### Dark Matter Annihilation & 21 cm Cosmology

## Laura Lopez Honorez



# based on JCAP 1608 (2016) no.08, 004 in collaboration with O. Mena, A. Moline, S. Palomares-Ruiz & A. C. Vincent.

#### IBS-Multidark-IPPP workshop: DM from aeV to ZeV Lumley Castle, 21-15/11/2016

Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

#### DM searches





#### DM searches

DM

DM

Cosmology probes have already provided constraints on DM annihilation IN THIS TALK: 21 cm constraints on DM annihilation



-

## 21 cm signal?



 Transitions between the two ground state energy levels of neutral hydrogen HI
 → 21 cm photon (ν<sub>0</sub> = 1420 MHz)

EL OQO

(B)

## 21 cm signal?



- Transitions between the two ground state energy levels of neutral hydrogen HI
   → 21 cm photon (ν<sub>0</sub> = 1420 MHz)
- 21 cm photon from HI clouds during dark ages & EoR redshifted to  $\nu \sim 100$  MHz  $\rightarrow$  new cosmology probe



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)</li>

The observed brightness of a patch of HI relative to the CMB at  $\nu = \nu_0/(1+z)$  is associated to the differential brightness temperature  $\delta T_b$ :

$$\delta T_b(\nu) \simeq 27 \, x_{\rm HI} \left(1 + \delta_b\right) \left(1 - \frac{T_{\rm CMB}}{T_S}\right) \left(\frac{1}{1 + H^{-1} \partial v_r / \partial r}\right) \left(\frac{1 + z}{10}\right)^{1/2} \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) \, {\rm mK}$$
Fraction of neutral H
Spin temperature= excitation T of 21cm line



1.2

The observed brightness of a patch of HI relative to the CMB at  $\nu = \nu_0/(1+z)$  is associated to the differential brightness temperature  $\delta T_b$ :



EL OQA

프 > < 프 >

The observed brightness of a patch of HI relative to the CMB at  $\nu = \nu_0/(1+z)$ is associated to the differential brightness temperature  $\delta T_b$ :  $\left( -T_{CMR} \right) \left( -1 - v \right) \left( 1+z \right)^{1/2} \left( 0.15 \right)^{1/2} \left( 0.b^2 \right)$ 



## Astro-params: halo mass function

For  $\delta T_b$  and  $\Delta_{21}$ , we make use of 21cm Fast [Mesinger'10]  $\rightsquigarrow$  dependence on halo mass function,  $T_{vir}$ ,  $\zeta_X$ ,  $N_\alpha$ . In particular, the ionization, heating and excitation critically depend on the fraction of mass collapsed in halos

$$f_{
m coll}(>M_{
m vir}) = \int_{M_{
m vir}} rac{M}{
ho_0} \, rac{dn(M,z)}{dM} \, dM \; ,$$



- PS: underpredicts  $\frac{dn(M,z)}{dM}$  at large *M* and *z* and overpredicts  $\frac{dn(M,z)}{dM}$  at low *M* and *z*
- ST: default 21cmFast: slight overestimation compared to simu. at large z see e.g. Watson'13
- W13: our default

 $\label{eq:stars} \stackrel{\sim}{\longrightarrow} PS \rightarrow W13 \rightarrow ST : astro \ sources \\ switch \ on \ earlier$ 

## Energy deposition from DM annihilations

see previous work [Shchekinov'06, Furlanetto'06, Valdes'07, Chuzhoy'07, Cumberbatch'08, Natarajan'09, Yuan'09, Valdes'12, Evoli'14], see also [Chen'03, Hansen'03, Pierpaoli'03, Padmanabhan'05] for CMB

#### • What does DM annihilate into?:

- $f, \gamma, W, Z, ... \rightsquigarrow e^+, e^-, \gamma$  using e.g. [Pythia, Mardon'09, PPPC4DMID]
- neutrinos → via EW corrections

## Energy deposition from DM annihilations

see previous work [Shchekinov'06, Furlanetto'06, Valdes'07, Chuzhoy'07, Cumberbatch'08, Natarajan'09, Yuan'09, Valdes'12, Evoli'14], see also [Chen'03, Hansen'03, Pierpaoli'03, Padmanabhan'05] for CMB

#### • What does DM annihilate into?:

- $f, \gamma, W, Z, ... \rightsquigarrow e^+, e^-, \gamma$  using e.g. [Pythia, Mardon'09, PPPC4DMID]
- neutrinos ~→ via EW corrections

• Dark matter annihilation inject energy within the dark ages



Rate of energy injection/deposition into c = heat, ionization, excitation

$$\left(\frac{dE_c(\mathbf{x},z)}{dtdV}\right)_{\text{deposited}}^{\text{smooth}} \equiv f_c(z) \left(\frac{dE(\mathbf{x},z)}{dtdV}\right)_{\text{injected}}^{\text{smooth}} \equiv f_c(z) n_{DM}(z)^2 \frac{\langle \sigma v \rangle}{m_{DM}}$$

 $f_c(z) =$  energy deposition efficiency per channel (obtained using tabulated transfer fns  $T^c(z, z', E)$  [Slatyer '15])

#### DM imprint

### For 21 cm signal probes: Halo Contributions

$$\left(\frac{dE(z)}{dtdV}\right)_{\text{injected}} = \frac{\langle \sigma v \rangle}{m_{\text{DM}}} n_{\text{DM}}^2(z) \left[1 + \mathcal{B}(z)\right]$$
$$\mathcal{B}(z) \propto \int_{M_{\text{min}}} \frac{dn(M, z)}{dM} dM \int_0^{R_{\text{vir}}} \rho^2(r) 4\pi r^2 dr$$

イロト イポト イヨト イヨト

ELE DOG

#### DM imprint

### For 21 cm signal probes: Halo Contributions



**Fotal deposition efficiency** 

DM & 21 cm Cosmo

DM imprint

## CMB constraints on DM annihilation: very Brief

see e.g. [Chen'03, Padmanabhan'05, Cirelli'09, Slatyer'09, Galli'11, Giesen'12, LLH'13, Galli'13, Madhavacheril'13, Poulin'15,...]



• Advantage of CMB compared to other DM annihilation probes: do not suffer astrophysics uncertainties (such as  $\rho_{DM}$ ) and no contributions from halos for  $\sigma v$  independent of v (s-wave annihilation) [LLH'13, Poulin'15, Hongwan'16].

Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

November 22, 2016 8 / 12

315

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Impact of DM with s-wave annihilation

DM imprint  $\equiv$  earlier and uniform heating of the IGM, see also [Valdes'13, Evoli'14]



Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

November 22, 2016 9 / 12

## Impact of DM with s-wave annihilation

DM imprint  $\equiv$  earlier and uniform heating of the IGM, see also [Valdes'13, Evoli'14]



Obtained using 21cmFast code [Mesinger'10] modeling inhomogeneous ionization and heating and integrating the evolution of structures and radiation fields.

Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

#### Astrophysics

## Theoretical uncertainties and experimental forecasts

- Large astro uncertainties (green region  $\equiv$  varying  $N_{\alpha}$ ,  $\zeta_X$ , dn/dM,  $M_{vir}$ ).
- Assuming complete foreground removal (using 21cmSense)
  - promising sensitivity for z < 16 for default model



#### Astrophysics

## Theoretical uncertainties and experimental forecasts

- Large astro uncertainties (green region  $\equiv$  varying  $N_{\alpha}$ ,  $\zeta_X$ , dn/dM,  $M_{vir}$ ).
- Assuming complete foreground removal (using 21cmSense)
  - promising sensitivity for z < 16 for default model
  - DM with significant impact  $\rightsquigarrow$  suppressed signal  $\rightsquigarrow$  larger errors



## Conclusion

21cm signal  $\equiv$  unique window on EoR and dark ages



- DM can leave distinctive signatures on IGM at 10 < z < 30for  $m_{\rm DM} \sim 100$  MeV: strong suppression of the  $P_{21}$  at large z & X-ray peak in emmission
- for other DM scenarios, disentangling DM imprint from astro is a challenging task
- Among the astro parameters the halo mass function dn(z)/dM also drives the star formation rate → extra uncertainty on the 21cm signal

## Thank you for your attention!

Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

November 22, 2016 12 / 12

( )

A D > A A P >
 A

EL SQO

Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

November 22, 2016 13 / 12

### HERA reach on $x_{HI}$



[De Boer'16]

1.2

< 17 ►

< ∃ >

## Current constraints on EoR $\delta T_b^2 \Delta_{21}$



Figure 9. The current best published  $2\sigma$  upper limits on the 21cm power spectrum,  $\Delta^2(k)$ , compared to a 21cmFAST-generated model at  $k = 0.2 h \,\mathrm{Mpc}^{-1}$ . Analysis is still underway on PAPER and MWA observations that approach their projected full sensitivities; HERA can deliver sub-mK<sup>2</sup> sensitivities.

#### [De Boer'16]

DM & 21 cm Cosmo

## Current and future reach on $\delta T_b^2 \Delta_{21}$



Figure 4.  $1\sigma$  thermal noise errors on  $\Delta^2(k)$ , the 21 cm power spectrum, at  $k = 0.2 h \,\mathrm{Mpc}^{-1}$  (the dominant error at that k) with 1080 hours of integration (black) compared with various heating and reionization models (colored). Sensitiv-

#### [De Boer'16]

Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

1.2

-

< ∃ >

### Resonant scattering of Ly $\alpha$ photons

#### Cause spin flip transitions



Figure 2. Left panel: Hyperfine structure of the hydrogen atom and the transitions relevant for the Wouthuysen-Field effect [24]. Solid line transitions allow spin flips, while dashed transitions are allowed but do not contribute to spin flips. *Right panel*: Illustration of how atomic cascades convert Lyn photons into Lv $\alpha$  photons.

#### [Pritchard'11]

### Characterization of the 21cm signal

The observed brightness of a patch of HI relative to the CMB at  $\nu = \nu_0/(1+z)$  is associated to the differential brightness temperature  $\delta T_h$ :  $\delta T_b(\nu) \simeq 27 \, x_{\rm HI} \left(1 + \delta_b\right) \left(1 - \frac{T_{\rm CMB}}{T_S}\right) \left(\frac{1}{1 + H^{-1} \partial v_r / \partial r}\right) \left(\frac{1 + z}{10}\right)^{1/2} \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) \, \mathrm{mK}$ 

Spin temperature= excitation T of 21cm line

 $T_{S}$  characterises the relative occupancy of the 2 HI ground state energy levels:  $n_1/n_0 = 3 \exp[-h\nu_0/(k_B T_S)]$  and is driven by

Fraction of neutral H

### Characterization of the 21cm signal

The observed brightness of a patch of HI relative to the CMB at  $\nu = \nu_0/(1+z)$  is associated to the differential brightness temperature  $\delta T_b$ :

$$\delta T_b(\nu) \simeq 27 \, x_{\rm HI} \left(1 + \delta_b\right) \left(1 - \frac{T_{\rm CMB}}{T_S}\right) \left(\frac{1}{1 + H^{-1} \partial v_r / \partial r}\right) \left(\frac{1 + z}{10}\right)^{1/2} \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) \, {\rm mK}$$
Fraction of neutral H Spin temperature= excitation T of 21cm line

 $T_S$  characterises the relative occupancy of the 2 HI ground state energy levels:  $n_1/n_0 = 3 \exp[-h\nu_0/(k_B T_S)]$  and is driven by

• Scattering of CMB photons

if CMB alone  $\rightsquigarrow$  thermalisation  $T_S = T_{CMB} \rightsquigarrow$  IGM unobservable

## Characterization of the 21cm signal

The observed brightness of a patch of HI relative to the CMB at  $\nu = \nu_0/(1+z)$  is associated to the differential brightness temperature  $\delta T_b$ :

$$\delta T_b(\nu) \simeq 27 \, x_{\rm HI} \left(1 + \delta_b\right) \left(1 - \frac{T_{\rm CMB}}{T_S}\right) \left(\frac{1}{1 + H^{-1} \partial v_r / \partial r}\right) \left(\frac{1 + z}{10}\right)^{1/2} \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) \, {\rm mK}$$
Fraction of neutral H Spin temperature= excitation T of 21cm line

 $T_S$  characterises the relative occupancy of the 2 HI ground state energy levels:  $n_1/n_0 = 3 \exp[-h\nu_0/(k_B T_S)]$  and is driven by

- Scattering of CMB photons if CMB alone  $\rightsquigarrow$  thermalisation  $T_S = T_{CMB} \rightsquigarrow$  IGM unobservable
- Atomic collisions with H, p or  $e^-$  (when IGM is dense, dark ages)
- Scattering of  $Ly\alpha$  photons  $\equiv$  Wouthuysen-Field (WF) effect (once early radiation sources light on)

→ IGM is seen in absorption or emission compared to CMB i.e. when  $T_K \neq T_{CMB}$  and some mechanism couples  $T_K$  to  $T_S$ 

### Temperatures evolution

$$\delta T_b(\nu) \simeq 27 \, x_{\rm HI} \left(1 + \delta_b\right) \left(1 - \frac{T_{\rm CMB}}{T_S}\right) \left(\frac{1}{1 + H^{-1} \partial v_r / \partial r}\right) \, \left(\frac{1 + z}{10}\right)^{1/2} \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) \, {\rm mK}$$



Laura Lopez Honorez (FNRS@ULB & VUB)

#### DM & 21 cm Cosmo

November 22, 2016 19 / 12

ELE DQA

### From *injected* energy to *deposited*

see e.g. [Ripamonti'06, Slatyer'09, Valdes'10, Evoli'12, Slatyer'12, Galli'13, Weniger'13, Slatyer'15, Hongwan'16]

$$\epsilon_c^{\text{DM}}(\mathbf{x}, z) \equiv f_c(z) \left(\frac{dE_c(\mathbf{x}, z)}{dtdV}\right)_{\text{injected}}^{\text{smooth}}$$

$$\sum_{c} f_{c}(z) \text{ for } \chi\chi \to e^{+}e^{-} \text{ [Slatyer'15]}$$
  
as fn of  $E_{inj}$  of 1 member of  $e^{+}e^{-}$  pair and  $z_{abi}$ 

 $f_c(z) =$  energy deposition efficiency per channel  $\equiv$  amount of energy absorbed by the medium at z including contributions from particles injected at all z' > z

(obtained using tabulated transfer fns  $T^{c}(z, z', E)$  [Slatyer '15])



Laura Lopez Honorez (FNRS@ULB & VUB)

### From *injected* energy to *deposited*

see e.g. [Ripamonti'06, Slatyer'09, Valdes'10, Evoli'12, Slatyer'12, Galli'13, Weniger'13, Slatyer'15, Hongwan'16]

$$\epsilon_c^{\text{DM}}(\mathbf{x}, z) \equiv f_c(z) \left(\frac{dE_c(\mathbf{x}, z)}{dtdV}\right)_{\text{injected}}^{\text{smooth}}$$

$$\sum_c f_c(z) \text{ for } \chi\chi \to e^+e^- \text{ [Slatyer'15]} \text{ as fn of } E_{inj} \text{ of 1 member of } e^+e^- \text{ pair and } z_{abs}$$
sition efficiency  
int of energy  
dium at z  
ons from  
all z' > z  
llated transfer fns  

$$f(z) \text{ for } 21 \text{ cm probes}$$

$$10^1 \text{ Low probes} = 10^1 \text{ Low probe} 22 206$$

 $f_c(z) =$  energy deposition efficiency per channel  $\equiv$  amount of energy absorbed by the medium at z including contributions from particles injected at all z' > z

(obtained using tabulated transfer fns  $T^{c}(z, z', E)$  [Slatyer '15])

### Minimum Halo mass



Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

### Minimum virial Temperature / Mass

$$f_{\rm coll}(>M_{\rm vir}) = \int_{M_{\rm vir}} \frac{M}{\rho_0} \frac{dn(M,z)}{dM} dM$$



 $\rightsquigarrow$  larger  $M_{\rm vir}$  threshold implies a delay in the X-ray and UV sources.

## X-ray efficiency

X-ray emission rate is directly proportional to the number of X-ray photons per  $M_{\odot}$  in stars:  $\zeta_X$ 



$$\zeta_{X,0} = 10^{56} M_{\odot}^{-1} \leftrightarrow N_X \simeq 0.1$$

increasing  $\zeta_X \\ \rightsquigarrow$  earlier X-ray heating

- less pronounced dip in  $\delta \bar{T}_b$
- earlier X-ray peak in  $P_{21}$

## $Ly_{\alpha}$ contribution from stars

The direct stellar emission of photons between  $Ly_{\alpha}$  and the Lyman limit will redshift until they enter a Lyman series resonance and subsequently, may generate  $Ly_{\alpha}$  photons.

Increasing  $N_{\alpha}$ (driving  $J_{\alpha,\star}$ ):

- deeper trough in  $\delta \bar{T}_b$
- earlier  $Ly_{\alpha}$  peak in  $P_{21}$





normalizing their emissivity to  $\sim 4400$  ionizing photons per stellar baryon

• • • • • • • • • • • • •

ELE DOG

### **Evolution equations**

#### • Ionized fraction:

$$\frac{dx_e(\mathbf{x}, z)}{dz} = \frac{dt}{dz} \left( \Lambda_{\text{ion}} - \alpha_{\text{A}} C x_e^2 n_b f_{\text{H}} \right)$$

• Gas temperature:

$$\frac{dT_K(\mathbf{x},z)}{dz} = \frac{2}{3k_B(1+x_e)}\frac{dt}{dz}\sum_{\beta}\epsilon_{\beta} + \frac{2T_K}{3n_b}\frac{dn_b}{dz} - \frac{T_K}{1+x_e}\frac{dx_e}{dz} ,$$

• Ly $\alpha$  background:

$$J_{\alpha} = J_{\alpha,X} + J_{\alpha,\star} + J_{\alpha,\mathsf{DM}}$$

EL OQC

イロト イポト イヨト イヨト
#### **Evolution equations**

#### Ionized fraction:

$$\frac{dx_e(\mathbf{x}, z)}{dz} = \frac{dt}{dz} \left[ \Lambda_{\text{ion}} - \alpha_{\text{A}} C x_e^2 n_b f_{\text{H}} \right]$$

• Gas temperature:

$$\frac{dT_K(\mathbf{x},z)}{dz} = \frac{2}{3k_B(1+x_e)} \frac{dt}{dz} \sum_{\beta} \epsilon_{\beta} + \frac{2T_K}{3n_b} \frac{dn_b}{dz} - \frac{T_K}{1+x_e} \frac{dx_e}{dz} ,$$

• Ly $\alpha$  background:

$$J_{\alpha} = J_{\alpha,X} + J_{\alpha,\star} + J_{\alpha,\mathrm{DM}}$$

 $\rightsquigarrow$  we make use of 21cmFast to generate the 21cm background signal and powerspectrum.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)</li>

#### Backup

#### DM contributions

• Ionized fraction and for the kinetic temperature of the gas

$$\Lambda_{\rm ion}|_{\rm DM} = \mathfrak{f}_{\rm H} \frac{\epsilon_{\rm HI}^{\rm DM}}{E_{\rm HI}} + \mathfrak{f}_{\rm He} \frac{\epsilon_{\rm HeI}^{\rm DM}}{E_{\rm HeI}}, \qquad (1)$$
$$\frac{dT_K}{dz}\Big|_{\rm DM} = \frac{dt}{dz} \frac{2}{3k_B(1+x_e)} \epsilon_{\rm heat}^{\rm DM}, \qquad (2)$$

where  $E_{\text{HI,HeI}}$  are the ionization energies for hydrogen and helium and  $\mathfrak{f}_{\text{He}} = N_{\text{He}}/N_b$  is the helium number fraction.

• The Ly $\alpha$  flux

$$J_{\alpha,\text{DM}} = \frac{c \, n_b}{4\pi} \frac{\epsilon_{\text{Ly}\alpha}^{\text{DM}}}{h\nu_{\alpha}} \frac{1}{H(z)\nu_{\alpha}} \,, \tag{3}$$

where  $\nu_{\alpha}$  is the emission frequency of a Ly $\alpha$  photon.

#### Previous analysis

# Comparison with a reproduction of DM energy deposition rate corresponding to annihilations into $\mu^+\mu^-$ considering PS formalism from [Evoli'14],



ELE DOG

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Previous analysis : comparison



- With DM annihilations the X-ray heating peak in the 21 cm power could be lower than the other two peaks: not for the case considered in [Evoli<sup>14</sup>] but ok for  $m_{\rm DM} = 130$  MeV and  $\langle \sigma v \rangle = 10^{-28}$  cm<sup>3</sup>/s, even for  $M_{\rm min} = 10^{-3} M_{\odot}$ .
- Dramatic drop in large-scale power between the Lyα pumping and X-ray heating epochs. This feature is only seen for the most extreme case we consider.

• The X-ray heating peak could occur when the IGM is already in emission against the CMB: we only do reach that conclusion for the most extreme of our cases,  $m_{\rm DM} = 130$  MeV,  $\langle \sigma v \rangle = 10^{-28}$  cm<sup>3</sup>/s and  $M_{\rm min} = 10^{-12} M_{\odot}$  and  $M_{\odot} = 10^{-28}$  cm<sup>3</sup>/s and  $M_{\rm min} = 10^{-12} M_{\odot}$  and  $M_{\odot} = 10^{-12} M_{\odot}$  cm<sup>3</sup>/s and  $M_{\odot} = 10^{-12} M_{\odot}$  and  $M_{\odot} = 10^{-12$ 

Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

November 22, 2016 29 / 12

#### Backup

#### For 21 cm signal probes: Halo Contributions- Substructures

$$\int_0^{R_{\rm vir}} \rho^2(r) 4\pi r^2 dr$$
$$\rightarrow \int_0^{R_{\rm vir}} \rho^2(r) 4\pi r^2 dr + \int_{M_{\rm min}}^M \frac{dn_{\rm sub}}{dm} dm \int_0^{r_{\rm vir}} \rho_{\rm sub}^2(r_{\rm sub}) 4\pi r_{\rm sub}^2 dr_{\rm sub} ,$$



 $dn_{sub}/dm$  is the comoving subhalo mass function, *m* is the subhalo mass,  $\rho_{sub}(r_{sub})$  is the subhalo density profile, and  $r_{vir}$  is the subhalo virial radius. For the subhalo mass function in a host halo of mass *M*, we use  $dn_{sub}/dm = A/M (m/M)^{-\alpha}$ , ( $\alpha$  in the range [1.9, 2] in simu [Diemand:2006ik, Madau:2008fr,

Springel:2008cc]). We took  $\alpha = 2$  and we set A = 0.012 [Sanchez-Conde:2013]

#### Halo mass function

Ionization, heating and excitation critically depend on the fraction of mass collapsed in halos

$$f_{
m coll}(>M_{
m vir}) = \int_{M_{
m vir}} rac{M}{
ho_0} rac{dn(M,z)}{dM} \, dM \; ,$$



#### Backup

#### Halo contribution from N-body simulations

$$G(z) \equiv rac{1}{\left(\Omega_{{
m DM},0}\,
ho_{c,0}
ight)^2}\,rac{1}{(1+z)^6}\,\int_{M_{
m min}}^\infty {
m d}M\,rac{{
m d}n(M,z)}{{
m d}M}\,\int_0^{r_\Delta}\,{
m d}r\,4\pi r^2\,
ho_{
m halo}^2(r)\;.$$

• For NFW profile:  $\int_{0}^{r_{\Delta}} dr 4\pi r^{2} \rho_{halo}^{2}(r) = \tilde{g}(c_{\Delta}) \frac{M \Delta \rho_{c}(z)}{3}$ The concentration param.  $c_{\Delta}$  is obtained from MultiDark/BigBolshoi simulations [Prada '11] (the fitting function is extrapolated outside limited simul. range)

• 
$$\frac{\mathrm{d}n_{\mathrm{halo}}(M,z)}{\mathrm{d}M} = \frac{\rho_{\mathrm{m}}(z)}{M^2} \frac{\mathrm{d}\ln\sigma^{-1}}{\mathrm{d}\ln M} f(\sigma,z)$$



The parametrization of the differential mass function  $f(\sigma, z)$  is based on the results obtained in [Watson'12] by using the CubeP<sup>3</sup>M halofinder (CPMSO) and the Amiga Halo Finder (AHF). We have used this fit outside the range where it was obtained,  $-0.55 \le \ln \sigma^{-1} \le 1.35$ , with  $\sigma(M, z)$  the rms density fluctuation, across all redshifts There could be differences of up to a few orders of magnitude with respect to other parametrizations.

#### <u>HI 21 cm line – $\delta T_{\rm b}$ </u>

$$egin{aligned} y_lpha &= rac{P_{10}T_*}{A_{10}T_k} \ y_c &= rac{C_{10}T_*}{A_{10}T_k} \end{aligned}$$

- A<sub>10</sub>: spontaneous decay rate of the hyperfine transition of hydrogen
- $P_{10}$ : indirect de-excitation rate of the triplet via absorption of a Ly $\alpha$  photon = 4/27 the rate at which Ly $\alpha$  photons are scattered by HI
- C<sub>10</sub> : collisional de-excitation rate

Once  $T_s$  has been determined we can obtain the 21 cm radiation intensity which can be expressed by the differential brightness temperature between a neutral hydrogen patch and the CMB:

$$\begin{split} \delta T_b &\simeq \frac{T_S - T_{CMB}}{1 + z} \, \tau \\ \tau &\simeq \frac{3 c^3 h_p A_{10}}{32 \pi k_B \nu_0^2 T_S H(z)} \mathcal{N}_{\mathrm{HI}} \end{split}$$



### Spin Temperature

#### HI 21 cm line

HI 21 cm tomography: a powerful tool for future observations Emission/absorption of 21cm photons governed by the HI spin temperature  $T_s$ 

$$rac{n_1}{n_0} = 3 \exp\left(-rac{T_\star}{T_S}
ight)$$

CMB radiation forces  $~T_{\rm s} \sim T_{\rm CMB}$  on a short timescale (~ 10^4 yr). HI will not emit nor absorb

Two mechanisms can decouple  $T_{\rm s}$  from  $T_{\rm CMB}$  :

- Collisions (effective at z > 70 due to the higher mean gas density)
- Scattering by Ly $\alpha$  photons , Wouthuysen-Field (WF) process

$$T_S = \frac{T_{CMB} + y_{\alpha}T_k + y_cT_k}{1 + y_{\alpha} + y_c}$$



Laura Lopez Honorez (FNRS@ULB & VUB)

#### WDM beyond EOR

mDM  $\sim$  keV  $\rightarrow$  increased particle free-streaming and velocity dispersion  $\rightarrow$  suppress structures on small-scales.

- The resulting dearth of galaxies in the early Universe means that the astrophysical epochs in the 21cm signal were delayed.
- The galaxies driving the 21cm evolution in WDM should reside in higher mass, more rapidly evolving halos, than those in CDM. The **increased bias of such halos results in a larger 21cm fluctuations**



al. 2013a with 2000h time.

315

★ ∃ > < ∃ >

< < >> < <</>

Backup

#### WDM at low redshifts

Analyse 21cm intensity mapping in the post-reionization Universe at z=3-5 with hydrodynamical simulations for 5 different models: cold dark matter and WDM with 1,2,3,4 keV





Figure 11. Relative difference between the 21cm power spectrum of the models with WDM and CDM whe HI distribution is modeled using the halo based method (obtact lines). Results are shown at z = 3 ( $rd_1 h_z = 4$  (middle) and z = 5 ( $rd_2 h_z$ ). The zero or the  $rd_2 h_z$  is th

5000 hours of observations  $\rightarrow 4$  keV WDM model can be ruled out at more than  $1\sigma$  at z=3 and at more than  $2\sigma$  at z=5 ( make use only of the largest scales k<1-3 h Mpc–1 available, since the small scale signal is hindered by noise (see figure 11) )

#### • What does DM annihilate into?:

- neutrinos ~> escape constraints from CMB
- $far{f},\,\gamma,W^+W^-,\,...\,\rightsquigarrow e^+,e^-,\gamma$  using e.g. [Pythia, Mardon'09, PPPC4DMID]

#### • What does DM annihilate into?:

- neutrinos  $\rightsquigarrow$  escape constraints from CMB
- $far{f},\,\gamma,W^+W^-,\,...\,
  ightarrow e^+,e^-,\gamma$  using e.g. [ Pythia, Mardon'09, PPPC4DMID]
- Rate of heating or ionization depends on see e.g. [Chen'03, Padmanabhan'05, Galli'13]  $\chi_i(z)$  = fraction of injected energy into i = heat, ionization, excitation

$$\mathcal{F}(z) = \frac{\chi_i(z)}{H(z)(1+z)n_H(z)} \left(\frac{dE}{dtdV}\right)_{deposit}$$

#### • What does DM annihilate into?:

- neutrinos ~> escape constraints from CMB
- $far{f},\,\gamma,W^+W^-,\,...\,\,$   $ightarrow e^+,e^-,\gamma\,$  using e.g. [Pythia, Mardon'09, PPPC4DMID]
- Rate of heating or ionization depends on see e.g. [Chen'03, Padmanabhan'05, Galli'13]  $\chi_i(z)$  = fraction of injected energy into i = heat, ionization, excitation

$$\mathcal{F}(z) = \frac{\chi_i(z)}{H(z)(1+z)n_H(z)} \left(\frac{dE}{dtdV}\right)_{deposit} \propto \chi_i(z) \times f(z) \times \begin{cases} (1+z)^{1/2} & \text{s-wave ann} \\ (1+z)^{-5/2} & \text{decay} \end{cases}$$

$$\left(\frac{dE}{dtdV}\right)_{deposit} = f(z) \left(\frac{dE}{dtdV}\right)_{inject} \propto f(z) \times \begin{cases} n_{DM}^2 \langle \sigma v \rangle & \text{annihil} \\ n_{DM} / \tau_{DM} e^{-t/\tau_{DM}} & \text{decay} \end{cases}$$

# s-wave annihilating dark matter Modify the Recombination History

$$\left(\frac{dE}{dtdV}\right)_{deposit} \propto f(z) n_{DM}^2 \langle \sigma v \rangle$$

 $\langle \sigma v 
angle \propto a = cst$  $\mathcal{F}(z) \propto (1+z)^{1/2}$ 

"early time effect"

EL OQO

#### Recombination history and power spectra modified



- increased residual ionization
- increased IGM temperature

# Recombination history and power spectra modified



- increased residual ionization
- increased IGM temperature
- affects the optical depth *τ* to recombination with:

$$\dot{\tau} = -\sigma_T x_e n_b a$$

and the visibility function

$$g(z) = -\dot{\tau}exp(-\tau(z))$$

 $\equiv$  probability that a  $\gamma$  last scattered at z, very peaked around  $z \sim 1000$ 

 $\leadsto$  broadening of the last scattering surface

DM & 21 cm Cosmo

Modifying Recombination history



broadening of the last scattering surface :

• attenuates of correlations at small scales (large l) [Padmanabhan'05].

Modifying Recombination history



broadening of the last scattering surface :

- attenuates of correlations at small scales (large l) [Padmanabhan'05].
- The effect of annihilation  $p_{ann} = f(z) \langle \sigma v \rangle / m_{DM}$  is degenerate with  $A_s$ , and  $n_s$  driving the amplitude of the  $C_l$  [Padmanabhan'05, Madhavacheril'13, Planck'15].

1= 200

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Modifying Recombination history



broadening of the last scattering surface :

- attenuates of correlations at small scales (large l) [Padmanabhan'05].
- The effect of annihilation  $p_{ann} = f(z) \langle \sigma v \rangle / m_{DM}$  is degenerate with  $A_s$ , and  $n_s$  driving the amplitude of the  $C_l$  [Padmanabhan'05, Madhavacheril'13, Planck'15].
- increases the polarisation fluctuations and shift the EE (TE) peaks at large scale [Padmanabhan'05].
- Planck low *l* TE,EE spectra → break degeneracies and improve constraints (by ~ one order of magnitude [Planck '15]).

Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

p-wave annihilating dark matter Late time energy injection

$$\left(\frac{dE}{dtdV}\right)_{deposit} \propto f(z)n_{DM}^2 \langle \sigma v \rangle$$
$$\langle \sigma v \rangle \propto bv^2 \quad \text{or} \quad \sigma v_{ref} \langle v \rangle^2 / v_{ref}^2$$
$$\mathcal{F}(z) \propto (1+z)^{1/2} \frac{(1+z)^2}{(1+z_{KD})^2} \quad \text{with} \quad z_{KD} \gg z_{rec}$$
Main constraints from DM halos: late time effect

Laura Lopez Honorez (FNRS@ULB & VUB)

EL OQO

(B)

### Annihilation & Structure Formation

DM collapsing into structures will boost the annihilation rate, in the on the spot approximation see also [Natarajan '08+, Belikov '09, Cirelli'09, Kanzaki'09, Hustsi'11, Giesen'12]:

$$\left(\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t}\right)_{\mathrm{halo,injected}} = \frac{\langle\sigma\nu\rangle}{m_{\chi}}\,\rho_{DM,0}^2(1+z)^6\,\left(\mathrm{Bgd}(z) + \mathrm{Halo}(z)\right)$$

# Annihilation & Structure Formation

DM collapsing into structures will boost the annihilation rate, in the on the spot approximation see also [Natarajan '08+, Belikov '09, Cirelli'09, Kanzaki'09, Hustsi'11, Giesen'12]:

$$\left(\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t}\right)_{\mathrm{halo,injected}} = \frac{\langle\sigma v\rangle}{m_{\chi}} \rho_{DM,0}^2 (1+z)^6 \left(\mathrm{Bgd}(z) + \mathrm{Halo}(z)\right)$$

Here we consider both s- and p-wave driven  $\langle \sigma v \rangle$ :

• Smooth Contribution Bgd(z) supressed for p-wave annihilation

# Annihilation & Structure Formation

DM collapsing into structures will boost the annihilation rate, in the on the spot approximation see also [Natarajan '08+, Belikov '09, Cirelli'09, Kanzaki'09, Hustsi'11, Giesen'12]:

$$\left(\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t}\right)_{\mathrm{halo,injected}} = \frac{\langle\sigma v\rangle}{m_{\chi}} \rho_{DM,0}^2 (1+z)^6 \left(\mathrm{Bgd}(z) + \mathrm{Halo}(z)\right)$$

Here we consider both s- and p-wave driven  $\langle \sigma v \rangle$ :

- Smooth Contribution Bgd(z) supressed for p-wave annihilation
- Structures Contribution Halo(z)

$$\text{Halo}(z) \propto \int_{M_{\min}}^{\infty} dM \frac{dn(M,z)}{dM} \int_{0}^{r_{\Delta}} dr 4\pi r^{2} \rho_{\text{halo}}^{2} \times \begin{cases} 1 \text{ s-wave} \\ \frac{\langle v^{2} \rangle}{v_{ref}^{2}} & \text{p-wave} \end{cases}$$

We made use of Multidark/BigBolshoi simulation for the halo mass function  $\frac{dn(M,z)}{dM}$  and NFW for  $\rho_{halo}$ 

Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

November 22, 2016 42 / 12

#### CMB sensitivity to annihilation + structure formation

In our full analysis, we took into account the enery deposition efficiency  $(\equiv f(z) \text{ in s-wave Bgd case})$  using [Slatyer'12]:

• s-wave  $\langle \sigma v \rangle = cst$ 

Despite enhancements of several orders of magnitude, Halo(z) contrib. is subdominant to early time ( $z \sim z_{rec}$ ) energy injection.



### CMB sensitivity to annihilation + structure formation

In our full analysis, we took into account the enery deposition efficiency  $(\equiv f(z) \text{ in s-wave Bgd case})$  using [Slatyer'12]:

• s-wave  $\langle \sigma v \rangle = cst$ 

Despite enhancements of several orders of magnitude, Halo(z) contrib. is subdominant to early time ( $z \sim z_{rec}$ ) energy injection.

• p-wave  $\langle \sigma v \rangle = \sigma v_{ref} \langle v^2 \rangle / v_{ref}^2$ 

Bgd(z) severe suppression at early time by  $\langle v^2 \rangle / v_{ref}^2$  $\rightarrow$  Halo (z) dominates energy deposition by orders of magnitude



### Constraints on p-wave annihilation



for  $v_{ref} = 100$  km/s

- Principal source of improvement between black and green lines:  $T_m$  constraints
- CMB constraints well above p-wave ⟨σν⟩ for freeze-out
   → specifically relevant for other production mechanisms

# Decaying dark matter Late time energy injection

$$\left(\frac{dE}{dtdV}\right)_{deposit} \propto f(z) n_{DM} / \tau_{DM}$$

 $\mathcal{F}(z) \propto (1+z)^{-5/2}$ 

"late time effect"

DM & 21 cm Cosmo

EL OQO

化压力 化压

#### DM decay

see also [Chen'03, Mapelli'06, Ripamonti'06, Zhang'07, Finkbeiner'11, Slatyer'12, Cline'13,...]



Laura Lopez Honorez (FNRS@ULB & VUB)

### Fermi most recent (preliminary)results



Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

#### HI 21 cm line – WF process

F = total angular momentum of the atom

 $\Delta F = 0, \pm 1 \setminus 0 \rightarrow 0$  (electric dipole selection rules)

An H atom in the singlet ground level that absorbs a Ly $\alpha$  photon and jumps to the 2p state is allowed to reemit the Ly $\alpha$  photon and end up in the triplet ground level





- What does DM annihilate into?:
  - neutrinos  $\rightsquigarrow$  escape constraints from CMB
  - $far{f},\,\gamma,W^+W^-,\,...\,\rightsquigarrow e^+,e^-,\gamma$  using e.g. [Pythia, Mardon'09, PPPC4DMID]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)</li>

- What does DM annihilate into?:
  - $\bullet~$  neutrinos  $\leadsto$  escape constraints from CMB
  - $far{f},\,\gamma,W^+W^-,\,...\,
    ightarrow e^+,e^-,\gamma$  using e.g. [Pythia, Mardon'09, PPPC4DMID]
- Rate of heating or ionization depends on see e.g. [Chen'03, Padmanabhan'05, Galli'13]

$$\mathcal{F}(z) = \frac{\chi_i(z)}{H(z)(1+z)n_H(z)} \left(\frac{dE}{dtdV}\right)_{deposit}$$

 $\chi_i(z)$  = fraction of injected energy into i = heat, ionization, excitation

- What does DM annihilate into?:
  - neutrinos  $\rightsquigarrow$  escape constraints from CMB
  - $far{f},\,\gamma,W^+W^-,\,...\,
    ightarrow e^+,e^-,\gamma$  using e.g. [ Pythia, Mardon'09, PPPC4DMID]
- Rate of heating or ionization depends on see e.g. [Chen'03, Padmanabhan'05, Galli'13]

$$\mathcal{F}(z) = \frac{\chi_i(z)}{H(z)(1+z)n_H(z)} \left(\frac{dE}{dtdV}\right)_{deposit}$$

 $\chi_i(z)$  = fraction of injected energy into i = heat, ionization, excitation

• From *injected* energy to *deposited* 

see e.g. [Ripamonti'06, Slatyer'09, Valdes'10, Evoli'12, Slatyer'12, Galli'13, Weniger'13]

$$\left(\frac{dE}{dtdV}\right)_{deposit} = f(z) \left(\frac{dE}{dtdV}\right)_{inject} \propto f(z) \times \begin{cases} n_{DM}^2 \langle \sigma v \rangle & \text{annihil} \\ n_{DM} / \tau_{DM} e^{-t/\tau_{DM}} & \text{decay} \end{cases}$$

f(z) = energy deposition efficiency: amount of energy absorbed by the medium at z including contributions from particles injected at all z' > z.

- What does DM annihilate into?:
  - neutrinos  $\rightsquigarrow$  escape constraints from CMB
  - $far{f},\,\gamma,W^+W^-,\,...\,
    ightarrow e^+,e^-,\gamma$  using e.g. [Pythia, Mardon'09, PPPC4DMID]
- Rate of heating or ionization depends on see e.g. [Chen'03, Padmanabhan'05, Galli'13]

$$\mathcal{F}(z) = \frac{\chi_i(z)}{H(z)(1+z)n_H(z)} \left(\frac{dE}{dtdV}\right)_{deposit} \propto \chi_i(z) \times \begin{cases} (1+z)^{1/2} & \text{s-wave ann} \\ (1+z)^{-5/2} & \text{decay} \end{cases}$$

 $\chi_i(z)$  = fraction of injected energy into i = heat, ionization, excitation

#### • From *injected* energy to *deposited*

see e.g. [Ripamonti'06, Slatyer'09, Valdes'10, Evoli'12, Slatyer'12, Galli'13, Weniger'13]

$$\left(\frac{dE}{dtdV}\right)_{deposit} = f(z) \left(\frac{dE}{dtdV}\right)_{inject} \propto f(z) \times \begin{cases} n_{DM}^2 \langle \sigma v \rangle & \text{annihil} \\ n_{DM} / \tau_{DM} e^{-t/\tau_{DM}} & \text{decay} \end{cases}$$

f(z) = energy deposition efficiency: amount of energy absorbed by the medium at z including contributions from particles injected at all z' > z.

Laura Lopez Honorez (FNRS@ULB & VUB)

.

DM & 21 cm Cosmo

#### IGM temperature

IGM temperature can be considered as extra constraint see also [Cirelli'09, Giesen'12]: Ly- $\alpha$  observations at 2 < z < 4.5 [Schaye] indicate that  $T_m \sim 10^4$  K



for s-wave annihilation

s-wave

 $\langle \sigma v \rangle$  saturating  $T_m$  bound are orders of magnitude above CMB constraints

EL OQO

(B)
#### IGM temperature

IGM temperature can be considered as extra constraint see also [Cirelli'09, Giesen'12]: Ly- $\alpha$  observations at 2 < z < 4.5 [Schaye] indicate that  $T_m \sim 10^4$  K



IGM temperature at z = 3

for s-wave annihilation

s-wave

 $\langle \sigma v \rangle$  saturating  $T_m$  bound are orders of magnitude above CMB constraints

• p-wave

 $T_m$  provide a powerfull tool to constrain late time energy injection

- 47 ▶

# Priors

|                                       |                                                    | Parameter                                                             | Prior                      |
|---------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|----------------------------|
| Parameter                             | Prior                                              | $\Omega_{h,0}h^2$                                                     | $0.005 \rightarrow 0.1$    |
| $\Omega_{\mathrm{b},0}h^2$            | $0.005 \rightarrow 0.1$                            | $\Omega_{{ m DM},0}h^2$                                               | $0.01 \rightarrow 0.99$    |
| $\Omega_{{ m DM},0}h^2$               | 0.01  ightarrow 0.99                               | $\Theta_s$                                                            | $0.5 \rightarrow 10$       |
| $\Theta_{ m s}$                       | $0.5 \rightarrow 10$                               | $z_{ m reio}$                                                         | $7 \rightarrow 12$         |
| $z_{ m reio}$                         | $6 \rightarrow 12$                                 | $n_s$                                                                 | $0.5 \rightarrow 1.5$      |
| $n_{\rm s}$                           | $0.5 \rightarrow 1.5$                              | $\ln{(10^{10}A_s)}$                                                   | $2.7 \rightarrow 4$        |
| $\ln(10^{-26} \text{ cm}^3/\text{c})$ | $2.7 \rightarrow 4$ $10^{-5} \rightarrow 10^{2.5}$ | $	au_{\chi}/(10^{24}{ m s})$                                          | $10^{-2} \rightarrow 10^5$ |
|                                       | $10 \rightarrow 10$                                | $\sigma v_{\mathrm{ref}}/(3 	imes 10^{-26} \mathrm{cm}^3/\mathrm{s})$ | $10^0 \rightarrow 10^{12}$ |

# f(z)

- High energy photons (GeV,TeV) or electrons do not deposit directly their energy in the medium.
- Their energy is degraded to ~ 3 keV [Slatyer'13] energy before being possibly absorbed by atomic processes (heat, ionisation, excitation)
- For high energy  $e^-$  the main energy loss is Inverse Compton Scattering (ICS) on the CMB  $\gamma e \rightarrow \gamma e \rightsquigarrow$  effective injected photon spectrum
- For high energy  $\gamma$  we have (per order of increasing *E*)
  - photoionization
  - Compton scattering
  - pair production off nuclei:  $\gamma A \rightarrow A e \bar{e}$
  - photon photon scattering
- Photons produced originally or in the cooling cascade can fall into the "transparency window" depending on their energy (typically between 10<sup>6</sup> and 10<sup>12</sup> eV) or redshift (at low redshift universe more transparent) → their energy is possibly never degraded to the atomic scale → part of diffuse γ background

Laura Lopez Honorez (FNRS@ULB & VUB)

# Energy deposition s-wave

$$\left(\frac{\mathrm{d}E}{\mathrm{d}t\mathrm{d}V}\right)_{\mathrm{deposited}} = \left[f(z,m_{\chi}) + g(z,m_{\chi})\right] (1+z)^6 (\Omega_{\mathrm{DM},0}\,\rho_{\mathrm{c},0})^2 \,\zeta \,\frac{\langle\sigma\nu\rangle}{m_{\chi}} \ ,$$

Bgd(z)

$$f(z, m_{\chi}) = \frac{H(z)}{(1+z)^3 \sum_i \int dE \, E \, \frac{dN_i(E, m_{\chi})}{dE}} \sum_i \int dz' \frac{(1+z')^2}{H(z')} \int dE \, T_i(z', z, E) \, E \, \frac{dN(E, m_{\chi})}{dE}$$

Halo(z)

$$\begin{split} g(z,m_{\chi}) &= \frac{H(z)}{(1+z)^3 \sum_i \int E \frac{dN}{dE} dE} \sum_i \int dz' \, \frac{(1+z')^2}{H(z')} \, G(z') \, \int T_i(z',z,E) \, E \, \frac{dN}{dE} dE \,, \\ G(z) &\equiv \frac{1}{(\Omega_{\text{DM},0} \, \rho_{c,0})^2} \, \frac{1}{(1+z)^6} \, \int_{M_{\text{min}}}^{\infty} dM \, \frac{dn(M,z)}{dM} \, \int_0^{r_{\Delta}} dr \, 4\pi r^2 \, \rho_{\text{halo}}^2(r) \,. \end{split}$$

• The factors of (1 + z') in the integral:  $n_{\rm DM}^2 \propto (1 + z')^6 \& dV \propto (1 + z')^{-3} \&$  $dt = -d \ln(1 + z')/H(z')$ 

•  $M_{\rm min}$  is very model dependent quantity that can vary from  $M_{\rm min} = 10^{-4} M_{\odot}$  to  $M_{\rm min} = 10^{-11} M_{\odot}$  [Bringmann '09, Cornell'12, Gondolo'12]. We use  $M_{\rm min} = 10^{-6} M_{\odot}$  and although there is significant uncertainty on the order of magnitude of  $M_{\min}$ , the total deposited energy only depends weakly on it.  $\sum |A| = 0.0$ Laura Lopez Honorez (FNRS@ULB & VUB) DM & 21 cm Cosmo November 22, 2016

53/12

# In practice

In order to bypass the computationally expensive interpolation at each redshift of  $f(z, m_{\chi})$  in our Monte Carlo analyses, we use:

$$\left(\frac{\mathrm{d}E}{\mathrm{d}t\mathrm{d}V}\right)_{\mathrm{deposited}} = \left(f_{\mathrm{eff}}(m_{\chi}) + g_{\mathrm{eff}}(z,m_{\chi})\right) \, \left(\frac{\mathrm{d}E}{\mathrm{d}t\mathrm{d}V}\right)_{\mathrm{injected}} \; .$$

$$f_{
m eff}(m_{\chi}) = rac{\int_{z_{
m max}}^{z_{
m min}} f(z,m_{\chi})\sqrt{1+z} \,\mathrm{d}z}{\int_{z_{
m max}}^{z_{
m min}} \sqrt{1+z} \,\mathrm{d}z} ,$$
  
and  $g_{
m eff}(z,m_{\chi}) = \gamma(m_{\chi}) \,\Gamma(z)$ 



#### s-wave annihilation results [JCAP 1307 (2013) 046]



| Dataset         |                    | $p_{\text{ann}} [10^{-6} \text{ m}^3 \text{ s}^{-1} \text{ kg}^{-1}]$ |
|-----------------|--------------------|-----------------------------------------------------------------------|
| WMAP7 + ACT'08  | (Galli et al. 21)  | < 1.17                                                                |
| WMAP7 + SPT'09  | (Giesen et al. 24) | < 0.91                                                                |
| *WMAP7 + SPT'09 | this study         | < 0.81                                                                |
| WMAP7 + SPT'09  | this study         | < 0.64                                                                |
| WMAP9 + SPT'09  |                    | < 0.44                                                                |
| WMAP9 only      |                    | < 0.66                                                                |
| WMAP7 + SPT'11  |                    | < 0.32                                                                |
| WMAP9 + SPT'11  |                    | < 0.27                                                                |
| WMAP9 + ACT'10  |                    | < 0.29                                                                |

- Our improved bounds are mainly driven by the better accuracy at high  $\ell$  of the recent ACT and SPT data releases.
- Inclusion of annihilating DM in halos does not modify the exclusion regions. The effects of the halo contribution could only be significant with an enhancement of  $g(z, m_{\chi})$  of at least two orders of magnitude.
  - An increase of about an order of magnitude could be obtained by using a cuspier density profile for the DM halos than NFW.
  - a decrease by four orders of magnitude in the uncertain and model-dependent minimum halo mass  $(M_{\min} = 10^{-10} M_{\odot})$  would increase the maximum value of  $g(z, m_{\chi})$  only by a modest factor of  $\sim 2\mathbb{R}$  and  $M_{\odot} = 0.0$

DM & 21 cm Cosmo

#### Energy deposition: p-wave annihilation

$$\left(\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t}\right)_{\mathrm{deposited}} = \left[\frac{\langle v^2 \rangle}{v_{\mathrm{ref}}^2} f_\mathrm{p}(z,m_\chi) + g_\mathrm{p}(z,m_\chi,v_{\mathrm{ref}})\right] (1+z)^6 \, \rho_\chi^2 \, \frac{\sigma v_{\mathrm{ref}}}{m_\chi} \, ,$$

• 
$$\frac{\langle v^2 \rangle}{v_{\text{ref}}^2} = \frac{T_{\chi}(z)}{T_{\text{ref}}} = \left(\frac{1+z}{1+z_{\text{ref}}}\right)^2$$

 $z_{\rm ref} = {\rm redshift}$  at which  $v_{\rm rms} \equiv \sqrt{\langle v^2 \rangle}$  of the background DM is equal to  $v_{\rm ref}$ . We write it as a function of the redshift of kinetic decoupling  $z_{\rm KD}$  corresponding to  $T_{\chi}(z_{\rm KD}) = T_{\rm KD}$ :  $1 + z_{\rm ref} \simeq 2.56 \times 10^7 \left(\frac{T_{\rm KD}}{MeV}\right)^{1/2} \left(\frac{m_{\chi}}{GeV}\right)^{1/2}$ .

•  $T_{\rm KD}$  is model dependent, for effective s- or p-wave interactions using [Shoemaker '13]  $T_{\rm KD} = 0.69 \frac{g_{\rm eff}^{1/3}}{g_{\chi}^{1/4}} \Lambda \left(\frac{48\pi m_{\chi}}{M_{pl}}\right)^{1/4} \simeq 2.02 \,{\rm MeV} \left(\frac{m_{\chi}}{{\rm GeV}}\right)^{3/4}$ .

• 
$$g_{\rm p}(z, m_{\chi}, v_{\rm ref}) = \frac{H(z)}{(1+z)^3 \sum_i \int E \frac{dN}{dE} dE} \sum_i \int dz' \frac{(1+z')^2}{H(z')} G_{\rm p}(z', v_{\rm ref}) \int T_i(z', z, E) E \frac{dN}{dE}$$
  
 $G_{\rm p}(z, v_{\rm ref}) \equiv \frac{1}{(\Omega_{\rm DM,0} \rho_{c,0})^2} \frac{1}{(1+z)^6} \int dM \frac{dn(M,z)}{dM} \int_0^{r_\Delta} dr 4\pi r^2 \frac{\langle v^2(r) \rangle}{v_{\rm ref}^2} \rho_{\rm halo}^2(r) .$ 

• We assume Maxwell–Boltzmann velocity distrib. :  $f(v, \Sigma) = \frac{4\pi}{(2\pi\Sigma^2)^{3/2}}v^2 \exp\left(-\frac{1}{2}\frac{v^2}{\Sigma^2}\right)$ ,  $\rightsquigarrow \langle v^2(r) \rangle = 3\Sigma^2(r)$ . If we assume hydrostatic equilibrium, the velocity dispersion can be found by integrating the Jeans equation:  $\frac{d(\rho\Sigma^2)}{dr} = -\rho \frac{GM(< r)}{r^2}$ . This can be done analytically with an NFW profile.

# title

・ロト < 団ト < 団ト < 団ト < 団ト < 団ト < 〇への</li>

#### This is really the end

Laura Lopez Honorez (FNRS@ULB & VUB)

DM & 21 cm Cosmo

November 22, 2016 58 / 12

三日 のへで