The Underground Search for Dark Matter How deep can we go?

Alex Murphy

IPPP Senior Experimental Fellow

IBS Multidark IPPP - 23 November 2016

-

CFHT

10⁻¹⁰

0.001

0.01 Ω_Bh² 0.1

2

IBS Multidark IPPP - 23 November 2016

(a)

The *consistent* conclusion

How to search for dark matter?

Collider

Production

Indirectly

Annihilation

Directly

Scattering

Detection techniques

- Active targets target is also detector
 - Rare signal
 - ...Radiologically pure material
- in a highly shielded environment
- DM particle weakly scatters → one of the target atoms recoils, depositing energy
 - Deposited energy generates photons, phonons and charge

Detection techniques

IBS Multidark IPPP - 23 November 2016

Implications for technology

- Going underground removes most CR
 - muons
- Radiopure materials reduce backgrounds
 Shielding reduces backgrounds
- **Fiducialisation** (self-shielding) reduces backgrounds
 - Discrimination separates remaining electron recoil background from signal

The 'direct' detection premise...

Interaction of galactic WIMPs (our Dark Matter) in ultra-low background terrestrial detectors

 Earth should be passing through a halo
 of weakly interacting massive particles

 We search for the <u>rare</u> collisions of DM particles with normal matter here on Earth.

This session

3.1-		Lumley Castle	12:30 - 14:00
1	4:00	The underground search for dark matter: how deep can we go?	Alexander MURPHY
		Lumley Castle	14:00 - 14:30
		SuperCDMS	Wolfgang RAU
		Lumley Castle	14:30 - 14:50
		Status of KIMS	Moo Hyun LEE
1	15:00	Lumley Castle	14:50 - 15:10
a second		Testing DAMA/LIBRA signal with ANAIS112	Maria MARTINEZ
		Lumley Castle	15:10 - 15:30
1		PICO: dark matter detection with bubble chamber detectors	Miquel ARDID
E		Lumley Castle	15:30 - 16:00

So here I'll discuss:

 Two phase xenon TPCs LUX (PandaX, XENON1T, XENONnT, LUX-ZEPLIN)
 Single phase argon: DEAP
 Something different: NEWS

LUX (and two-phase LXe TPCs in General)

IBS Multidark IPPP - 23 November 2016

SURF – DAVIS CAVERN, 4850-FT U/G LEVEL

IBS Multidark IPPP - 23 November 2016

15

Ratio of S2 to S1 depends on the type of incident particle - allows us to reject >99.5% of background events

15 2

PRL 112, 091303 (2014)

First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility

D. S. Akerib,² H. M. Araújo,⁴ X. Bai,⁸ A. J. Bailey,⁴ J. Balajthy,¹⁶ S. Bedikian,¹⁹ E. Bernard,¹⁹ A. Bernstein,⁶
A. Bolozdynya,² A. Bradley,² D. Byram,¹⁸ S. B. Cahn,¹⁹ M. C. Carmona-Benitez,^{2,14} C. Chan,¹ J. J. Chapman,¹ A. A. Chiller,¹⁸ C. Chiller,¹⁸ K. Clark,² T. Coffey,² A. Currie,⁴ A. Curioni,¹⁹ S. Dazeley,⁶ L. de Viveiros,⁷ A. Dobi,¹⁶ J. Dobson,¹⁵ E. M. Dragowsky,² E. Druszkiewicz,¹⁷ B. Edwards,^{19,7} C. H. Faham,^{1,5} S. Fiorucci,¹ C. Flores,¹³ R. J. Gaitskell,¹
V. M. Gehman,⁵ C. Ghag,¹¹ K. R. Gibson,² M. G. D. Gilchriese,⁵ C. Hall,¹⁶ M. Hanhardt,^{8,9} S. A. Hertel,¹⁹ M. Horn,¹⁹ D. Q. Huang,¹ M. Ihm,¹² R. G. Jacobsen,¹² L. Kastens,¹⁹ K. Kazkaz,⁶ R. Knoche,¹⁶ S. Kyre,¹⁴ R. Lander,¹³ N. A. Larsen,¹⁹ C. Lee,² D. S. Leonard,¹⁶ K. T. Lesko,⁵ A. Lindote,⁷ M. I. Lopes,⁷ A. Lyashenko,¹⁹ D. C. Malling,¹ R. Mannino,¹⁰ D. N. McKinsey,¹⁹ D.-M. Mei,¹⁸ J. Mock,¹³ M. Moongweluwan,¹⁷ J. Morad,¹³ M. Morii,¹ A. St. J. Murphy,¹⁵ C. Nehrkorn,¹⁴ H. Nelson,¹⁴ F. Neves,⁷ J. A. Nikkel,¹⁹ R. A. Ott,¹³ M. Pangilinan,¹ P. D. Parker,¹⁹ E. K. Pease,¹⁶ K. Pech,² P. Phelps,² L. Reichhart,¹¹ T. Shutt,² C. Silva,⁷ W. Skulski,¹⁷ C. J. Sofka,¹⁰ V. N. Solovov,⁷ P. Sorensen,⁶ T. Stiegler,¹⁰ K. O'Sullivan,¹⁹ T. J. Sumner,⁴ R. Svoboda,¹³ M. Sweany,¹³ M. Szydagis,¹³ D. Taylor,⁶ B. Tennyson,¹⁹ D. R. Tiedt,⁸ M. Wlasenko,³ F. L. H. Wolfs,¹⁷ M. Woods,¹³ and C. Zhang¹⁸

(LUX Collaboration)

Department of Physics, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA ²Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA ³Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA ⁴High Energy Physics, Imperial College London, Blackett Laboratory, London SW7 2BZ, United Kingdom Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA ⁶Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA ¹LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal South Dakota School of Mines and Technology, 501 East St Joseph Street, Rapid City, South Dakota 57701, USA ⁹South Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, South Dakota 57754, USA Department of Physics, Texas A & M University, College Station, Texas 77843, USA ¹¹Department of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, United Kingdom Department of Physics, University of California Berkeley, Berkeley, California 94720, USA ¹³Department of Physics, University of California Davis, One Shields Avenue, Davis, California 95616, USA Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA ¹⁵SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom Department of Physics, University of Maryland, College Park, Maryland 20742, USA ¹⁷Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA Department of Physics, University of South Dakota, 414E Clark Street, Vermillion, South Dakota 57069, USA ¹⁹Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06511, USA (Received 30 October 2013; revised manuscript received 21 January 2014; published 4 March 2014)

The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6×10^{-40} cm² at a WIMP mass of 33 GeV/c². We find that the LUX data are in disagreement with lowmass WIMP signal interpretations of the results from several recent direct detection experiments.

DOI: 10.1103/PhysRevLett.112.091303

PACS numbers: 95.35.+d, 29.40.Gx, 95.55.Vj

Convincing evidence for the existence of particle dark matter is derived from observations of the Universe on scales ranging from the galactic to the cosmological [1–3]. Increasingly detailed studies of the cosmic microwave background anisotropies have implied the abundance of dark matter with remarkable precision [4,5]. One favored

0031-9007/14/112(9)/091303(7)

091303-1 © 20

© 2014 American Physical Society

Physical Review Letters 112 (2014), 091303

Initial run Spin Independent results

118 kg

85.3 live days AmBe and fixed source gamma ray calibrations Enforced threshold at 3 $\rm keV_{NR}$

20

IBS Multidark IPPP - 23 November 2016

PHYSICAL REVIEW D 93, 072009 (2016)

Tritium calibration of the LUX dark matter experiment

D. S. Akerib,^{1,2,3} H. M. Araújo,⁴ X. Bai,⁵ A. J. Bailey,⁴ J. Balajthy,⁶ P. Beltrame,⁷ E. P. Bernard,⁸ A. Bernstein,⁹ T. P. Biesiadzinski,^{1,2,3} E. M. Boulton,⁸ A. Bradley,¹ R. Bramante,^{1,2,3} S. B. Cahn,⁸ M. C. Carmona-Benitez,¹⁰ C. Chan,¹¹ J. J. Chapman,¹¹ A. A. Chiller,¹² C. Chiller,¹² A. Currie,⁴ J. E. Cutter,¹³ T. J. R. Davison,⁷ L. de Viveiros,¹⁴ A. Dobi,¹⁵ J. E. Y. Dobson,¹⁶ E. Druszkiewicz,¹⁷ B. N. Edwards,⁸ C. H. Faham,¹⁵ S. Fiorucci,¹¹ R. J. Gaitskell,¹¹ V. M. Gehrman,¹⁵ J. E. Y. Dobson, "E. Druszkiewicz," B. N. Edwards, "C. H. Faham," S. Fiorucci, "R. J. Gaitskell," V. M. Gehman,"
 C. Ghag, ¹⁶ K. R. Gibson, ¹ M. G. D. Gilchriese, ¹⁵ C. R. Hall, ⁶ M. Hanhardt, ⁵¹⁸ S. J. Haselschwardt, ¹⁰ S. A. Hertet, ^{19,8} D. P. Hogan, ¹⁹ M. Horn, ^{19,8} D. Q. Huang, ¹¹ C. M. Ignarra, ²³ M. Ihm, ¹⁹ R. G. Jacobsen, ¹⁹ W. Ji, ^{12,3} K. Kazkaz, ⁹ D. Khaitan, ¹⁷ R. Knoche, ⁶ N. A. Larsen, ⁶ C. Lee, ^{12,3} B. G. Lenardo, ^{13,9} K. T. Lesko, ¹⁵ A. Lindote, ¹⁴ M. I. Lopes, ¹⁴ D. C. Malling, ¹¹ A. G. Manalaysay, ¹³ R. L. Mannino, ²⁰ M. F. Marzioni, ⁷ D. N. McKinsey, ^{19,8} D.-M. Mei, ¹² J. Mock, ²¹ M. Moongweluwan, ¹⁷ J. A. Morad, ¹³ A. St. J. Murphy, ⁷ C. Nehrkom, ¹⁰ H. N. Nelson, ¹⁰ F. Neves, ¹⁴ K. O'Sullivan, ^{19,15,8} K. C. Oliver-Mallory, ¹⁹ R. A. Ott, ¹³ K. J. Palladino, ²³ M. Panglinan, ¹¹ E. K. Pease, ⁸ P. Phelps, ¹ L. Reichhart, ⁶ G. D. D. M. Mei, ¹⁰ G. D. C. D. M. Mei, ¹⁰ G. D. C. D. Leither, ¹⁰ G. D. C. D. Leither, ¹⁰ G. D. C. D. C. D. M. Mei, ¹⁰ G. A. Ott, ¹³ K. J. Palladino, ²⁵ M. Panglinan, ¹¹ E. K. Pease, ⁸ P. Phelps, ¹ L. Reichhart, ⁶ G. D. D. M. Mei, ¹⁰ G. D. C. D. M. Mei, ¹⁰ G. D. C. D. Leither, ¹⁰ G. D. C. D. Leither, ¹⁰ G. D. C. D. M. Mei, ¹⁰ G. D. C. D. Leither, ¹⁰ G. D. G. D. C. D. Leither, ¹⁰ G. D. G. D. Leither, ¹¹ G. G. D. Leither, ¹¹ G. G. D. Leither, ¹¹ G. D. G. D. Leither, ¹¹ G. G. D. Leither, ¹¹ G. D. G. D. Leither, ¹¹ G. G. D. C. Rhyne,¹¹ S. Shaw,¹⁶ T. A. Shutt,^{1,2,3} C. Silva,¹⁴ V. N. Solovov,¹⁴ P. Sorensen,¹⁵ S. Stephenson,¹ T. J. Sumner,⁴ M. Szydagis,²¹ D. J. Taylor,¹⁸ W. Taylor,¹¹ B. P. Tennyson,⁸ P. A. Terman,²⁰ D. R. Tiedt,⁵ W. H. To, 12.3 M. Tripathi, 13 L. Tvrznikova, 8 S. Uvarov, 13 J. R. Verbus, 11 R. C. Webb, 20 J. T. White, 20 T. J. Whitis, 12.3 M. S. Witherell,10 F. L. H. Wolfs,17 S. K. Young,21 and C. Zhang12

(LUX Collaboration)

Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA ²SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94205, USA Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94309, USA ⁴High Energy Physics, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, South Dakota 57701, USA Department of Physics, University of Maryland, College Park, Maryland 20742, USA SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06511, USA ⁹Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA ¹⁰Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA 11 Department of Physics, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA ²Department of Physics, University of South Dakota, 414E Clark Street, Vermillion, South Dakota 57069, USA ¹³Department of Physics, University of California Davis, One Shields Avenue, Davis, California 95616, USA ¹⁴LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal ³Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA ¹⁶Department of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, United Kingdom Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA Sanford Underground Research Facility, South Dakota Science and Technology Authority, Lead, South Dakota 57754, USA ¹⁹Department of Physics, University of California Berkeley, Berkeley, California 94720, USA Department of Physics, Texas A&M University, College Station, Texas 77843, USA Department of Physics, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA (Received 9 December 2015; published 20 April 2016)

We present measurements of the electron-recoil (ER) response of the LUX dark matter detector based upon 170 000 highly pure and spatially uniform tritium decays. We reconstruct the tritium energy spectrum using the combined energy model and find good agreement with expectations. We report the average charge and light yields of ER events in liquid xenon at 180 and 105 V/cm and compare the results to the NEST model. We also measure the mean charge recombination fraction and its fluctuations, and we investigate the location and width of the LUX ER band. These results provide input to a reanalysis of the LUX run 3 weakly interacting massive particle search.

DOI: 10.1103/PhysRevD.93.072009

2470-0010/2016/93(7)/072009(12)

072009-1

© 2016 American Physical Society

Physical Review D 93 (2016), 072009

Dispersed tritium calibration

In situ measurement of ER response to low energies Tritiated methane

IBS Multidark IPPP - 23 November 2016

Low-energy (0.7–74 keV) nuclear recoil calibration of the LUX dark matter experiment using D-D neutron scattering kinematics

D.S. Akerib,^{1,2,3} S. Alsum,⁴ H.M. Araújo,⁵ X. Bai,⁶ A.J. Bailey,⁵ J. Balajthy,⁷ P. Beltrame,⁸ E.P. Bernard,^{9,10} A. Bernstein,¹¹ T.P. Biesiadzinski,^{1,2,3} E.M. Boulton,^{9,10} A. Bradley,¹ R. Bramante,^{1,2,3} P. Brás,¹² D. Byram,^{13,14} S.B. Cahn,¹⁰ M.C. Carmona-Benitez,¹⁵ C. Chan,¹⁶ J.J. Chapman,¹⁶ A.A. Chiller,¹³ C. Chiller,¹³ A. Currie,⁵ J.E. Cutter,¹⁷ T.J.R. Davison,⁸ L. de Viveiros,¹² A. Dobi,¹⁸ J.E.Y. Dobson,¹⁹
E. Druszkiewicz,²⁰ B.N. Edwards,¹⁰ C.H. Faham,¹⁸ S. Fiorucci,^{16,18} R.J. Gaitskell,¹⁶ V.M. Gehman,¹⁸ C. Ghag,¹⁹ K.R. Gibson,¹ M.G.D. Gilchriese,¹⁸ C.R. Hall,⁷ M. Hanhardt,^{6,14} S.J. Haselschwardt,¹⁵ S.A. Hertel,^{9,10} D.P. Hogan,⁹ M. Horn,^{14,9,10} D.Q. Huang,¹⁶ C.M. Ignarra,^{2,3} M. Ihm,⁹ R.G. Jacobsen,⁹ W. Ji,^{1,2,3} K. Kamdin,⁹ K. Kazkaz,¹¹ D. Khaitan,²⁰ R. Knoche,⁷ N.A. Larsen,¹⁰ C. Lee,^{1,2,3} B.G. Lenardo,^{17,11} K.T. Lesko,¹⁸ A. Lindote,¹² M.I. Lopes,¹² D.C. Malling,¹⁶ A. Manalaysay,¹⁷ R.L. Mannino,²¹ M.F. Marzioni,⁸ D.N. McKinsey,^{9,18,10} D.-M. Mei,¹³ J. Mock,²² M. Moongweluwan,²⁰ J.A. Morad,¹⁷ A.St.J. Murphy,⁸ C. Nehrkorn,¹⁵ H.N. Nelson,¹⁵ F. Neves,¹² K. O'Sullivan,^{9,18,10} K.C. Oliver-Mallory,⁹ K.J. Palldino,^{4,2,3} M. Pangilinan,¹⁶ E.K. Pease,^{9,10} P. Phelps,¹ L. Reichhart,¹⁹ C.A. Rhyne,¹⁶ S. Shaw,¹⁹ T.A. Shutt,^{1,2,3} C. Silva,¹² M. Solmaz,¹⁵ V.N. Solovov,¹² P. Sorensen,¹⁸ S. Stephenson,¹⁷ T.J. Summer,⁵ M. Szydagis,²² D.J. Taylor,¹⁴ W.C. Taylor,¹⁶ B.P. Tennyson,¹⁰ P.A. Terman,²¹ D.R. Tiedt,⁶ W.H. To,^{1,2,3} M. Tripathi,¹⁷ L. Tvrznikova,^{9,10} S. Uvarov,¹⁷ J.R. Verbus,^{16,*} R.C. Webb,²¹ J.T. White,²¹ T.J. Whitis,^{1,2,3} M.S. Witherell,¹⁸ F.L.H. Wolfs,²⁰ J. Xu,¹¹ K. Yazdani,⁵ S.K. Young,²² and C. Zhang¹³

(LUX Collaboration)

¹Case Western Reserve University, Department of Physics, 10900 Euclid Ave, Cleveland, OH 44106, USA ²SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94205, USA ³Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94309, USA ⁴University of Wisconsin-Madison, Department of Physics, 1150 University Ave., Madison, WI 53706, USA ⁵Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ, United Kingdom ^aSouth Dakota School of Mines and Technology, 501 East St Joseph St., Rapid City, SD 57701, USA ⁷ University of Maryland, Department of Physics, College Park, MD 20742, USA ⁸SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ⁹University of California Berkeley, Department of Physics, Berkeley, CA 94720, USA ¹⁰ Yale University, Department of Physics, 217 Prospect St., New Haven, CT 06511, USA ¹¹Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551, USA ¹²LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal ¹³University of South Dakota, Department of Physics, 414E Clark St., Vermillion, SD 57069, USA ¹⁴South Dakota Science and Technology Authority. Sanford Underground Research Facility, Lead, SD 57754, USA ¹⁵University of California Santa Barbara, Department of Physics, Santa Barbara, CA 93106, USA ¹⁶Brown University, Department of Physics, 182 Hope St., Providence, RI 02912, USA ¹⁷ University of California Davis, Department of Physics, One Shields Ave., Davis, CA 95616, USA ¹⁸Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA ¹⁹Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom ²⁰University of Rochester, Department of Physics and Astronomy, Rochester, NY 14627, USA ²¹ Texas A & M University, Department of Physics, College Station, TX 77843, USA 22 University at Albany, State University of New York, Department of Physics, 1400 Washington Ave., Albany, NY 12222, USA

(Dated: October 27, 2016)

The Large Underground Xenon (LUX) experiment is a dual-phase liquid xenon time projection chamber (TPC) operating at the Sanford Underground Research Facility in Lead, South Dakota. A calibration of nuclear recoils in liquid xenon was performed *in situ* in the LUX detector using a collimated beam of mono-energetic 2.45 MeV neutrons produced by a deuterium-deuterium (D-D) fusion source. The nuclear recoil energy from the first neutron scatter in the TPC was reconstructed using the measured scattering angle defined by double-scatter neutron events within the active xenon volume. We measured the absolute charge (Q_y) and light (L_y) yields at an average electric field of 180 V/cm for nuclear recoil energies spanning 0.7 to 74 keV and 1.1 to 74 keV, respectively. This calibration of the nuclear recoil signal yields will permit the further refinement of liquid xenon nuclear recoil signal models and, importantly for dark matter searches, clearly demonstrates measured ionization and scintillation signals in this medium at recoil energies down to O(1 keV).

Submitted Phys. Rev. C, arXiv: 1608.05381

DD neutron generator calibration Low energy NR response

61301 (2016) PHYSICAL

PHYSICAL REVIEW LETTERS

Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data

D. S. Akerib,^{12,3} H. M. Araújo,⁴ X. Bai,⁵ A. J. Bailey,⁴ J. Balajthy,⁶ P. Beltrame,⁷ E. P. Bernard,⁸ A. Bernstein,⁹
T. P. Biesiadzinski,^{12,3} E. M. Boulton,⁸ A. Bradley,¹ R. Bramante,^{12,3} S. B. Cahn,⁸ M. C. Carmona-Benitez,¹⁰ C. Chan,¹¹
J. J. Chapman,¹¹ A. A. Chiller,¹² C. Chiller,¹² A. Currie,^{4,*} J. E. Cutter,¹³ T. J. R. Davison,⁷ L. de Viveiros,¹⁴ A. Dobi,¹⁵
J. E. Y. Dobson,¹⁶ E. Druszkiewicz,¹⁷ B. N. Edwards,⁸ C. H. Faham,¹⁵ S. Fiorucci,¹⁵ R. J. Gaitskell,¹¹ V. M. Gehman,¹⁵
C. Ghag,¹⁶ K. R. Gibson,¹ M. G. D. Gilchriese,¹⁵ C. R. Hall,⁶ M. Hanhardt,^{5,18} S. J. Haselschwardt,¹⁰ S. A. Hertel,^{19,8,15}
D. P. Hogan,¹⁹ M. Horn,^{19,8,15} D. Q. Huang,¹¹ C. M. Ignarra,²³ M. Ihm,^{19,15} R. G. Jacobsen,^{19,15} W. Ji,^{1,23} K. Kazkaz,⁹
D. Khaitan,¹⁷ R. Knoche,⁶ N. A. Larsen,⁸ C. Lee,^{12,3} B. G. Lenardo,^{13,9} K. T. Lesko,¹⁵ A. Lindote,¹⁴ M. I. Lopes,¹⁴
D. C. Malling,¹¹ A. Manalaysay,¹³ R. L. Mannino,²⁰ M. F. Marzioni,⁷ D. N. McKinsey,^{19,8,15} D.-M. Mei,¹² J. Mock,²¹
M. Moongweluwan,¹⁷ J. A. Morad,¹³ A. St. J. Murphy,⁷ C. Nehrkorn,¹⁰ H. N. Nelson,¹⁰ F. Neves,¹⁴ K. O'Sullivan,^{15,19,8}
K. C. Oliver-Mallory,^{19,15} R. A. Ott,¹³ K. J. Palladino,^{22,23} M. Pangilinan,¹¹ E. K. Pease,¹⁴ K. O'Sullivan,^{15,19,8}
K. C. Oliver-Mallory,^{19,15} R. A. Ott,¹³ K. J. Palladino,^{22,23} M. Pangilinan,¹⁴ E. K. Pease,^{16,3} P. Phelps,¹ L. Reichhart,¹⁶ C. Rhyne,¹¹ S. Shaw,⁴⁵ T. A. Shutt,^{12,3} C. Silva,⁴⁴ V. N. Solovov,⁴⁴ P. Sorensen,¹⁵ S. Stephenson,¹³ T. J. Sumner,⁴ M. Szydagis,²¹ D. J. Taylor,¹⁸ W. Taylor,¹¹ B. P. Tennyson,⁸ P. A. Terman,²⁰ D. R. Tiedt,⁵ W. H. To,^{12,3} M. Tripathi,¹³ L. Tvrznikova,^{19,8,15} S. Uvarov,¹³ J. R. Verbus,¹¹ R. C. Webb,²⁰ J. T. White,²⁰ T. J. Whitti,^{12,3} M. S. Witherell,¹⁰ F. L. H. Wolfs,¹⁷ K. Yazdani,⁴ S. K. Young,²¹ and C. Zhang¹²
<

(LUX Collaboration)

¹Case Western Reserve University, Department of Physics, 10900 Euclid Ave, Cleveland, Ohio 44106, USA. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94205, USA Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94309, USA ⁴Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ, United Kingdom South Dakota School of Mines and Technology, 501 East St Joseph St., Rapid City, South Dakota 57701, USA ^bUniversity of Maryland, Department of Physics, College Park, Maryland 20742, USA SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom Vale University, Department of Physics, 217 Prospect St., New Haven, Connecticut 06511, USA ⁹Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551, USA ¹⁰University of California Santa Barbara, Department of Physics, Santa Barbara, California 93106, USA Brown University, Department of Physics, 182 Hope St., Providence, Rhode Island 02912, USA 12 University of South Dakota, Department of Physics, 414E Clark St., Vermillion, South Dakota 57069, USA ³University of California Davis, Department of Physics, One Shields Ave., Davis, California 95616, USA ¹⁴LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal ⁵Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, USA "Department of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, United Kingdom ¹⁷University of Rochester, Department of Physics and Astronomy, Rochester, New York 14627, USA ¹⁸South Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, South Dakota 57754, USA ¹⁹University of California Berkeley, Department of Physics, Berkeley, California 94720, USA ²⁵Texas A&M University, Department of Physics, College Station, Texas 77843, USA. ²¹University at Albany, State University of New York, Department of Physics, 1400 Washington Avenue, Albany, New York 12222, USA ²²University of Wisconsin-Madison, Department of Physics, 1150 University Avenue, Madison, Wisconsin 53706, USA (Received 12 December 2015; revised manuscript received 8 March 2016; published 20 April 2016) We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4 × 104 kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium () source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the 0031-9007/16/116(16)/161301(7) 161301-1 C 2016 American Physical Society Physical Review Letters 116 (2016), 161301

Improved Spin Independent results

Additional DD and tritium calibrations used Improved peak finding, analysis

145.4 kg

95 days

Threshold reduced to 1.1 keV_{NR}

Significant improvement for low masses

5

D. S. Akerib,^{1,2,3} H. M. Araújo,⁴ X. Bai,⁵ A. J. Bailey,⁴* J. Balajthy,⁶ P. Beltrame,⁷ E. P. Bernard,⁸ A. Bernstein,⁹
T. P. Biesiadzinski,^{1,2,3} E. M. Boulton,⁸ A. Bradley,¹ R. Bramante,^{1,2,3} S. B. Cahn,⁸ M. C. Carmona-Benitez,¹⁰ C. Chan,¹¹ J. J. Chapman,¹¹ A. A. Chiller,¹² C. Chiller,¹² A. Currie,⁴ J. E. Cutter,¹³ T. J. R. Davison,⁷ L. de Viveiros,¹⁴ A. Dobi,¹⁵ J. E. Y. Dobson,¹⁶ E. Druszkiewicz,¹⁷ B. N. Edwards,⁸ C. H. Faham,¹⁵ S. Fiorucci,¹⁵ R. J. Gaitskell,¹¹ V. M. Gehman,¹⁵ C. Ghag,¹⁶ K. R. Gibson,¹ M. G. D. Gilchriese,¹⁵ C. R. Hall,⁶ M. Hanhardt,^{5,18} S. J. Haselschwardt,¹⁰ S. A. Hertel,^{19,8,15} D. P. Hogan,¹⁹ M. Horn,^{19,8,15} D. Q. Huang,¹¹ C. M. Ignarra,^{2,3} M. Ihm,^{19,15} R. G. Jacobsen,^{19,15} W. Ji,^{1,2,3} K. Kazkaz,⁹ D. Khaitan,¹⁷ R. Knoche,⁶ N. A. Larsen,⁸ C. Lee,^{1,2,3} B. G. Lenardo,^{13,9} K. T. Lesko,¹⁵ A. Lindote,¹⁴ M. I. Lopes,¹⁴ D. C. Malling,¹¹ A. Manalaysay,¹³ R. L. Mannino,²⁰ M. F. Marzioni,⁷ D. N. McKinsey,^{19,8,15} D.-M. Mei,¹² J. Mock,²¹ M. Moongweluwan,¹⁷ J. A. Morad,¹³ A. St. J. Murphy,⁷ C. Nehrkorn,¹⁰ H. N. Nelson,¹⁰ F. Neves,¹⁴ K. O'Sullivan,^{15,19,8} K. C. Oliver-Mallory,^{19,15} R. A. Ottt,¹³ K. J. Palladino,^{22,2,3} M. Pangilinan,¹¹ E. K. Pease,^{19,8,15} P. Phelps,¹ L. Reichhart,¹⁶ C. Rhyne,¹¹ S. Shaw,¹⁶ T. A. Shutt,^{1,2,3} C. Silva,¹⁴ V. N. Solovov,¹⁴ P. Sorensen,¹⁵ S. Stephenson,¹³ T. J. Sumner,⁴ M. Szydagis,²¹ D. J. Taylor,¹⁸ W. Taylor,¹¹ B. P. Tennyson,⁸ P. A. Terman,²⁰ D. R. Tiedt,⁵ W. H. To,^{1,2,3} M. Stihterli,¹⁰ F. L. H. Wolfs,¹⁷ K. Yazdani,⁴ S. K. Young,²¹ and C. Zhang¹²

(LUX Collaboration)

¹Case Western Reserve University, Department of Physics, 10900 Euclid Ave, Cleveland, Ohio 44106, USA ²SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94205, USA ³Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94309, USA ⁴Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ, United Kingdom ⁵South Dakota School of Mines and Technology, 501 East St Joseph St., Rapid City, South Dakota 57701, USA ⁶University of Maryland, Department of Physics, College Park, Maryland 20742, USA ⁷SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ⁸Yale University, Department of Physics, 217 Prospect St., New Haven, Connecticut 06511, USA ⁹Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551, USA ¹⁰University of California Santa Barbara, Department of Physics, Santa Barbara, California 93106, USA ¹¹Brown University, Department of Physics, 182 Hope St., Providence, Rhode Island 02912, USA ¹²University of South Dakota, Department of Physics, 414E Clark St., Vermillion, South Dakota 57069, USA ¹³University of California Davis, Department of Physics, One Shields Ave., Davis, California 95616, USA ¹⁴LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal ¹⁵Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, USA ¹⁶Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom ¹⁷University of Rochester, Department of Physics and Astronomy, Rochester, New York 14627, USA ¹⁸South Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, South Dakota 57754, USA ¹⁹University of California Berkeley, Department of Physics, Berkeley, California 94720, USA ²⁰Texas A&M University, Department of Physics, College Station, Texas 77843, USA ²¹University at Albany, State University of New York, Department of Physics, 1400 Washington Avenue, Albany, New York 12222, USA ²²University of Wisconsin-Madison, Department of Physics, 1150 University Avenue, Madison, Wisconsin 53706, USA (Received 11 February 2016; revised manuscript received 21 March 2016; published 20 April 2016) We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4×10^4 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMPneutron (WIMP-proton) cross section of $\sigma_n = 9.4 \times 10^{-41}$ cm² ($\sigma_p = 2.9 \times 10^{-39}$ cm²) at 33 GeV/c². The spin-dependent WIMP-neutron limit is the most sensitive constraint to date. DOI: 10.1103/PhysRevLett.116.161302

0031-9007/16/116(16)/161302(6)

161302-1 ©

© 2016 American Physical Society

week ending 22 APRIL 2016

Physical Review Letters 116 (2016), 161302

Spin Dependent results

from the 'Improved' 2013 data set

Improve electron extraction

- Was ~50% in initial data
 - Conditioning campaign...
- Voltage on electrodes raised, until significant current was drawn, for extended period
- Successfully raised electron extraction efficiency to ~75%
 - Commenced run (11 September 2014)
 - But...

ΕD

Charge build up on PTFE

- Understood in terms of build up of negative charge on internal PTFE walls
 - Detailed COMSOL™ model developed
- Magnitude of effect continued to evolve during

Roughly rotational symmetry, but strong depth dependence

300 live days of blinded data completed 03 May 2016

Data Analysis

- Considered data set as 4 time bins and 4 volumes.
- Each segment then has its own model for ER and NR response
- Likelihood analysis performed on S1 and S2 observables
- S1 and S2 modelled with the Noble Element Simulation Technique (NEST, <u>http://www.albany.edu/physics/NEST.shtml</u>)
- NEST is "tuned" to each of the 16 detectors by varying the
- applied field until we see a match between model and calibration data.
- Periodic CH₃T, Kr, DD calibrations throughout run
- Background estimates... (¹²⁷Xe has now decayed away)
- Cuts... Efficiencies...

Background expectations

5			
	Background source	Expected number below NR median	Indicative only: we use PLR
	External Gamma rays	1.5 +/- 0.2	In the bulk, but n/v discrimination
J	Internal beta particles	1.2 +/- 0.06	
	Radon plate out (wall background)	8.7 +/- 3.5	$ \mathbf{S} $ Low energy wall events, but PLR gives these low $\mathcal{L}(signal) $
	Accidental S1-S2 coincidences	0.34 +/- 0.10	In the bulk, low energy, NR band
	⁸ B solar neutrinos (CNNS)	0.16 +/- 0.03	J

+ ~ 0.3 single scatter neutrons, e.g. from (α , n), not included in PLR

Salting of data

'Fake' events, built from calibration data (not simulation), are injected at the level of raw waveforms before analysis

- Mitigates bias while allowing scrutiny of individual events.
- Previously used by
 neutrino experiments
 and searches for
 fractional charge.

Salting of data

The plot shows the

data from all 16 "detectors"

Dots are events:

of our fiducial

Gray: within 1cm

boundary

- Black: bulk events
- Red and blue
 curves are the ER
 and NR bands

34

Salting of data

The plot shows the

data from all 16

"detectors"

Dots are events:

Gray: within 1cm of our fiducial

boundary

- Black: bulk events
 - Red and blue
 curves are the ER
 and NR bands

Salt Removed

Post Unsalting

The plot shows the

data from all 16

"detectors"

Dots are events:

Gray: within 1cm

of our fiducial

boundary

- Black: bulk events
- Red and blue
 curves are the ER
 and NR bands

Post Unsalting

Two events have ~80% of the light in a single top edge PMT. Consistent with energy deposited outside the TPC, and light leaking through a gap near the edge of the PMT array.

 One event has light
 concentrated under a few top PMTs and has time structure consistent with gas scintillation emission.
 Also, this event came after high rate in the preceding 1 second.

37

Post Unsalting

Two events have ~80% of the light in a single top edge PMT. Consistent with energy deposited outside the TPC, and light leaking

Since these events do not correspond to interactions in the TPC, we developed additional (post-unsalting) cuts to target them

concentrated under a few top PMTs and has time structure consistent with gas scintillation emission. Also, this event came after high rate in the preceding 1 second.

Additional cuts

PLR Analysis

Two-sided PLR
5 un-binned PLR
dimensions: r, φ, drift-

time, S1, $\log 10(S2)$

- 1 binned PLR
 - dimension: Event

Good agreement with background-only model, p-value >0.6 for each projection

40

332 Live days result

Combined Run 3 + Run 4 Minimum at 1.1×10^{-46} cm² at 50 GeV/c² (90%c.l.)

https://arxiv.org/pdf/1608.07648.pdf

Results from a search for dark matter in the complete LUX exposure

D.S. Akerib,^{1,2,3} S. Alsum,⁴ H.M. Araújo,⁵ X. Bai,⁶ A.J. Bailey,⁵ J. Balajthy,⁷ P. Beltrame,⁸ E.P. Bernard,^{9,10} A. Bernstein,¹¹ T.P. Biesiadzinski,^{1,2,3} E.M. Boulton,^{9,10} R. Bramante,^{1,2,3} P. Brás,¹² D. Byram,^{13,14} S.B. Cahn,¹⁰ M.C. Carmona-Benitez,¹⁵ C. Chan,¹⁶ A.A. Chiller,¹³ C. Chiller,¹³ A. Currie,⁵ J.E. Cutter,¹⁷ T.J.R. Davison,⁸ A. Dobi,¹⁸ J.E.Y. Dobson,¹⁹ E. Druszkiewicz,²⁰ B.N. Edwards,¹⁰ C.H. Faham,¹⁸ S. Fiorucci,^{16,18} R.J. Gaitskell,¹⁶ V.M. Gehman,¹⁸ C. Ghag,¹⁹ K.R. Gibson,¹ M.G.D. Gilchriese,¹⁸ C.R. Hall,⁷ M. Hanhardt,^{6,14} S.J. Haselschwardt,¹⁵ S.A. Hertel,^{9,10} D.P. Hogan,⁹ M. Horn,^{14,9,10} D.Q. Huang,¹⁶ C.M. Ignarra,^{2,3} M. Ihm,⁹ R.G. Jacobsen,⁹ W. Ji,^{1,2,3} K. Kamdin,⁹ K. Kazkaz,¹¹ D. Khaitan,²⁰ R. Knoche,⁷ N.A. Larsen,¹⁰ C. Lee,^{1,2,3} B.G. Lenardo,^{17,11} K.T. Lesko,¹⁸ A. Lindote,¹² M.I. Lopes,¹² A. Manalaysay,¹⁷ R.L. Mannino,²¹ M.F. Marzioni,⁸ D.N. McKinsey,^{9,18,10} D.-M. Mei,¹³ J. Mock,⁹² M. Moongweluwan,²⁰ J.A. Morad,¹⁷ A.St.J. Murphy,⁶ C. Nehrkorn,¹⁵ H.N. Nelson,¹⁵ F. Neves,¹² K. O'Sullivan,^{9,18,10} K.C. Oliver-Mallory,⁹ K.J. Palladino,^{4,2,3} E.K. Pease,^{3,18,10} P. Phelpe,¹ L. Reichhart,¹⁹ C. Rhyne,¹⁶ S. Shaw,¹⁹ T.A. Shutt,^{1,2,3} C. Silva,¹² M. Solmaz,¹⁵ V.N. Solovov,¹² P. Sorensen,¹⁸ S. Stephenson,¹⁷ T.J. Summer,⁵ M. Szydagis,³² D.J. Taylor,¹⁴ W.C. Taylor,¹⁶ B.P. Tennyson,¹⁰ P.A. Terman,²¹ D.R. Tiedt,⁶ W.H. To,^{1,2,3} M. Tripathi,¹⁷ L. Tvrznikova,^{9,10} S. Uvarov,¹⁷ J.R. Verbus,¹⁶ R.C. Webb,²¹ J.T. White,²¹ T.J. Whitis,^{1,2,3} M.S. Witherell,¹⁸ F.L.H. Wolfs,²⁰ J. Xu,¹¹ K. Yazdani,⁵ S.K. Young,²² and C. Zhang¹³ (LUX Collaboration) ¹Case Western Reserve University, Department of Physics, 10900 Euclid Ave, Cleveland, OH 44106, USA ²SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94205, USA ³Kavli Institute for Particle Astrophysics and Cosmology Stanford University, 452 Lomita Mall, Stanford, CA 94309, USA ⁴University of Wisconsin-Madison, Department of Physics, 1150 University Ave., Madison, WI 53706, USA ⁸Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ, United Kingdom ⁸South Dakota School of Mines and Technology, 501 East St Joseph St., Rapid City, SD 57701, USA ⁷University of Maryland, Department of Physics, College Park, MD 20742, USA ⁸UPA, Schottersuty of Sadurana, Lepartment of Physics, College Tark, MD 20142, USA ⁸UPA, Schot of Physics and Astronomy, University of Edinburyh, Edinburgh EH9 SFD, USA ⁸University of California Berkeley, Department of Physics, Berkeley, CA 94720, USA ¹⁰Yale University, Department of Physics, 217 Prospect Sk., New Haeven, CT 06511, USA ¹¹Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94531, USA ¹²LIP. Coimbra, Department of Physics, University of Coimbra, Rua Larya, 7004316 Coimbra, Portugal ¹³University of South Dabota, Department of Physics, 414E Clark St., Vermilion, SD 57069, USA 14 South Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, SD 57754, USA ¹⁵University of California Santa Barbara, Department of Physics, Santa Barbara, CA 93106, USA ³⁰ Brown University, Department of Physics, 182 Hope St., Providence, RI 02912, USA ¹⁷ University of California Davis, Department of Physics, One Shields Ave., Davis, CA 95616, USA ¹⁸Laurence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA ¹⁹Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom ²⁰University of Rochester, Department of Physics and Astronomy, Rochester, NY 14627, USA ²¹ Texas A & M University, Department of Physics, College Station, TX 77843, USA ²²University at Albany, State University of New York, Department of Physics, 1400 Washington Ave., Albany, NY 12222, USA (Dated: October 14, 2016) We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon

We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10⁴ kg-day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly four-fold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear receils. At a WIMP mass of 50 GeV c^{-2} , WIMP-nucleon spin-independent cross sections above 2.2×10^{-66} cm² are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1×10^{-49} cm² at 50 GeV c^{-2} .

41

ertel@berkelev.edu

IBS Multidark IPPP - 23 November 2016

Axions

Searches for axioelectric coupling, g_{Ae}

Extends science beyond standard WIMP searches

ER-band search

Extending background model

44 \

ΕD

Key parameters

- Same location as LUX (Davis cavern)
- Active skin, Gd loaded veto
- ~10 Tonnes xenon, 5.6 T fiducial
- Radon reduced air
- Major screening programme, ultra low radioactivity titanium procured and now being machined
- Major cleanliness programme
 Cryogenics, Xe recirculation, calibration, outer detectors, electronics, DAQ, controls, installation, integration, software,...
 - Planning 5 years+ of operations,

Boulby New Lab Construction March 2016

Air conditioning, HEPA filtration, internet / comms, 5 & 10 Tonne lifting capacity.

> 4000m³ of well supported class 1,000 and class 10,000 clean room experimental space

Major LZ Screening campaign underway at Boulby

> See talk by Emma Meehan at 5.30 today

Single phase liquid argon approach:

simple, scalable, inexpensive

- 3600 kg target (1000 kg fiducial) in sealed ultraclean Acrylic Vessel
- In-situ vacuum evaporated TPB wavelength shifter (~10 m²)
- Bonded 50 cm long light guides + PE shielding provide neutron moderation
- 255 Hamamatsu R5912 HQE PMTs 8inch (32% QE, 75% coverage)
- Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction
- Detector immersed in 8 m water shield. instrumented with PMTs to veto muons
- Located 2 km underground at SNOLAB

Marcin Kuźniak

Gille Gerbier

Spherical gas detectors New Experiments With Spheres @ SNOLAB

 $E(r) = \frac{V_0}{r^2} \rho$

Sphere cavity + spherical sensor @ HV

- => Low threshold (low C), single electron sensitivity
- Fiducial volume selection by pulse risetime
- Flexible (P, gaz)
- Large mass / large volume (30 kg) with single channel
- Simple, sealed mode
- Few materials involved, mostly copper, low activity
- Adapted for low mass WIMP investigation with Ne/He/H thanks to kinematical match of WIMP-target masses
- => 60 cm prototype at Laboratoire Souterrain de Modane

Vew

Light dark matter search at LSM Low activity 60 cm Ø prototype @ LSM : SeDiNe

- Copper vessel equipped with 6 mm Ø sensor
- Run with **Neon**+0.7%CH₄ @ 3.1 bars
- => 310 g sensitive mass
- Analysis threshold 150 eVee
- 42 days run for WIMP search
- **Results to be reported at TPC 2016 Paris** conference and Berkeley low

60 cm NOSV copper vessel 6.3 mm sensor

IBS Multidark IPPP - 23 November 2016

Background-Free DRIFT-IId

 $\overline{62}$

64

SUMMARY

Huge progress in recent (SI: 3 orders of magnitude in 5 years!)
LXe TPCs presently the most competitive technology: LUX
Genuinely providing significant constraint to theory
Further advances very soon: PandaX (500 kg), Xenon1T are both running. Another order of magnitude in ~ 1-2 years (?)
~5.5 T LXe devices online in 2019/2020; yet another order of

- magnitude by ~2022(?)
- Single phase LAr also now running very competitive at high masses
- Other techniques being developed for low masses, e.g. NEWS
- Directionality is progressing, e.g. DRIFT (&CYGNUS)
- Digging deeper in the data; digging deeper in the phase space...

DMUK Meeting - UCL https://indico.fnal.gov/conferenceDisplay.py?confld=13260

January 18, 2017 University College London

This is a 1-day meeting for the UK's Dark Matter community to meet up, present research, and discuss the latest progress in the field. Overview Scientific Programme January 18, 2017 (09:00-16:00) Dates: Call for Abstracts Timezone: Europe/London View my abstracts University College London Location: Wilkins Building Submit a new abstract Gower Street Timetable London WC1E 6BT Contribution List Room: Haldane Room Author index Chairs: Dr. Ghag, Chamkaur Dr. Dobson, James Book of abstracts Additional Support for this event is gratefully received from the Astroparticle Physics info: Registration Group of the IOP.

Registration Form

List of registrants

Support

18 January 2017 University College London Search