

at SNOLAB

Wolfgang Rau Queen's University

for the <u>Super</u>CDMS Collaboration

SuperCDMS Collaboration

California Institute of Technology CNRS/LPN **Durham University** Fermi National Accelerator Laboratory NISER NIST **Northwestern University** PNNL **Queen's University** Santa Clara University **SLAC/KIPA** South Dakota School of Mines & Technology SNOLAB/Laurentian University Texas A&M Southern Methodist University **Stanford University** University of British Columbia/TRIUMF University of California, Berkeley **University of Florida** University of Colorado Denver University of Evansville University of Minnesota University of South Dakota **University of Toronto**

Overview Su	uperCDMS	CUTE	Analysis		3
-------------	----------	------	----------	--	---

SuperCDMS

Detector technology Detector generations Experimental Setup Goals for SNOLAB Status

Analysis Projects Detector Calibration Backgrounds Rare interactions Dark Matter searches

CUTE

Motivation Design Status

Conclusions

Overview SuperCDMS CUTE Analysis

Background dilution with Luke Effect

Overview SuperCDMS CUTE Analysis

Background dilution with Luke Effect

SuperCDMS

Overview

Analysis

Background dilution with Luke Effect

CUTE

CUTE

Analysis

Implementation (Soudan setup)

- Stack detectors (3) to mount ("tower")
- 5 towers deployed in cryostat (~9 kg Ge)
- Shielded with PE (for neutrons), Pb (gammas) and muon veto (cosmic radiation)
- Located at Soudan Underground Lab (Minnesota) to shield from cosmic radiation (~700 m below ground)

CUTE

Analysis

Implementation (Soudan setup)

- Stack detectors (3) to mount ("tower")
- 5 towers deployed in cryostat (~9 kg Ge)
- Shielded with PE (for neutrons), Pb (gammas) and muon veto (cosmic radiation)
- Located at Soudan Underground Lab (Minnesota) to shield from cosmic radiation (~700 m below ground)

SNOLAB

SuperCDMS

CUTE

Analysis

15

Goal

SuperCDMS

CUTE

Analysis

Goal

Overview SuperCDMS CUTE Analysis 17

Schedule and Funding

- Funding approved (CFI: 2012, DOE/NSF: 2014)
- DOE/NSF review process: First step passed (CD 1: conceptual design review) Next step in fall 2017: technical design review/ready for construction (CD 2/3)
- Reviews at SNOLAB: passed Gateway 1 (space allocation) in fall 2015; GW2a (early construction) in December 2016 / GW2 (construction) summer 2017
- Total project costs ~\$30M

Development

- Detectors: larger crystals; iZIP: design ready, prototypes exist and have been tested; HV detectors: first prototypes built; testing has started
- Detector tower (mechanical structure, wiring): design ready, mechanical prototype exists; wiring prototype expected in early 2017
- Readout electronics: Preamp: thermal readout design ready; charge readout: circuits are being tested "Warm electronics" (outside cryostat): prototype exists, tests underway
- DAQ: MIDAS based, being developed at UBC with help from TRIUMF (version for detector test facilities already in use)
- Cryogenics and shielding: design advanced, but not ready yet Procurement of dilution refrigerator under way
- Backgrounds: devised extensive material screening program; tracking and monitoring program being developed; radon filter to be installed for detector assembly cleanroom at SNOLAB.

Cryogenic Underground TEst facility (CUTE)

Motivation

- Detector performance: Detector integrity after transportation Background discrimination Noise performance (impact of background)
- Background studies Confirm that screening program and handling procedures are appropriate Study cosmogenic backgrounds (³H, ³²Si)
- Test EURECA detectors in a SuperCDMS environment (possibly join forces)

• Opportunity for early science! (BG O (few evt/keV/kg/d below 100 keV))

Schedule

- Cryostat ordered
- Infrastructure (water tank, cleanroom, services): in early 2017
- May 2017: test at Queen's; summer installation underground
- Commissioning: early fall 2017 (~2-3 years ahead of SuperCDMS)

CUTE

Analysis

Cryogenic Underground TEst facility (CUTE)

Motivation

- Detector performance: Detector integrity after transportation Background discrimination Noise performance (impact of background)
- Background studies Confirm that screening program and handling procedures are appropriate Study cosmogenic backgrounds (³H, ³²Si)
- Test EURECA detectors in a SuperCDMS environment (possibly join forces)

• Opportunity for early science! (BG O (few evt/keV/kg/d below 100 keV))

Schedule

- Cryostat ordered
- Infrastructure (water tank, cleanroom, services): in early 2017
- May 2017: test at Queen's; summer installation underground
- Commissioning: early fall 2017 (~2-3 years ahead of SuperCDMS)

Analysis Projects

- Photo-Neutron calibration (low-energy nuclear recoil calibration) Last "physics" measurement from Soudan (summer/fall 2015) Analysis under way, publication 'sometime next year'
- Backgrounds: Analysis of cosmogenic backgrounds in CDMSlite (³H and others) Analysis in good shape; hope to publish early next year
- Backgrounds: radioactivity from the setup/environment improved MC simulations to inform ongoing anlysis of dark matter data and learn for SNOLAB
- Rare interactions: follow-up of LIPs analysis (can we use CDMSlite data to improve our sensitivity for lower fractional charges?)
- Annual modulation analysis long time coming; hopefully ready within the next 2-3 months
- Standarad WIMP search from SuperCDMS (full discrimination, intermediate to high mass range): not competitive with Xe for 'vanilla WIMP', but still important for non-standard models (EFT ...); first half of next year (?)
- Last CDMSlite data set develop blinding scheme, consider background modeling

Overview SuperCDMS

CUTE

CDMSlite R2

- Reduced threshold
- New pulse fitting
- Improved resolution
- Fiducialization

8

CUTE

Analysis

Overview	SuperCDMS	CUTE	Analysis	25
Concluc	ione			

- SuperCDMS SNOLAB aims at detecting dark matter WIMPs
- Main focus are low-mass WIMPs (< 10 GeV/c²)
- Project planning well under way

CONCIUSIONS

- Main R&D is done, full technical design expected for spring 2017
- Start of operation expected in 2020
- Upgrades (improved HV detectors, EURECA detectors, ...) will allow us to reach the neutrino floor at low mass and/or check discovery claims at high mass
- CUTE: Queen's initiative for an underground test facility, operational in about a year (detector performance studies, background checks, early dark matter science)
- Analysis: many updates in the pipeline; small steps until new facilities come online

