

3rd IBS-Multidark-IPPP Workshop, 22 November 2016

165 기초과학연구원 Institute for Basic Science

A Systematic Analysis of Semi-Annihilation

Yi Cai & Andrew Spray, 1611.xxxxx

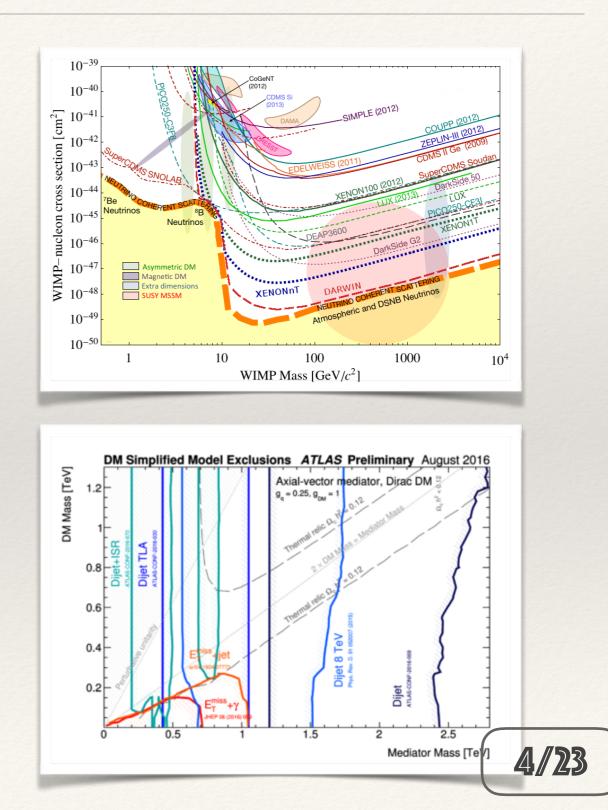
Outline

- 1. Introduction
 - (a) Semi-Annihilation
 - (b) Effective Operators
- 2. Effective Operators
 - (a) Dark Matter Only
 - (b) Dark Partner Models
- 3. Constraints
- 4. Conclusions

Introduction

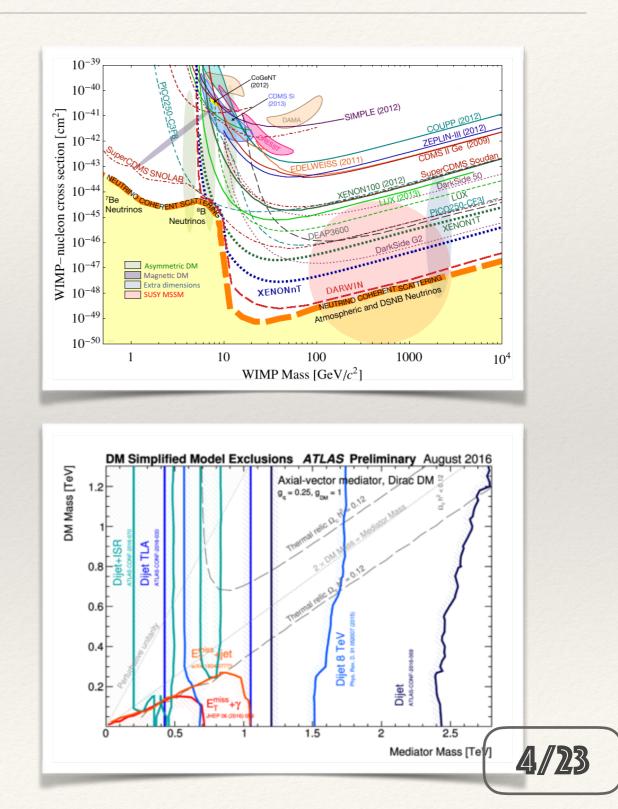
Constraints

- Bounds on thermal DM starting to get quite strong
- * Successful test of this idea!
- But we should be diligent in checking for loopholes
- What are our assumptions?
 What if we relax them?

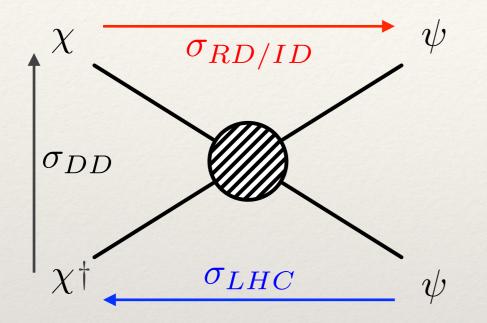


Constraints

- Bounds on thermal DM starting to get quite strong
- * Successful test of this idea!
- But we should be diligent in checking for loopholes
- What are our assumptions?
 What if we relax them?
- Very basic assumption:
 DM stabilised by Z₂ symmetry

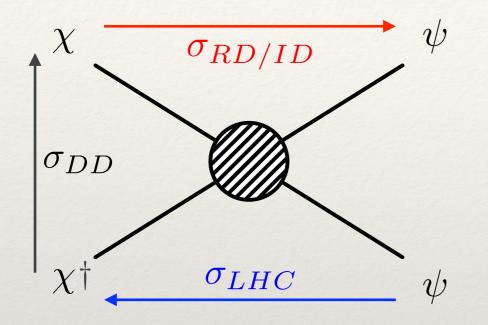


Semi-Annihilation

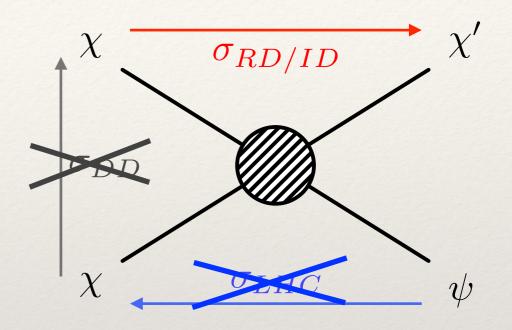


- Implies this familiar diagram
- Detection rates related to relic density calculation
- Leads to these strong bounds

Semi-Annihilation



- Implies this familiar diagram
- Detection rates related to relic density calculation
- Leads to these strong bounds



- * Not Generic! (D'Eramo & Thaler, 2010)
- * Non- Z_2 syms **>>** Semi-Annihilation:
 - Non-decay processes
 - Odd number of external dark states
- Irrelevant for colliders & DD

SA Phenomenology

- Relax bounds from terrestrial searches
- SA affects indirect (cosmic ray) searches
 - * Different kinematics $E = \frac{(m_{i_1} + m_{i_2})^2 + m_V^2 m_f^2}{2(m_{i_1} + m_{i_2})}$
 - * Dark sector cascades (from unstable dark states) χ

A number of studies so far

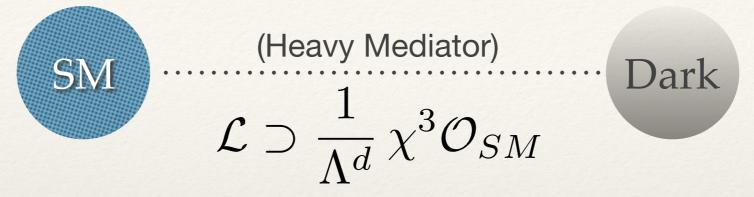
Bélanger et al, 1202.2962; D'Eramo et al, 1210.7817; Ko & Tang, 1402.6449; Aoki & Toma, 1405.5870; Berger et al, 1401.2246; Fonseca et al, 1507.08295; Cai & Spray, 1509.08481

Ψ

SM

But based on particular models; no general study so far

Exploring Model Space: EFTs



- Standard tool for model-independent studies
 - Two sectors: dark and visible
 - Integrate out mediators to generate EFT
- Easy to exhaust possibilities
- Direct connection to initial & final states
- Very applicable for Semi-annihilation:
 - Mediators must be more massive than DM
 - Freeze out & indirect detection non-relativistic so EFT valid

Goals

- 1. Construct "all" SA effective operators
 - * DM is stable gauge singlet, complex scalar or fermion, charged under exact global symmetry $D \neq Z_2$
 - * Consider 2 \rightarrow 2 processes with 3 dark sector fields
 - * List all operators up to d = 6 & some leading at d = 7
- 2. Derive constraints on UV scale Λ
 - Indirect searches assuming saturates relic density
 - Other constraints as relevant; on UV completion if possible

Effective Operators

Write down all operators consistent with assumptions

Scalar

*	Fermion

Operator	Definition
\mathcal{O}_{5U}^H	$s^{ijk}\phi_i\phi_j\phi_kH^\dagger H$
\mathcal{O}_{7U}^Z	$(x^{ikj} + y^{ijk}) \phi_i \phi_j (\partial^\mu \phi_k) (iH^\dagger \overleftrightarrow{D_\mu} H)$
\mathcal{O}_{7U}^{H}	$(x^{ikj} + y^{ijk}) (\partial_{\mu}\phi_i)(\partial^{\mu}\phi_j)\phi_k H^{\dagger}H$

* Both

Operator	Definition
$\mathcal{O}_{6U}^{LH^{\dagger}}$	$s^{ij} \phi_i \phi_j \left((L^{\dagger} \tilde{H}) \bar{\xi}^{\dagger} \right)$
\mathcal{O}_{7U}^L	$a^{ij}\phi_i(\partial_\mu\phi_j)\left((L^\dagger\tilde{H})\bar{\sigma}^\mu\eta\right)$
\mathcal{O}_{6U}^{HS}	$s^{ij}ar\chi^c_i\chi_j\phiH^\dagger H$
\mathcal{O}_{6U}^{HP}	$s^{ij}ar{\chi}^c_i\gamma^5\chi_j\phiH^\dagger H$
$\breve{\mathcal{O}}^B_{6U}$	$a^{ij}ar\chi^c_i\sigma^{\mu u}\chi_j\phireve B_{\mu u}$
\mathcal{O}_{7U}^{ZV}	$a^{ij}\bar{\chi}^c_i\gamma^\mu\chi_j\phi\left(iH^\dagger\overleftrightarrow{D_\mu}H ight)$
\mathcal{O}_{7U}^{ZA}	$s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \phi \left(i H^\dagger \overleftrightarrow{D_\mu} H \right)$
\mathcal{O}_{7U}^{HV}	$a^{ij}\bar{\chi}^c_i\gamma^\mu\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^\dagger H) ight)$
\mathcal{O}_{7U}^{HA}	$s^{ij}\bar{\chi}_i^c\gamma^\mu\gamma^5\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^\dagger H)\right)$

Operator	Definition
\mathcal{O}_{7U}^{LL}	$\left[\left(s^{ijk} + y^{ijk} + x^{ikj}\right)\left(\eta_i\eta_j\right)\left(\left(L^{\dagger}\tilde{H}\right)\bar{\xi}_k^{\dagger}\right)\right]$
\mathcal{O}_{7U}^{LR}	$\left(y^{ijk} + x^{ikj}\right) \left(\bar{\xi}_i^{\dagger} \bar{\xi}_j^{\dagger}\right) \left((L^{\dagger} \tilde{H}) \bar{\xi}_k^{\dagger} \right)$

Write down all operators consistent with assumptions

Scalar

	- ·
**	Fermion

Operator	Definition
\mathcal{O}_{5U}^{H}	$s^{ijk}\phi_i\phi_j\phi_kH^\dagger H$
${\cal O}^Z_{7U}$	$(x^{ikj} + y^{ijk}) \phi_i \phi_j (\partial^\mu \phi_k) (iH^\dagger D^{\prime}_\mu H)$
${\cal O}^H_{7U}$	$(x^{ikj} + y^{ijk}) (\partial_{\mu}\phi_i)(\partial^{\mu}\phi_j)\phi_k H^{\dagger}H$

Operator	Definition
\mathcal{O}_{7U}^{LL}	$\left(s^{ijk} + y^{ijk} + x^{ikj}\right)\left(\eta_i\eta_j\right)\left(\left(L^{\dagger}\tilde{H}\right)\bar{\xi}_k^{\dagger}\right)$
\mathcal{O}_{7U}^{LR}	$\left(y^{ijk} + x^{ikj}\right) \left(\bar{\xi}_i^{\dagger} \bar{\xi}_j^{\dagger}\right) \left((L^{\dagger} \tilde{H}) \bar{\xi}_k^{\dagger} \right)$

* Both

Operator	Definition
$\mathcal{O}_{6U}^{LH^{\dagger}}$	$s^{ij} \phi_i \phi_j \left((L^{\dagger} \tilde{H}) \bar{\xi}^{\dagger} \right)$
\mathcal{O}_{7U}^L	$a^{ij}\phi_i(\partial_\mu\phi_j)\left((L^{\dagger}\tilde{H})\bar{\sigma}^\mu\eta\right)$
\mathcal{O}_{6U}^{HS}	$s^{ij}ar\chi^c_i\chi_j\phiH^\dagger H$
\mathcal{O}_{6U}^{HP}	$s^{ij}ar{\chi}^c_i\gamma^5\chi_j\phiH^\dagger H$
$\breve{\mathcal{O}}^B_{6U}$	$a^{ij} \bar{\chi}^c_i \sigma^{\mu u} \chi_j \phi \breve{B}_{\mu u}$
\mathcal{O}_{7U}^{ZV}	$a^{ij}\bar{\chi}_i^c\gamma^\mu\chi_j\phi\left(iH^\dagger\overleftrightarrow{D_\mu}H\right)$
\mathcal{O}_{7U}^{ZA}	$s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \phi \left(i H^\dagger \overleftrightarrow{D_\mu} H \right)$
\mathcal{O}_{7U}^{HV}	$a^{ij}\bar{\chi}^c_i\gamma^\mu\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^\dagger H)\right)$
\mathcal{O}_{7U}^{HA}	$s^{ij}\bar{\chi}_i^c\gamma^\mu\gamma^5\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^\dagger H)\right)$

Small number of operators; Only TWO for unique DM

Write down all operators consistent with assumptions

Scalar

Operator	Definition
$- \mathcal{O}_{5U}^H$	$s^{ijk}\phi_i\phi_j\phi_kH^\dagger H$
\mathcal{O}^Z_{7U}	$\left (x^{ikj} + y^{ijk}) \phi_i \phi_j (\partial^\mu \phi_k) (iH^\dagger \overrightarrow{D_\mu} H) \right $
\mathcal{O}_{7U}^H	$(x^{ikj} + y^{ijk}) (\partial_{\mu}\phi_i)(\partial^{\mu}\phi_j)\phi_k H^{\dagger}H$

* Both

Operator	Definition
$\mathcal{O}_{6U}^{LH^\dagger}$	$s^{ij} \phi_i \phi_j \left((L^{\dagger} \tilde{H}) \bar{\xi}^{\dagger} \right)$
\mathcal{O}_{7U}^L	$a^{ij}\phi_i(\partial_\mu\phi_j)\left((L^\dagger\tilde{H})\bar{\sigma}^\mu\eta\right)$
$- \mathcal{O}_{6U}^{HS}$	$s^{ij} ar{\chi}^c_i \chi_j \phi H^\dagger H$
$= \mathcal{O}_{6U}^{\check{H}P}$	$s^{ij} ar{\chi}^c_i \gamma^5 \chi_j \phi H^\dagger H$
$\breve{\mathcal{O}}^B_{6U}$	$a^{ij} \bar{\chi}^c_i \sigma^{\mu u} \chi_j \phi \breve{B}_{\mu u}$
${\cal O}_{7U}^{ZV}$	$a^{ij}\bar{\chi}_i^c\gamma^\mu\chi_j\phi\left(iH^\dagger\overleftrightarrow{D_\mu}H\right)$
\mathcal{O}_{7U}^{ZA}	$s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \phi \left(i H^\dagger \overleftrightarrow{D_\mu} H \right)$
$-\mathcal{O}_{7U}^{HV}$	$a^{ij}\bar{\chi}_i^c\gamma^\mu\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^\dagger H)\right)$
$- \mathcal{O}_{7U}^{HA}$	$s^{ij}\bar{\chi}_i^c\gamma^\mu\gamma^5\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^{\dagger}H)\right)$

Operator	Definition
\mathcal{O}_{7U}^{LL}	$\left(s^{ijk} + y^{ijk} + x^{ikj}\right) \left(\eta_i \eta_j\right) \left((L^{\dagger} \tilde{H}) \bar{\xi}_k^{\dagger} \right)$
\mathcal{O}^{LR}_{7U}	$(y^{ijk} + x^{ikj}) (\bar{\xi}_i^{\dagger} \bar{\xi}_i^{\dagger}) ((L^{\dagger} \tilde{H}) \bar{\xi}_k^{\dagger})$

Small number of operators;
 Only TWO for unique DM

Fermion

* Only neutral SM: h, Z, γ , ν

Write down all operators consistent with assumptions

Scalar

Operator	Definition
\mathcal{O}_{5U}^H	$s^{ijk}\phi_i\phi_j\phi_k H^{\dagger}H$
\mathcal{O}_{7U}^Z	$(x^{ikj} + y^{ijk}) \phi_i \phi_j (\partial^\mu \phi_k) (iH^\dagger \overleftrightarrow{D_\mu} H)$
\mathcal{O}_{7U}^H	$(x^{ikj} + y^{ijk}) (\partial_{\mu}\phi_i)(\partial^{\mu}\phi_j)\phi_k H^{\dagger}H$

* Both

Operator	Definition
$\mathcal{O}_{6U}^{LH^\dagger}$	$s^{ij} \phi_i \phi_j \left((L^{\dagger} \tilde{H}) \bar{\xi}^{\dagger} \right)$
\mathcal{O}_{7U}^L	$a^{ij}\phi_i(\partial_\mu\phi_j)\left((L^{\dagger}\tilde{H})\bar{\sigma}^\mu\eta\right)$
\mathcal{O}_{6U}^{HS}	$s^{ij} ar{\chi}^c_i \chi_j \phi H^\dagger H$
\mathcal{O}_{6U}^{HP}	$s^{ij}ar{\chi}^c_i\gamma^5\chi_j\phiH^\dagger H$
$- \check{\mathcal{O}}^B_{6U}$	$a^{ij}\bar{\chi}^c_i\sigma^{\mu u}\chi_j\phi\breve{B}_{\mu u}$
$- \mathcal{O}_{7U}^{ZV}$	$a^{ij}\bar{\chi}_i^c\gamma^\mu\chi_j\phi\left(iH^\dagger\overleftrightarrow{D_\mu}H\right)$
$- \mathcal{O}_{7U}^{ZA}$	$s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \phi \left(i H^\dagger \overleftrightarrow{D_\mu} H \right)$
\mathcal{O}_{7U}^{HV}	$a^{ij}\bar{\chi}^c_i\gamma^\mu\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^\dagger H)\right)$
\mathcal{O}_{7U}^{HA}	$s^{ij}\bar{\chi}_i^c\gamma^\mu\gamma^5\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^{\dagger}H)\right)$

- $\begin{array}{|c|c|} \hline \textbf{Operator} & \textbf{Definition} \\ \hline \mathcal{O}_{7U}^{LL} & \left(s^{ijk} + y^{ijk} + x^{ikj}\right) \left(\eta_i \eta_j\right) \left((L^{\dagger} \tilde{H}) \bar{\xi}_k^{\dagger}\right) \\ \hline \mathcal{O}_{7U}^{LR} & \left(y^{ijk} + x^{ikj}\right) \left(\bar{\xi}_i^{\dagger} \bar{\xi}_j^{\dagger}\right) \left((L^{\dagger} \tilde{H}) \bar{\xi}_k^{\dagger}\right) \\ \end{array}$
- Small number of operators;
 Only TWO for unique DM

Fermion

* Only neutral SM: h, Z, γ , ν

Write down all operators consistent with assumptions

Scalar

*	Fermion

Operator

Operator	Definition
\mathcal{O}_{5U}^H	$s^{ijk}\phi_i\phi_j\phi_kH^\dagger H$
\mathcal{O}_{7U}^Z	$\left(x^{ikj} + y^{ijk})\phi_i\phi_j(\partial^\mu\phi_k)\left(iH^\dagger\overleftrightarrow{D_\mu}H\right)\right)$
\mathcal{O}_{7U}^H	$(x^{ikj} + y^{ijk}) (\partial_{\mu}\phi_i)(\partial^{\mu}\phi_j)\phi_k H^{\dagger}H$

*	Both	
*	DUII	

Operator	Definition
$\mathcal{O}_{6U}^{LH^\dagger}$	$s^{ij} \phi_i \phi_j \left((L^{\dagger} \tilde{H}) \bar{\xi}^{\dagger} \right)$
\mathcal{O}_{7U}^L	$a^{ij}\phi_i(\partial_\mu\phi_j)\left((L^{\dagger}\tilde{H})\bar{\sigma}^\mu\eta\right)$
\mathcal{O}_{6U}^{HS}	$s^{ij}ar\chi^c_i\chi_j\phiH^\dagger H$
\mathcal{O}_{6U}^{HP}	$s^{ij} \bar{\chi}^c_i \gamma^5 \chi_j \phi H^\dagger H$
$- \check{\mathcal{O}}^B_{6U}$	$a^{ij} \bar{\chi}^c_i \sigma^{\mu u} \chi_j \phi \breve{B}_{\mu u}$
\mathcal{O}_{7U}^{ZV}	$a^{ij}\bar{\chi}^c_i\gamma^\mu\chi_j\phi\left(iH^\dagger\overleftrightarrow{D_\mu}H\right)$
\mathcal{O}_{7U}^{ZA}	$s^{ij}\bar{\chi}^c_i\gamma^\mu\gamma^5\chi_j\phi\left(iH^\dagger\overleftrightarrow{D_\mu}H\right)$
\mathcal{O}_{7U}^{HV}	$a^{ij}\bar{\chi}^c_i\gamma^\mu\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^\dagger H)\right)$
\mathcal{O}_{7U}^{HA}	$\left s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \left(\phi \overleftrightarrow{\partial_\mu} (H^\dagger H) \right) \right $

 $\begin{array}{|c|c|c|c|c|} \mathcal{O}_{7U}^{LL} & \left(s^{ijk} + y^{ijk} + x^{ikj}\right) \left(\eta_i \eta_j\right) \left(\left(L^{\dagger} \tilde{H}\right) \bar{\xi}_k^{\dagger}\right) \\ \mathcal{O}_{7U}^{LR} & \left(y^{ijk} + x^{ikj}\right) \left(\bar{\xi}_i^{\dagger} \bar{\xi}_j^{\dagger}\right) \left(\left(L^{\dagger} \tilde{H}\right) \bar{\xi}_k^{\dagger}\right) \\ \end{array}$

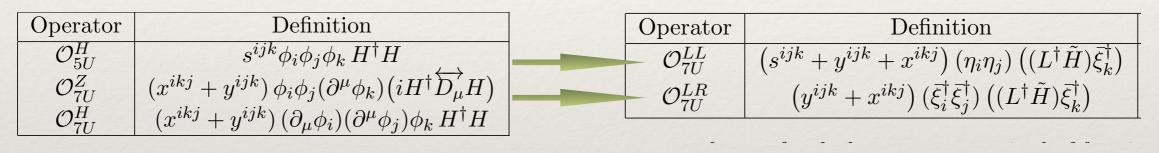
Definition

- Small number of operators;
 Only TWO for unique DM
- * Only neutral SM: h, Z, γ , ν

Write down all operators consistent with assumptions

Scalar

Fermion



* Both

Operator	Definition
$\mathcal{O}_{6U}^{LH^\dagger}$	$s^{ij} \phi_i \phi_j \left((L^{\dagger} \tilde{H}) \bar{\xi}^{\dagger} \right)$
\mathcal{O}_{7U}^L	$a^{ij}\phi_i(\partial_\mu\phi_j)\left((L^{\dagger}\tilde{H})\bar{\sigma}^\mu\eta\right)$
\mathcal{O}_{6U}^{HS}	$s^{ij}ar\chi^c_i\chi_j\phiH^\dagger H$
\mathcal{O}_{6U}^{HP}	$s^{ij} \bar{\chi}^c_i \gamma^5 \chi_j \phi H^\dagger H$
$\check{\mathcal{O}}^B_{6U}$	$a^{ij}\bar{\chi}^c_i\sigma^{\mu u}\chi_j\phi\breve{B}_{\mu u}$
\mathcal{O}_{7U}^{ZV}	$a^{ij}\bar{\chi}^c_i\gamma^\mu\chi_j\phi\left(iH^\dagger\overleftrightarrow{D_\mu}H\right)$
\mathcal{O}_{7U}^{ZA}	$s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \phi \left(i H^\dagger \overleftrightarrow{D_\mu} H \right)$
\mathcal{O}_{7U}^{HV}	$a^{ij}\bar{\chi}^c_i\gamma^\mu\chi_j\left(\phi\overleftrightarrow{\partial_\mu}(H^\dagger H)\right)$
\mathcal{O}_{7U}^{HA}	$s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \left(\phi \overleftrightarrow{\partial_\mu} (H^\dagger H) \right)$

- Small number of operators;
 Only TWO for unique DM
- * Only neutral SM: h, Z, γ , ν
- $\ast\,$ (Almost) all lead to 2 \rightarrow 3 SA
- Very simple model space

Write down all operators consistent with assumptions

Scalar

Operator	Definition
\mathcal{O}_{5U}^H	$s^{ijk}\phi_i\phi_j\phi_kH^\dagger H$
\mathcal{O}_{7U}^Z	$(x^{ikj} + y^{ijk}) \phi_i \phi_j (\partial^\mu \phi_k) (iH^\dagger \overleftrightarrow{D_\mu} H)$
\mathcal{O}_{7U}^{H}	$(x^{ikj} + y^{ijk}) (\partial_{\mu}\phi_i)(\partial^{\mu}\phi_j)\phi_k H^{\dagger}H$

* Both

Operator	Definition
$\mathcal{O}_{6U}^{LH^{\dagger}}$	$s^{ij} \phi_i \phi_j \left((L^{\dagger} \tilde{H}) \bar{\xi}^{\dagger} \right)$
\mathcal{O}_{7U}^L	$a^{ij}\phi_i(\partial_\mu\phi_j)\left((L^{\dagger}\tilde{H})\bar{\sigma}^\mu\eta\right)$
\mathcal{O}_{6U}^{HS}	$s^{ij}ar\chi^c_i\chi_j\phiH^\dagger H$
\mathcal{O}_{6U}^{HP}	$s^{ij}ar{\chi}^c_i\gamma^5\chi_j\phiH^\dagger H$
$\breve{\mathcal{O}}^B_{6U}$	$a^{ij}ar{\chi}^c_i\sigma^{\mu u}\chi_j\phireve{B}_{\mu u}$
\mathcal{O}_{7U}^{ZV}	$a^{ij}\bar{\chi}_i^c\gamma^\mu\chi_j\phi\left(iH^\dagger\overleftrightarrow{D_\mu}H\right)$
\mathcal{O}_{7U}^{ZA}	$\left s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \phi \left(i H^\dagger \overleftrightarrow{D_\mu} H \right) \right $
\mathcal{O}_{7U}^{HV}	$a^{ij}\bar{\chi}_i^c\gamma^\mu\chi_j\left(\phi\overleftrightarrow{\partial}_\mu(H^\dagger H)\right)$
\mathcal{O}_{7U}^{HA}	$\left s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \left(\phi \overleftrightarrow{\partial_\mu} (H^{\dagger} H) \right) \right $

- OperatorDefinition \mathcal{O}_{7U}^{LL} $\left(s^{ijk} + y^{ijk} + x^{ikj}\right) \left(\eta_i \eta_j\right) \left((L^{\dagger} \tilde{H}) \bar{\xi}_k^{\dagger}\right)$ \mathcal{O}_{7U}^{LR} $\left(y^{ijk} + x^{ikj}\right) \left(\bar{\xi}_i^{\dagger} \bar{\xi}_j^{\dagger}\right) \left((L^{\dagger} \tilde{H}) \bar{\xi}_k^{\dagger}\right)$
- Small number of operators;
 Only TWO for unique DM

Fermion

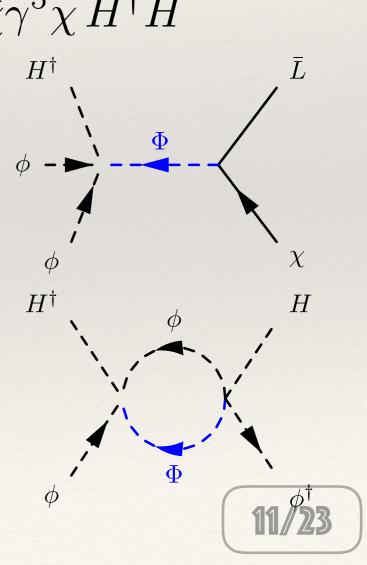
- * Only neutral SM: h, Z, γ , ν
- $\ast\,$ (Almost) all lead to 2 \rightarrow 3 SA
- Very simple model space

Higgs Portals

- * We have found one operator at d = 5, four at d = 6
- Compare this to the always-allowed Higgs portals:

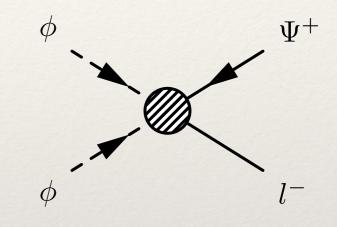
 $\mathcal{O}_{\phi H} = \lambda_{\phi H} \,\phi^{\dagger} \phi \,H^{\dagger} H \,, \qquad \mathcal{O}_{\chi H} = \frac{c_{\chi H}}{\Lambda} \,\bar{\chi} \gamma^{5} \chi \,H^{\dagger} H$

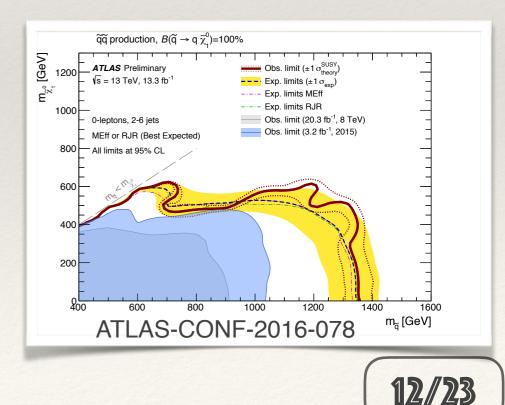
- * If SA is to dominate, these must be suppressed
 - SA (Portal) generated at tree-level (one loop)
 - ♦ UV scale $\approx 5 10$ TeV
- Constrains UV particle content:
 - No gauge- and D-singlet scalars
 - No EW doublets in conjugate D-rep, same spin as DM



Dark Partners

- Dark Partners: relatively light unstable states
 - Allows SA to charged/coloured objects
 - Allows lower-dimensional operators
- Dark Partners must decay without breaking DM symmetry
- Important for colliders
 - * $m_{DP} \gtrsim 1-2$ TeV (coloured) or 200-500 GeV (charged)
 - * Implied bounds on DM, $m_{DM} > \frac{1}{2} \; m_{DP}$





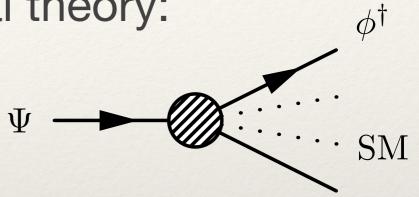
Decay Operators

- * Dark partner cannot decay in minimal theory:
 - * $\Psi \to \phi \phi + SM$ kinematically forbidden
 - * Need new coupling $\Psi \to \phi^{\dagger} + SM$
- Additional model dependence
 - * Minimal allowed by symmetries? Or similar to SA operator?
 - * Fermion DM particularly problematic: 2-body decays forbidden
- * Lower bound on decay rate from BBN $\tau \lesssim 0.05 \,\mathrm{s}, \qquad \therefore c_{dec} \gtrsim 10^{-11} (4\pi)^{n-2} \left(\frac{\Lambda}{m_{DP}}\right)^{D_{dec}-4}$



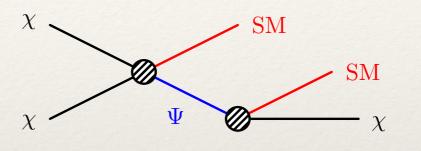
Decay Operators

- * Dark partner cannot decay in minimal theory:
 - * $\Psi \to \phi \phi + SM$ kinematically forbidden
 - * Need new coupling $\Psi \to \phi^{\dagger} + SM$
- Additional model dependence
 - * Minimal allowed by symmetries? Or similar to SA operator?
 - * Fermion DM particularly problematic: 2-body decays forbidden
- * Lower bound on decay rate from BBN $\tau \lesssim 0.05 \,\mathrm{s}, \qquad \therefore c_{dec} \gtrsim 10^{-11} (4\pi)^{n-2} \left(\frac{\Lambda}{m_{DP}}\right)^{D_{dec}-4}$

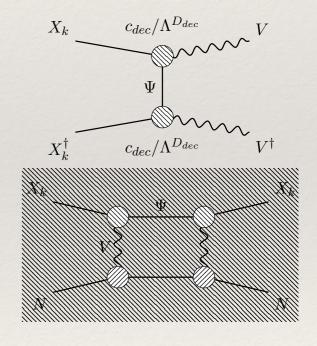


New Phenomenology

- Prompt decays contribute to cosmic ray signals
 - Function of dark partner mass
 - Depends on decay mode



- * Lead to upper bounds on Wilson coefficient:
 - DM annihilation through t-channel Dark partner
 - DM-Dark partner coannihilation
 - Enhanced contributions to direct detection
 - Possible DM-Dark partner mixing
- * General bound $c_{dec} \leq 0.1 0.01$



Operator List

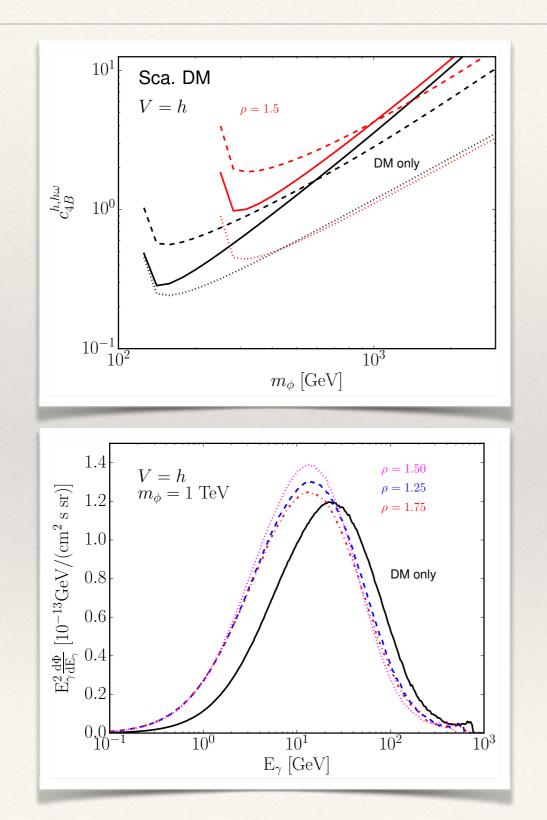
Operator	Definition	ω/ψ	
\mathcal{O}_{4U}^H	$s^{ij} \phi_i \phi_j \left(H^\dagger \omega ight)$	$(1, 2, \frac{1}{2})$	
$\mathcal{O}_{5U_{1}}^{ H _{1}^{2}}$	$s^{ij} \phi_i \phi_j \omega H^\dagger H$	(1, 1, 0)	
$\mathcal{O}_{5U}^{ H _3^2}$	$s^{ij} \phi_i \phi_j \omega^a H^\dagger \sigma^a H$	(1, 3, 0)	
$\mathcal{O}_{5U}^{H^2}$	$s^{ij} \phi_i \phi_j \omega^a H^\dagger \sigma^a \tilde{H}$	(1, 3, 1)	-
\mathcal{O}_{6U}^{Hd}	$s^{ij}\phi_i\phi_j(H^{\dagger}\omega)(H^{\dagger}H)$	$(1, 2, \frac{1}{2})$	
\mathcal{O}_{6U}^{Hq}	$s^{ij} \phi_i \phi_j \omega^{IJK} H_I^{\dagger} H_J^{\dagger} \tilde{H}_K^{\dagger}$	$(1, 4, \frac{1}{2})$	
$\mathcal{O}_{6U}^{H^3}$	$s^{ij} \phi_i \phi_j \omega^{IJK} H_I^{\dagger} H_J^{\dagger} H_K^{\dagger}$	$(1, 4, \frac{3}{2})$	
$\mathcal{O}_{6U}^{H\partial^2}$	$s^{ij} \left(\partial_{\mu}\phi_{i}\right) \left(\partial^{\mu}\phi_{j}\right) \left(H^{\dagger}\omega\right)$	$(1, 2, \frac{1}{2})$	
$\mathcal{O}_{6U}^{H\partial D}$	$a^{ij}\phi_i(\partial_\mu\phi_j)\left(H^\dagger\overleftrightarrow{D_\mu}\omega\right)$	$(1, 2, \frac{1}{2})$	
$\mathcal{O}_{6U}^{HD^2}$	$s^{ij}\phi_i\phi_j(D^{\mu}H)^{\dagger}(D_{\mu}\omega)$	$(1, 2, \frac{1}{2})$	
${\cal O}_{5U}^{ar{f}\psi}$	$s^{ij}\phi_i\phi_jar f\zeta$	$(ar{R}_{ar{f}},1,-Y_{ar{f}})$	
$\mathcal{O}_{5U}^{F\psi}$	$s^{ij} \phi_i \phi_j F^{\dagger} \bar{v}^{\dagger}$	$(R_F, 2, Y_F)$	
$\mathcal{O}_{6U}^{ar{f}H\psi}$	$s^{ij} \phi_i \phi_j ar{f}(ilde{H}^\dagger \zeta)$	$(\bar{R}_{\bar{f}}, 2, -Y_{\bar{f}} - \frac{1}{2})$	
$\mathcal{O}_{6U}^{ ilde{f}H^\dagger\psi}$	$s^{ij} \phi_i \phi_j ar{f}(H^\dagger \zeta)$	$(\bar{R}_{\bar{f}}, 2, -Y_{\bar{f}} + \frac{1}{2})$	1
$\mathcal{O}_{6U}^{FH\psi_1}$	$s^{ij} \phi_i \phi_j \left(F^{\dagger} H \right) \bar{v}^{\dagger}$	$(R_F, 1, Y_F - \frac{1}{2})$	
$\mathcal{O}_{6U}^{FH^{\dagger}\psi_1}$	$s^{ij} \phi_i \phi_j (F^\dagger \tilde{H}) \bar{v}^\dagger$	$(R_F, 1, Y_F + \frac{1}{2})$	
$\mathcal{O}_{6U}^{FH\psi_3}$	$s^{ij} \phi_i \phi_j \left(F^{\dagger} \sigma^a H \right) \bar{v}^{a\dagger}$	$(R_F, 3, Y_F - \frac{1}{2})$	
$\mathcal{O}_{6U_{\pm 2}}^{FH^{\dagger}\psi_3}$	$s^{ij} \phi_i \phi_j \left(F^{\dagger} \sigma^a \tilde{H} \right) \bar{v}^{a\dagger}$	$(R_F, 3, Y_F + \frac{1}{2})$	
$\mathcal{O}_{6U}^{ar{f}\partial}$	$a^{ij}\phi_i(\partial_\mu\phi_j)ar{f}\sigma^\muar{v}^\dagger$	$(ar{R}_{ar{f}},1,-Y_{ar{f}})$	
$\mathcal{O}_{6U}^{F\partial}$	$a^{ij}\phi_i(\partial_\mu\phi_j)F^\daggerar\zeta^\mu\eta$	$(R_F,2,Y_F)$	

- Possibilities vastly increased
- Scalar DM plus
 - Scalar dark partner (top)
 - Fermion dark partner (bottom)
 - One renormalisable operator
- Multiple d = 5 operators
- Situation for fermion and scalar-fermion DM similar
- * All SM final states possible
 - * γ/g require multi-component DM

Constraints

- * Derive limits from γ -ray, positron & neutrino telescopes
- Additional assumptions:
 - DM is single component
 - Only one operator is relevant
 - Fix dark partner-DM mass ratio to 1.5
- Set limits on EW broken phase operators
 - Direct connection to amplitudes
 - * More easily applicable to general models

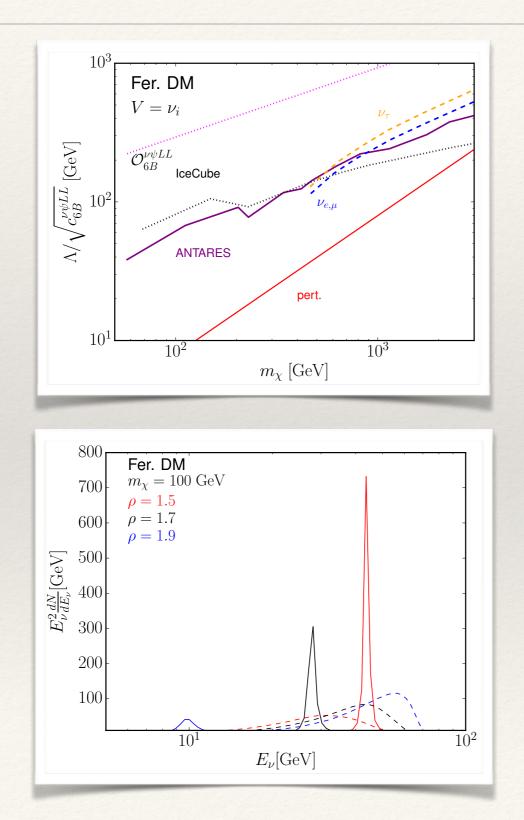
Unique Scalar Limits



* Bound on dimension-4 ops $\frac{1}{6} c_{4B}^{h} \phi^{3} h \& \frac{1}{2} c^{h\omega} \phi^{2} \omega h$

- * Regions above lines excluded:
 - Solid: Fermi (current)
 - Dashed: CTA (projected)
- Dots: relic density just from SA
- Bottom: γ-ray spectra:
 - * Solid: DM alone
 - Other: varied dark partner masses

Unique Fermion Limits

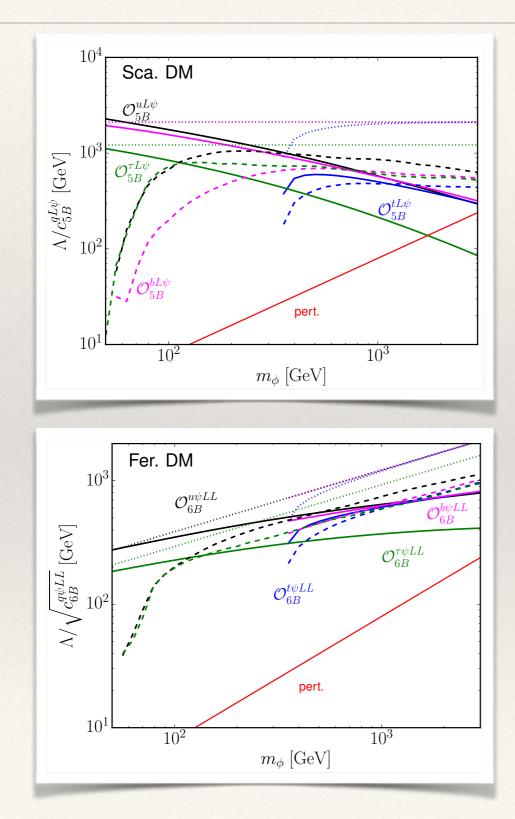


- * Bounds on dimension-6 ops $\frac{1}{6\Lambda^2} \chi^3 \nu \quad \& \quad \frac{1}{2\Lambda^2} (\chi \chi) (\bar{\nu} \psi)$
- Regions below lines exluded
 - Red: perturbativity (EFT)
 - Solid: as marked (current)
 - Dashed: CTA (projected)
- * Dots: relic density from SA alone
- Bottom: v spectrum
 - Solid: SA neutrinos
 - Dashed: Dark partner decay neutrinos

19/23

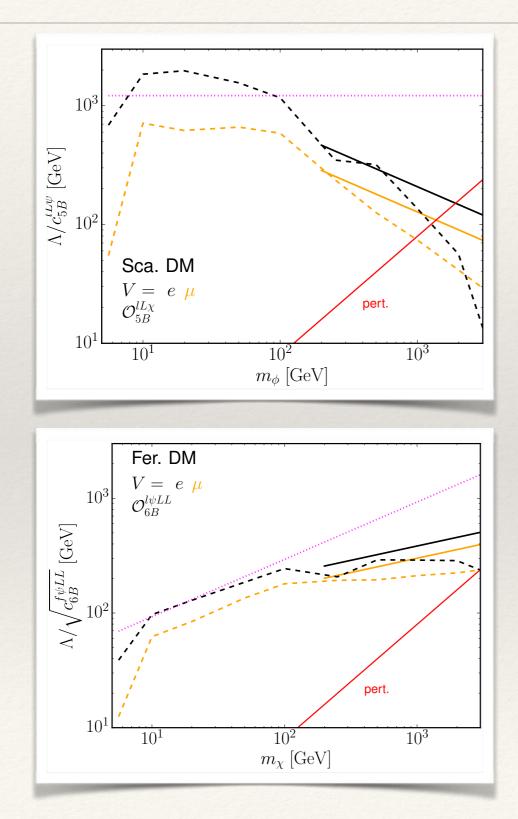
Choose DP mass to suppress latter

Hadronic Dark Partner Limits



- * Top: bounds on d = 5 ops $\frac{1}{2\Lambda} \phi^2 \bar{f} \psi$ * Bottom: bounds on d = 6 ops
 - tom: bounds on d = 6 o $\frac{1}{2\Lambda^2} (\chi \chi) \, \bar{f} \psi$
- Regions below lines exluded
 - Red: perturbativity (EFT)
 - Solid: Fermi (current)
 - Dashed: CTA (projected)
- * Dots: relic density from SA alone
- LHC limits not shown

Leptonic Dark Partner Limits



- * Top: bounds on d = 5 ops $\frac{1}{2\Lambda} \phi^2 \bar{f} \psi$ * Bottom: bounds on d = 6 ops
 - $\frac{1}{2\Lambda^2} (\chi \chi) \, \bar{f} \psi$
- Regions below lines exluded
 - Red: perturbativity (EFT)
 - Solid: AMS (current)
 - Dashed: CMB (current)
- * Dots: relic density from SA alone
- As of 6 hours ago!

Conclusions

Conclusions

- Semi-Annihilation is a generic feature of dark matter
- Constructed all SA operators up to dimension 6
- Model space for DM-only theories is small
- Dark partners lead to more varied phenomenology at cost of dependence on dark partner decay modes
- Derived limits & prospects from cosmic ray searches;
 close to relic cross section in some fermionic channels
- Many questions remain, e.g. UV completions