel bad high energy behavior of continuum diagrams.
- Second cancellation requires the Higgs.
   Observation of this cancellation, (if possible) is as interesting as longitudinal
- WWZZ scattering d Thacker

### Diagrams for $gg \rightarrow Z/g^* + Z/g^*$ (background)



- \* We perform a stable, analytic calculation of these diagrams and their interference with the Higgs diagrams.
- \* Obtaining numerical stability is challenging for automatic procedures. Human intervention required.