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> solves the strong CP problem
> makes up Dark Matter

—

AxionMinicluster

O(1) density contrast

collapse to dense clumps of axions
> comoving scale ~ 0.02 pc
> mass 107 2M,

> central density 104

PDM



Axion Haloscopes

Y a

® B

Radiocavity Experiments:

Convert axion DM into a photon signal
[Sikivie (1983)]

b P= gaw%BgVQ
a

> encounters: boost signal

> voids in the galactic halo: no signal

source:
http://depts.washington.edu/admx
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Peccei Quinn Mechanism

[Peccei, Quinn (1977); Weinberg (1978); Wilczek (1978)]
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> chiral, global, spontaneously broken U(1)pq o) — axion

> Axion: Goldstone boson of the U(1l)pq (@) = vee' va

> KSVZ model [Kim (1979); Shifman, Vainshtein, Zakharov (1980)]
New, heavy, electrically neutral quark, charged under U(1)pq

> DFSZ model [Dine,Fischler,Srednicki(1981); Zhitnitsky (1980)]

Two Higgs doublets, SM quarks and leptons are charged under U(1)pq



Symmetry Breaking Scales

Spontaneous breaking at a large scale v,

A 2 9)\?
Va(@) =5 (1o —2)
Explicit breaking leads to a CP conserving theory
V() = famg(T) (1 — cos (Npw 9))

O(x) = aq()a:)
0<0<2r

2 {oc T T > 100 MeV
= mg(T =0) T <100 MeV
model dependent:
[Borsanyi et al. (2016); Petrecaky et al. 88}653;] KSVZ: Npw =1
DFSZ: Npw =6



Cosmology of the Peccei Quinn Field

V(o) V()
¢ < > ¢
T® -7
spontaneous breaking axion mass becomes
of the PQ symmetry effective
¢ ' ; Temperature =
high Trq ~ A
temperatures ~ 10° — 102 QeV
Restored PQ Flat Axion Potential, CP-conserving

symmetry Broken PQ Symmetry Minimum



Vacuum Realignment

1

full tion of motion: 6 + 3H ()0 —
ull equation of motion +3H(t) R2(t)

V20 +m2(T)sin () = 0

I
homogeneous field, small displacement: 6 + 50 +m2(T)0 =0

ma(T) > H(T) :
0 o cos (mat)
ng < R73

after the axion mass saturates:

6 = 0; = const.

time

ma(T1) =3H(T1)

|Preskill, Wise, Wilczek (1983); Abott Sikivie (1983); Dine Fischler (1983)]



Initial Conditions

> pre-Inflation Scenario

Homogeneous initial value for 6;

> post-Inflation Scenario
Inhomogeneous 6; on scales of the Hubble radius at T
2
T

— average energy density: <622> =3

— local energy density: O(1) variations = Minicluster

Temperature —



Axion Strings

angular component 6 = a(z)/v, radial component |¢| /v,
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Axion Strings

angular component 6 = a(z)/v, radial component |¢| /v,



Domain Walls V(0) = f2m2(T) (1 — cos6)
me(Th) = 3H(Th)

> Field configuration, which interpolates between different
vacua

> Domain Wall Problem: Assume Npw = 1

v()/R1—0’94 /R1—10 /R1—13
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Simulations

> Density contrast from misalignment
[Kolb, Tkachev (1993); Zureck, Hogan, Quinn (2007)]:

> Significance of contribution from string and wall decay

[Hiramatsu, Kawasaki, Saikawa, Sekiguchi (2012); Kawasaki, Saikawa, Sekiguchi (2014);
Fleury Moore (2015 & 2016)]

> Do strings and walls add further inhomogeneities?
On which scales?

spontaneous PQ axion
breaking potential potential
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Density Contrast at z = 2.5

(some axions are still relativistic)
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Density Contrast at z = 2.5

(some axions are still relativistic)
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Density Contrast at z = 2.5

(some axions are still relativistic)
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Density Contrast at z = 2.5
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Density Contrast at z = 2.5

(some axions are still relativistic)
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atypical miniclusters
O(1) fluctuations on small
scales
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Density Contrast at z = 9.2
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Density Contrast at z = 9.2
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Density Contrast at z = 9.2
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Density Contrast at z = 9.2
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Density Contrast at z = 9.2
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Conclusions

> Numerical simulations for axion density contrast
> Including misalignment, strings and domain walls

> String dynamics lead to small Miniclusters,
not found before

> Probably a large hierarchy of Minicluster Masses

To-Do:
> more simulations
> virialisation and subsequent evolution

> observational consequences
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