EWK corrections to non-VBF processes

Jonas M. Lindert

work in collaboration with: S. Kallweit, P. Maierhöfer, S. Pozzorini, M. Schönherr

Future of VBF measurements IPPP Durham, 21st Sepetember 2016

Why EW automation?

Formally suppressed by α/α_s with respect to QCD and numerically $\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2) \Rightarrow$ NLO EW ~ NNLO QCD

Possible large (negative) enhancement due to universal virtual Sudakov logs at high energies (i.e. in the tails of the distributions): $2 \left(\frac{M_V^2}{M_V^2} \right)$

- NLO EW known for most (some) $2 \rightarrow 2(3)$ processes
- ...missing for a multitude of $2 \rightarrow 3(4)$ processes (and with decays and/or PS matching)

Why EW automation?

- Photon bremsstrahlung known to be important for various precision observables, e.g. for determination of M_W.
- Origin: soft/collinear photon radiation ~ $\alpha \log\left(\frac{m_f^2}{Q^2}\right)$
- Possible important corrections in sufficiently exclusive observables.

 $d\sigma/dM_{T,\nu_l l}$ [pb/GeV] [Brensing, Dittmaier, Krämer, Mück; '08] 300 5 δ [%] $\mathrm{pp} \to l^+ \nu_l X$ 250 $\sqrt{s} = 14 \text{ TeV}$ 0 $p_{\mathrm{T},l}, p_{\mathrm{T}} > 25 \,\,\mathrm{GeV}$ 200 $|\eta_l| < 2.5$ 150-5 $\delta^{\rm rec}_{q \bar{q}}$ 100 σ_0 $\delta_{\text{multi}-}$ -10 $\sigma_0(1+\delta_{\rm EW}^{\rm rec})$ $\delta_{q\gamma}$ 50 $\sigma_0(1+\delta_{\rm EW}^{\mu^+\nu_\mu})$ 0 -157080 90 80 90 5060 100 5060 70100 $M_{\mathrm{T},\nu_l l}[\mathrm{GeV}]$ $M_{\mathrm{T},\nu_l l}[\mathrm{GeV}]$

 $LO \qquad \text{subleading Born contributions}$ $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

 $LO \qquad \text{subleading Born contributions}$ $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

 $\overbrace{\gamma,Z}$

Illustrative example: $q\overline{q} \rightarrow q\overline{q}$ [Dittmaier, Huss, Speckner; '12]

 $LO \qquad \text{subleading Born contributions}$ $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

$$\cdots + \sigma(\alpha_s^{n+1}\alpha^m) + d\sigma(\alpha_s^n\alpha^{m+1}) + \sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$$

"NLO QCD" "NLO EW" "subleading one-loop contributions"

 $LO \qquad \text{subleading Born contributions}$ $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

Illustrative example: $q\overline{q} \rightarrow q\overline{q}$ [Dittmaier, Huss, Speckner; '12]

$$\dots + \sigma(\alpha_s^{n+1}\alpha^m) + d\sigma(\alpha_s^n\alpha^{m+1}) + \sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$$

"NLO QCD"

subleading Born contributions |O| $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

$$\dots + \sigma(\alpha_s^{n+1}\alpha^m) + d\sigma(\alpha_s^n\alpha^{m+1}) + \sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$$

"NLO QCD" "NLO EW"

 $LO \qquad \text{subleading Born contributions}$ $d\sigma = d\sigma(\alpha_s^n \alpha^m) + d\sigma(\alpha_s^{n-1} \alpha^{m+1}) + \sigma(\alpha_s^{n-2} \alpha^{m+2}) + \dots$

Illustrative example: $q\overline{q} \rightarrow q\overline{q}$ [Dittmaier, Huss, Speckner; '12]

$$\dots + \sigma(\alpha_s^{n+1}\alpha^m) + d\sigma(\alpha_s^n\alpha^{m+1}) + \sigma(\alpha_s^{n-1}\alpha^{m+2}) + \sigma(\alpha_s^{n-2}\alpha^{m+3}) + \dots$$

"NLO QCD" "NLO EW"

Automation requires universal power counting and bookkeeping in α and α_s including different interference effects for all contributions: virtual, real, subtraction.

Input:

- I. Born process and desired order $\alpha_s^n \alpha^m$
- 2. type of correction, i.e. "NLO QCD" $\equiv \alpha_s^{n+1} \alpha^m$ or "NLO EW" $\equiv \alpha_s^n \alpha^{m+1}$

Perturbative power counting for V+2 jets/VBF-V

Automation of NLO QCD+EW

- NLO corrections in the full SM (QCD & EW) are implemented in OpenLoops together with Sherpa and MUNICH (will be included in upcoming public releases)
- missing: NLO EW + PS matching & merging (work in progress, approximation available!)

Decays of heavy particles @ NLO EW

Leptonic decays of gauge bosons are trivial at NLO QCD. At NLO EW corrections in production, decay
and non-factorizable contributions have to be considered.

- Scheme of choice: complex-mass-scheme [Denner, Dittmaier]
 - gauge invariant and exact NLO
 - computationally very expensive: one extra leg per two-body decay
- Pragmatic choice: Narrow-width-approximation (NWA)
 - gauge invariant in strict on-shell limit of NWA
 - allows to capture all Sudakov effects (not present in decay)
 - allows to go to higher jet multiplicities
 - not applicable to all processes at all perturbative orders

V + multijet @ NLO QCD+EW

[S. Kallweit, JML, P. Maierhöfer, S. Pozzorini, M. Schönherr; '14, arXiv:1412.5157; '15; arXiv:1511.08692]

Standard Model Production Cross Section Measurements Status: July 2014

- Dominant background for VBF
- Important/dominant backgrounds for various **BSM searches** (lepton + missing E_T + ets)
- Dominant background for monojet **DM searches**
- Dominant backgrounds for Higgs physics, e.g.VH(→bb), H→WW

- Large cross-sections and clean leptonic signatures
- Precision QCD at LHC
- Playground to probe different aspects of higher-order calculations
 (LO+PS, NLO+PS, NLO-Merging, NLO EW,...)
- Show all technical challenges of NLO EW!

Combination of NLO QCD and EW & Setup

Two alternatives:

$$\begin{aligned} \sigma_{\rm QCD+EW}^{\rm NLO} &= \sigma^{\rm LO} + \delta \sigma_{\rm QCD}^{\rm NLO} + \delta \sigma_{\rm EW}^{\rm NLO} \\ \sigma_{\rm QCD\times EW}^{\rm NLO} &= \sigma_{\rm QCD}^{\rm NLO} \left(1 + \frac{\delta \sigma_{\rm EW}^{\rm NLO}}{\sigma^{\rm LO}} \right) = \sigma_{\rm EW}^{\rm NLO} \left(1 + \frac{\delta \sigma_{\rm QCD}^{\rm NLO}}{\sigma^{\rm LO}} \right) \end{aligned}$$

Difference between the two approaches indicates uncertainties due to missing EW-QCD corrections of $\mathcal{O}(\alpha \alpha_s)$

Relative corrections w.rt. NLO QCD:

$$\frac{\sigma_{\rm QCD+EW}^{\rm NLO}}{\sigma_{\rm QCD}^{\rm NLO}} = \left(1 + \frac{\delta \sigma_{\rm EW}^{\rm NLO}}{\sigma_{\rm QCD}^{\rm NLO}}\right) \qquad \text{suppressed by large NLO QCD corrections}$$
$$\frac{\sigma_{\rm QCD\times EW}^{\rm NLO}}{\sigma_{\rm QCD}^{\rm NLO}} = \left(1 + \frac{\delta \sigma_{\rm EW}^{\rm NLO}}{\sigma_{\rm LO}^{\rm NLO}}\right) \qquad \text{``usual'' NLO EW w.r.t. LO}$$

•
$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} M_{W}^{2} \left(1 - \frac{M_{W}^{2}}{M_{Z}^{2}} \right)$$
 in G_{μ} -scheme with $G_{\mu} = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$

PDFs: NNPDF 2.3QED with \$\alpha_S(M_Z) = 0.118\$ for LO and NLO QCD/EW
\$\mu_0 = \heta_T/2\$ (+ 7-pt. variation)\$

V + I jet

Iv + I jet: inclusive

inclusive

≈ 1% EW corrections

p⊤ of W-boson

- +100 % QCD corrections in the tail
- large negative EW corrections due to Sudakov behaviour:
 -20–35% corrections at I-4 TeV
- sizeable difference between QCD+EW and QCDxEW !

p⊤ of jet

- "giant QCD K-factors" in the tail [Rubin, Salam, Sapeta '10]
- dominated by dijet configurations (effectively LO, no EW)
- positive 10-50% EW corrections from quark bremsstrahlung

NNLO QCD: [Boughezal, Focke, Liu, Petriello '15,'16]

Setup: $\sqrt{S} = 13 \text{ TeV}$ $p_{T,j} > 30 \text{ GeV}, \quad |\eta_j| < 4.5$ $p_{T,1} > 20 \text{ GeV}, \quad |\eta_1| < 2.5, \quad E_T^{\text{miss}} > 25$ $\mu_0 = \hat{H}_T/2 \ (+ 7\text{-pt. variation})$

inclusive

≈ 1% EW corrections

p⊤ of W-boson

- ▶ +100 % QCD corrections in the tail
- large negative EW corrections due to Sudakov behaviour:
 -20–35% corrections at 1-4 TeV

-0.30

 $\sqrt{S} = 13 \text{ TeV}$

-0.50

Setup:

NNLO/LO - 1

 $p_{\rm T,i} > 30 {\rm ~GeV}, |\eta_{\rm i}| < 4.5$

 $\mu_0 = \hat{H}_T/2$ (+ 7-pt. variation)

statistical error

200 400 600

 $p_{\rm T,l} > 20 \text{ GeV}, |\eta_l| < 2.5, E_T^{\rm miss} > 25$

800 1000 1200 1400 1600 1800 2000

00000099

 $p_{\rm T}^{\rm cut} \, [{\rm GeV}]$

soft W/Z

sizeable difference between QCD+EW and QCDxEW !

p⊤ of jet

- "giant QCD K-factors" in the tail [Rubin, Salam, Sapeta '10]
- dominated by dijet configurations (effectively LO, no EW)
- positive 10-50% EW corrections from quark bremsstrahlung

000000000

inclusive

≤ 1% EW corrections

p_T of W-boson

- +100 % QCD corrections in the tail
- large negative EW corrections due to **Sudakov behaviour:** -20-35% corrections at I-4 TeV

-0.30

 $\sqrt{S} = 13 \text{ TeV}$

-0.50

Setup:

NNLO/LO - 1

 $p_{\rm T,i} > 30 {\rm ~GeV}, |\eta_{\rm i}| < 4.5$

 $\mu_0 = \hat{H}_T/2 \ (+ 7\text{-pt. variation})$

statistical error

 $p_{\rm T,l} > 20 \text{ GeV}, |\eta_l| < 2.5, E_T^{\rm miss} > 25$

200 400 600 800 1000 1200 1400 1600 1800 2000

 $p_{\rm T}^{\rm cut} \, [{\rm GeV}]$

soft W/Z

sizeable difference between QCD+EW and QCDxEW !

p⊤ of jet

- "giant QCD K-factors" in the tail [Rubin, Salam, Sapeta '10]
- dominated by dijet configurations (effectively LO, no EW)
- positive 10-50% EW corrections from quark bremsstrahlung

 \Rightarrow pathologic with large uncertainties!

NNLO QCD: [Boughezal, Focke, Liu, Petriello '15,'16]

000000000

000000 9

 $|\nabla + |$ jet: exclusive $\Delta \phi_{j1j2} < 3\pi/4$ (veto on dijet configurations)

QCD corrections

mostly moderate and stable QCD corrections

EW corrections

- Sudakov behaviour in both tails:
 -20–50% EW corrections at 1-4 TeV
- EW corrections larger than QCD uncertainties for $p_{T,W+} > 300 \text{ GeV}$

\implies exclusive W+1 jet ok!

 \Rightarrow inclusive W+I jet requires merging with W+2 jets at NLO QCD+EW!

- small and very stable
- ► 10% scale uncertainties

EW corrections

- Sudakov behaviour in all pT tails:
 - -30–60% for W-boson at I-4 TeV
- different!
- -15–25% for 1st and 2nd jet at 1-4 TeV

EWK corrections to non-VBF processes

Effect of decays:

- Large Sudakov corrections unaffected
- However: needed for realistic experimental cuts

EWK corrections to non-VBF processes

Leptonic observables: only in off-shell calculation

- ▶ up to 50% from QED Bremsstrahlung.
- Similar shape as for NC DY

- moderate EW corrections at large
 m_{T,W}
- ▶ no (strong) Sudakov enhancement

dijet invariant mass

Z→I+I-

 $\bigvee \rightarrow \mid \overline{\nabla}$

- EW corrections <10 % up to the multiTeV in m_{j1j2}
- only moderate Sudakov enhancement! ($\hat{s}_{ij} \gg M_W$)

V + I jet \otimes V + 2 jets

MEPS@NLO QCD+EWvirt

- Incorporate approximate EW corrections into MEPS@NLO framework [Höche, Krauss, Schönherr, Siegert; '13]
- Idea: integrate out real photon corrections (typical at the percent level for highenergy observables)

$$\tilde{B}_{n,QCD}(\Phi_n) \longrightarrow \tilde{B}_{n,QCD+EW}(\Phi_n) = \tilde{B}_n(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n) + B_{n,mix}(\Phi_n)$$

$$V_{\ell} = d\sigma(\alpha_S^{2}\alpha) + d\sigma(\alpha_S^{2}\alpha) + d\sigma(\alpha^3) + d\sigma(\alpha^3) + d\sigma(\alpha^4)$$

EWK corrections to non-VBF processes

inclusive V+1 jet: MEPS@NLO QCD+EWvirt

- Stable NLO QCD+EW predictions in all of the phase-space...
- ...including Parton-Shower effects.
- Can directly be used by the experimental collaborations
- p_{T,V}: MEPS@NLO QCD+EW in agreement with QCDxEW (fixed-order)
- p_{T,j1}: compensation between negative Sudakov and LO mix

exclusive V+1 jet: MEPS@NLO QCD+EW

predictions in all of the

experimental collaborations

corrections (as in fixed-order)

phase-space...

effects.

Conclusions

- Automation of NLO QCD+EW:
 - NLO corrections in the full SM (QCD & EW) are implemented in OpenLoops together with Sherpa and MUNICH (will be included in upcoming public releases)
- ► V + multijets / VV in NLO QCD+EW:
 - inclusion of EW corrections *crucial* at the TeV scale
 - non-trivial interplay between QCD and EW
 - multi-jet final states genuinely different from V+I jet, merging essential for inclusive V+I jet
- Outlook:
 - Full NLO QCD + EW PS matching & multi-jet merging
 - more processes...
 -including VBF processes @ NLO QCD + EW

Backup slides

Virtual EW Sudakov logarithms

Originate from soft/collinear virtual EW bosons coupling to on-shell legs

Universality and factorisation similar as in QCD [Denner, Pozzorini; '01]

$$\delta_{\mathrm{LL+NLL}}^{1-\mathrm{loop}} = \frac{\alpha}{4\pi} \sum_{k=1}^{n} \left\{ \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{\pm}} I^{a}(k) I^{\bar{a}}(l) \ln^{2} \frac{s_{kl}}{M^{2}} + \gamma^{\mathrm{ew}}(k) \ln \frac{s}{M^{2}} \right\}$$

- process-independent, simple structure, independent of \sqrt{S}
- 2-loop extension and resummation partially available
- typical size at $\sqrt{\hat{s}} = 1, 5, 10 \text{ TeV}$:

$$\delta_{\rm LL} \sim -\frac{\alpha}{\pi s_W^2} \log^2 \frac{\hat{s}}{M_W^2} \simeq -28, -76, -104\%,$$

$$\delta_{\rm NLL} \sim +\frac{3\alpha}{\pi s_W^4} \log \frac{\hat{s}}{M_W^2} \simeq +16, +28, +32\%$$

- overall very large effect in the tail of distributions (relevant for BSM searches)
- ➡ large cancellations possible

Real EW logarithms

Real photon radiation

- soft/coll. photon unresolved
- needed to cancel QED singularities

Photon initial states

- QED factorisation needed to absorb IS photon singularities
- possible strong enhancement, e.g. for VV [Baglio, Ninh, Weber; '13] (however huge uncertainties!)

Real W,Z,h radiation (HBR) [Baur '06, Bell et. al. '10]

- partial cancellation with virtual Sudakov logs (Bloch-Nordsick theorem not applied) (strongly dependent on experimental selection)
- free from singularities \Rightarrow trivial LO calculation
- themselves receive large virtual EW corrections
 - \Rightarrow inclusion requires care (double-counting issues)

Performance of NLO EW OpenLoops amplitudes

Performance study for $pp \rightarrow t\bar{t} + n$ jets with n=0,1,2

	$n_{\text{loop diag}}$		$t_{\rm compile} [s]$		size [MB]		$t_{ m run}$ [ms/point]	
$t\overline{t}+0,1,2j$	QCD	ΕŴ	QCD	ĒŴ	QCD	ĒŴ	QCD	EW
$d\bar{d} \to t\bar{t}$	11	33	2.1	3.5	0.1	0.2	0.27	0.69
$gg \to t\bar{t}$	44	70	3.6	3.7	0.2	0.3	1.6	2.8
$d\bar{d} \to t\bar{t}g$	114	360	3.5	5.9	0.4	0.9	4.8	13
$gg \to t\bar{t}g$	585	660	8.2	8.8	1.4	1.6	40	56
$d\bar{d} \to t\bar{t}u\bar{u}$	236	1274	5.3	16	0.8	2.8	12	48
$d\bar{d} \to t\bar{t}d\bar{d}$	472	2140	9.5	56	1.4	1.4	30	99
$d\bar{d} \to t\bar{t}gg$	1507	4487	20	47	3.5	8.2	133	327
$gg \to t\bar{t}gg$	8739	7614	105	79	18	16	1458	1557

Timings on i7-3770K with gcc 4.8 –O0 dynamic and unpolarised t \overline{t} (significantly faster with decays!) using **COLLIER** for reduction

- I-loop EW similarly fast as highly competitive I-loop QCD timings up to $t \bar{t} + 2$ jets
- code size, compilation- & runtime reflect a moderate increase of complexity w.r.t. QCD
- ▶ 2 → 4 NLO QCD+EW feasible!

Treatment of Photons

collinear $q \rightarrow q\gamma$ singularities cancelled clustering q, g, γ on same footing

QED IR subtraction [Catani,Dittmaier,Seymour, Trocsanyi; Frixione, Kunszt, Signer]

Problem of IR safeness in presence of FS QCD partons and photons:

- Separation of jets from photons through $E_{\mathbf{Y}}/E_{jet} < z_{thr}$ inside jets
 - rigorous approach: absorb $q \rightarrow q \gamma$ singularity into fragmentation function
 - approximation: cancel singularity via q $f \gamma$ recombination in small cone $\Delta R_{q\gamma_{0.01}}$ difference < 1% for typical z_{thr} !
- QED factorisation for IS photons and PDF evolution [MRST2004, NNPDF2.3]
- γ -induced processes \rightarrow possible TeV scale enhancements (However large uncertainties!)

Technical note: pseudo-singularities for W+2,3 jets

gluonic channels

fermionic channels

- At the considered order only effects QCD-EW interferences
- Complex-mass-scheme can not be used with on-shell/stable W's
- NWA: finite width $\Gamma_{reg.}$ in potentially s-channel propagators for W, Z ,t ,H
- Smooth gauge-invariant limit and negligible numerical dependence for $\Gamma_{
 m reg.} o 0$

Goal:

- Investigation of technical performance at highest possible jet multiplicity
- Investigate dependence of EW corrections on number of jets

References: W + multijet production

NLO QCD:

- W(→ In) + I jet [Arnold, Reno, '89; Arnold, Ellis, Reno, '89]
- W(→ In) + 2 jets [Campbell, Ellis, '02; Febres Cordero, Reina, Wackeroth, '06; Campbell, Ellis, Febres Cordero, Maltoni, Reina, '09]
- \blacktriangleright W(\rightarrow ln) + 3 jets [Ellis, Melnikov, Zanderighi, '09]
- \blacktriangleright W(\rightarrow In) + 3,4,5 jets [Blackhat Collaboration, '09, '11, '13]

NNLO QCD:

W+ | jet [Boughezal, Focke, Liu, Petriello '15]

NLO EW:

- W + 1 jet [Kühn, Kulesza, Pozzorini, Schulze, '07; Hollik, Kasprzik, Kniehl, '07; Kühn, Kulesza, Pozzorini, Schulze, '09] [this talk!]
- W(→In) + I jet [Denner, Dittmaier, Kasprzik, Mück, '09] [this talk!]
- ▶ W + 2,3 jets [this talk!]
- ► W(→In) + 2 jets [this talk!]

W⁺ + 1,2,3 jets: large EW corrections

- up to 50% EW corrections in multi-TeV range due to Sudakov logs
- nontrivial dependence on number of jets and interplay with NLO QCD!

- sizeable difference between QCD+EW and QCDxEW
- ▶ up to -25% EW corrections

Subleading Born: p_{T,V}

EWK corrections to non-VBF processes

NLO EWvirt Approximation: Fail

MEPS@NLO QCD+EW_{virt} (in a nutshell)

▶ partition phase-space: *n*-jet regions for $0 \le n < n_{\max}$ with $Q_1 > \cdots > Q_n > Q_{\text{cut}} > Q_{n+1} > \dots$ Sudakov • MEPS@LO: $d\sigma_n^{(MEPS@LO)} = d\Phi_n B_n(\Phi_n) \Theta(Q_n - Q_{cut}) \mathcal{F}_n(\mu_Q^2; < Q_{cut}),$ Scale setting: $\alpha_S^N(\mu_{\text{CKKW}}^2) = \alpha_S^{N-M}(\mu_{\text{core}}^2) \alpha_S(t_1) \dots \alpha_S(t_M)$ with $\mu_{\text{core},\ell\ell} = m_{\ell\ell}, \qquad \mu_{\text{core},Vj} = \frac{1}{2} E_{T,V} = \frac{1}{2} \sqrt{M_V^2 + p_{T,V}^2}, \qquad \mu_{\text{core},jj} = \frac{1}{2} \left(\frac{1}{\hat{s}} - \frac{1}{\hat{t}} - \frac{1}{\hat{u}}\right)^{-\frac{1}{2}}$ $\bullet \mathsf{MEPS}@\mathsf{NLO:} d\sigma_n^{(\mathsf{MEPS}@\mathsf{NLO})} = \left| \mathrm{d}\Phi_n \, \tilde{\mathrm{B}}_n(\Phi_n) \, \bar{\mathcal{F}}_n(\mu_Q^2; < Q_{\mathrm{cut}}) \right|$ $\left. + \mathrm{d}\Phi_{n+1}\,\tilde{\mathrm{H}}_n(\Phi_{n+1})\,\Theta(Q_{\mathrm{cut}} - Q_{n+1})\,\mathcal{F}_{n+1}(\mu_Q^2\,;<\!Q_{\mathrm{cut}}) \right|\,\Theta(Q_n - Q_{\mathrm{cut}})$ $\tilde{B}_n(\Phi_n) = B_n(\Phi_n) + \tilde{V}_n(\Phi_n) + \int d\Phi_1 \tilde{D}_n(\Phi_n, \Phi_1) \Theta(\mu_Q^2 - t_{n+1})$ \tilde{H}_n = "hard function", \tilde{D}_n = kernel of first emission

 $\bullet \mathsf{MEPS} \otimes \mathsf{NLO} \mathsf{QCD} + \mathsf{EW}: \tilde{B}_{n,\mathrm{QCD} + \mathrm{EW}}(\Phi_n) = \tilde{B}_n(\Phi_n) + V_{n,\mathrm{EW}}(\Phi_n) + I_{n,\mathrm{EW}}(\Phi_n) + B_{n,\mathrm{mix}}(\Phi_n)$

$Z/\gamma + I$ jet: pT-ratio

Overall

mild dependence on the boson pT

QCD corrections

≤ 10% above 300 GeV

EW corrections

- result in an almost constant shift between LO and NLO QCD+EW of ~15%
- sizeable difference between QCD+EW & QCDxEW

