

Status of dark matter searches at colliders

Sarah Alam Malik Imperial College London

	2011	2012	2015	2016
Energy	7 TeV	8 TeV	13 TeV	13 TeV
Integrated Iuminosity	5 fb ⁻¹	20 fb ⁻¹	~4 fb ⁻¹	40 fb ⁻¹

LHC

- The 2016 proton-proton
 physics run has ended (26th
 October).
- The final integrated luminosity
 ~40 fb⁻¹ in ATLAS and CMS
- The target for the whole year was 25 fb⁻¹!

LHC

- ◆Reached peak luminosity of ~ 1.4x10³⁴cm⁻²s⁻¹
 - 40% above design luminosity

Mean # of pp collisions in 2015: ~14

Imperial College

London

Mean # of pp collisions in 2016: ~24

LHC

• Expect ~40-50 fb⁻¹/year in 2017 and 2018 - total of ~ 130 fb⁻¹ by end of 2018

Thanks to efforts of accelerator division, LHC performing above expectation

Dark Matter at LHC

Dark Matter at LHC

Imperial College London

We don't know what nature has in store for us, cover broadest range of scenarios

Signatures for dark matter searches: Mono-X

Monojet/Mono-V search

Monojet/Mono-V search

One of the highest MET events in the analysis

✦ At the heart of all DM searches at LHC

Imperial College

London

- Challenging quantity to measure
- Sensitive to mis-measurements, detector effects, backgrounds
- Numerous algorithms developed to deal with anomalous noise producing fake MET and leading to high tail in MET
- After cleaning, simulation describes the data well

CMS EXO-16-037

(a)

11

Monojet/Mono-V search

Imperial College London

Excluding mediator mass of upto 2 TeV and DM mass up to 700 GeV

Mono-photon search

Imperial College London

Excluding mediator mass of upto 800 GeV and DM mass up to 300 GeV

Mono-Z search

Imperial College London

CMS EXO-16-038

Signature : Z(II) + MET

Excluding mediator mass of upto 600 GeV and DM mass up to 200 GeV

14

Monotop

monotop production via (a) neutral flavor-changing current and (b) heavy colored, charged scalar

Imperial College

ondon

Axial-vector mediator

Vector mediator

ICHEP summary of Mono-X searches

Imperial College London

ICHEP 2016 ICHEP 2016 $[200, 10^{-35}]$ 10^{-36} 0^{20} 10^{-37} $\begin{bmatrix} 10^{-33} \\ 10^{-34} \\ 0 \end{bmatrix} = \begin{bmatrix} 10^{-34} \\ 10^{-35} \\ 0 \end{bmatrix}$ **CMS** Preliminary **CMS** Preliminary Axial-vector med., Dirac DM Vector med., Dirac DM $g_a = 0.25, g_{DM} = 1$ $g_{_{_{_{_{}}}}} = 0.25, g_{_{DM}} = 1$ 10⁻³⁷ 10⁻³⁶ 10⁻³⁸ 10⁻³⁷ Pico 2L 10⁻³⁸ 10⁻³⁹ Pico 60 10⁻³⁹ CMS DM+Z₁[EXO-16-038] Super-K $\tau^+ \tau^-$ COMSLite 2015 10^{-40} 10⁻⁴⁰ CMS DM+y [EXO-16-039] CMS DM+Z₁₁ [EXO-16-038] IceCube T⁺1 CRESST-II 10⁻⁴¹∎ **10**⁻⁴¹ CMS DM+j/V_{aq} [EXO-16-037] CMS DM+y [EXO-16-039] 10⁻⁴² 10⁻⁴² 10⁻⁴³ 10^{-43} 10⁻⁴⁴ CMS DM+j/V_{aa} [EXO-16-037] LUX 2015 10^{-45} 10^{-44} PandaX 2016 10⁻⁴⁶ 10⁻⁴⁵ 10⁻⁴⁷ 10² 10^{3} 10 10³ 10² 10 m_{DM} [GeV] m_{DM} [GeV]

Search for narrow resonances decaying into a pair of jets, dijet mass spectrum smoothly falling distribution, no evidence of resonant production

EXO-16-032

Imperial College

London

low mass region

high mass region

Searches for the mediator

EXO-16-032

Imperial College

London

Mediator Mass [TeV]

Search for new resonances in a dijet system accompanied by a photon or jet Initial-State Radiation (ISR) excludes mediator masses starting from 200 GeV

Imperial College

London

DM Mass [TeV]

Imperial College

London

Higgs to invisible searches

DM mass [GeV]

Dark Matter at LHC

Dark Matter interpretation and comparison with DD

A lot of work/emphasis on interpretation of dark matter searches within framework of simplified models and their comparison with direct detection experiments

ATLAS-CMS Dark Matter Forum : Nov 2014 - Nov 2015
 LPCC Dark Matter Working Group : Nov 2015 - present

Report of	of the ATLAS/CMS Dark Matter Forum
June 22, 201	5
Nural Akchur Ece Akilli Un Juan Alcaraz (CIEMAT), S	rin Texas Tech University, USA liversité de Genève, DPNC, Switzerland : Maestre Centro de Investigaciones Energéticas Medioambientales y Tecnológicas ipain
Barbara Alva	CERN-LPCC-2016-00
	Recommendations on presenting LHC
	searches for missing transverse energy
	signals using simplified <i>s</i> -channel models
9	of dark matter
6v1 [hep-ex] 14 Mar 20	Antonio Boveia, ^{1,*} Oliver Buchmueller, ^{2,*} Giorgio Busoni, ³ Francesco D'Eramo, ⁴ Albert De Roeck, ^{1,5} Andrea De Simone, ⁶ Caterina Doglioni, ^{7,*} Matthew J. Dolan, ³ Marie-Helene Genest, ⁸ Kristian Hahn, ^{9,*} Ulrich Haisch, ^{10,11,*} Philip C. Harris, ¹ Jan Heisig, ¹² Valerio Ippolito, ¹³ Felix Kahlhoefer, ^{14,*} Valentin V. Khoze, ¹⁵ Suchita Kulkarni, ¹⁶ Greg Landsberg, ¹⁷ Steven Lowette, ¹⁸ Sarah Malik, ² Michelangelo Mangano, ^{11,*} Christopher McCabe, ^{19,*} Stephen Mrenna, ²⁰ Priscilla Pani, ²¹ Tristan du Pree, ¹ Antonio Riotto, ¹¹ David Salek, ^{19,22} Kai Schmidt-Hoberg, ¹⁴ William Shepherd, ²³ Tim M.P. Tait, ^{24,*} Lian-Tao Wang, ²⁵ Steven Worm ²⁶ and Kathryn Zurek ²⁷
Kiv:1603.0415	*Editor ¹ CERN, EP Department, CH-1211 Geneva 23, Switzerland ² High Energy Physics Group, Blackett Laboratory, Imperial College, Prince Consort Road London, SW7 2AZ, United Kingdom ³ ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, 3010, Australia ⁴ UC Santa Cruz and UC Santa Cruz Inst. Part. Phys. USA
ar	⁵ Antwerp University, B2610 Wilrijk, Belgium ⁶ SISSA and INFN Sezione di Trieste, via Bonomea 265, I-34136 Trieste, Italy

Summary

Imperial College

ondon

- Searches in place to look for DM producing a variety of signatures within top-down models like SUSY and bottom-up models like EFT and simplified models.
- Searches for mediators (dijets) also coming into play and constraining potential mediators coupling SM to DM
- * Constraints on SM Higgs decays to invisible particles , upper limit on branching fraction 0.24
- Combination of all these searches could play vital role in determining the characteristics of a SM-DM interaction in case of discovery.
- Combined ATLAS-CMS-theory effort to benchmark a set of simplified models and accurately elucidate complementarity with direct detection experiments
- But so far, no sign of WIMPs. Are we missing something? Are there interesting signatures we're not looking for? Expecting ~130 fb⁻¹ of data by end of 2018, presents many opportunities.